
1 INTRODUCTION 

Digital Instrumentation and Control (I&C) tech-
nology is expected to enhance the safety and per-
formance of nuclear power plants by offering proc-
ess control improvements, such as reduced 
instrument calibration requirements and improved 
plant condition monitoring displays [Gill et al.1994]. 
These systems also incorporate self- testing capabili-
ties for reduced maintenance requirements. On the 
other hand, digital control systems can introduce 
new failure modes [Thadani et al. 1993]. 
 

Software in nuclear power plants, even in safety-
critical applications can differ substantially in its 
functionality and its complexity. Nuclear power 
plant software spans the range from a programmable 
system controller implementing one simple function 
or operation to a digital shutdown system controlling 
multiple devices and responsible for the detection of 
transients and the activation of shutdown process. 
Accordingly, assuring quality for software in nuclear 
power plants must address a wide range of applica-
tions and must fully account for the system level in-
teractions, which exist. 

 
In a nuclear power plant safety system, software 

will perform two types of functions. The first type is 
concerned with performing the plant safety functions 

themselves. These safety functions are identified at 
the system level and flow down through the software 
requirements, design and code.  The second type is 
concerned with maintaining the integrity of the sys-
tem and software elements that perform the primary 
safety functions, such as error checking and fault 
tolerance. These integrity functions are partially 
identified at the system level, but are significantly 
expanded within the software itself. 
 

There are two general approaches to assuring 
software quality/reliability: (1) controlling (review-
ing) the software development process and (2) veri-
fying the end product. Neither of the classic ap-
proaches can produce a highly reliable software 
product, as noted in a National Research Council 
[NRC 1995] report. For software, the reliability and 
quality assurance responsibility is known as soft-
ware Verification and Validation (V&V or Inde-
pendent V&V).  

 
Several studies have shown that about 50% of 

software errors are introduced early in the software 
development. The later those software errors are de-
tected, the more costly they are to correct. Lutz 
[1992] has reported results of the study of faults de-
tected during the integration/testing of Voyager and 
Galileo spacecraft as following: (1) Very few seri-
ous errors were introduced during the later stage of 
the software life cycle. The primary sources of 
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catastrophic failures are faults in the requirement 
specification. (2) 197 faults were characterized as 
cause of catastrophic failure; of these, 3 were coding 
errors and 194 were traced to problem in the specifi-
cation of functions and interfaces. 
 

It is clear that correct requirements are necessary 
for reducing cost and increasing the quality and reli-
ability of software. Moreover, we need to develop 
mechanisms to map the system level information to 
the software requirements/design/code, i.e., which 
system requirements are related to which software 
requirements. From this perspective, identification 
of system/software functional relationships to re-
solve the problems highlighted in this introduction is 
the purpose of this paper. 
 
2. SOFTWARE REQUIREMENT ANALYSIS 
TECHNIQUES 
 

Two types of software development specifi-
cations exist.  The first is the statement of the user’s 
needs in documents referred to as a requirement 
specification. Clearly, the users must validate these 
documents since only they know what they want. 
The software developers draw up the second set of 
specifications, technical document, which restates 
the requirements in a form meaningful to the soft-
ware developers. 

Most software projects arise from require-
ments expressed in natural language, either orally or 
textually.  If these requirements are expressed textu-
ally in a requirement specification, then a number of 
validatory processes can take place. First, the docu-
ments can be checked for correct spelling and 
grammar. Many variants of ambiguity can be de-
tected automatically [Mander 1980].  Experience has 
shown that some of the reasons why more errors 
tend to occur in the requirements phase are as fo l-
lows:  (1) Lack of a common terminology and use of 
natural language: There is no known way in which 
details of functionality can be extracted from natural 
language text with any degree of certainty, as noted 
in the Hennell (1987) study. Contrary to the views 
expressed in many books [DeMarco 1979, Jackson 
1983], functions cannot be deduced necessarily or 
exclusively from the use of verb. (2) Incomplete and 
incorrect requirements specifications. (3) Ambigu-
ous and inconsistent requirements specification. In 
general, no method can be certain to detect occur-
rences of (2) and (3). The reason for this is that un-
der a particular interpretation inconsistency or con-
sequential errors may not exist. There also appears 
to be no way to identify those aspects, which have 

been forgotten, or were not understood as reported 
by Wingrove (1987). 
 

To deal with inconsistent and incomplete re-
quirements, many approaches to software require-
ment analysis have been developed over the last few 
years. According to a survey and assessment of con-
ventional software V&V methods [Groundwater et 
al.1995], requirements and design techniques consist 
of four major classes and various subclasses. These 
major classes of techniques and the total number of 
individual techniques are as follows: 

 
1. Formal methods are based on a translation of re-

quirements into mathematical form. Eight differ-
ent techniques were discovered. 

2. Semi-formal methods are based on the expres-
sion of requirement specifications in a special 
requirement language. Eleven different individ-
ual techniques were discovered.   

3. Reviews and Analysis  (informal method) are 
based on reviews by special personnel of the 
adequacy of the requirement specification ac-
cording to a pre-established set of criteria and 
detailed checklists and procedures. Seven differ-
ent techniques were identified.   

4. Requirements Tracing and Analysis Techniques 
are based on matching of each unique require-
ment element to design elements and then to the 
elements of the implementation.   Two different 
techniques were identified.   

  
 Formal methods involve mathematical and logi-

cal calcula tions for expressing relationships among 
data and other objects and the processes, which act 
upon them. But mathematical verification of re-
quirements does not seem to greatly simplify deve l-
opment.  
 

The Semi-formal methods are less difficult to 
apply than the formal methods. They often involve 
rigorous constraints on notations, sequencing, and 
selection of operator/objects to achieve the goal of 
guiding the analysis or specification within well de-
fined boundaries. Their major advantage is the phi-
losophy of supporting system-engineering descrip-
tions in a graphical mode, a characteristic that 
greatly facilitates simulation or animation of re-
quirements and design. But formalization itself can-
not guarantee error detection, nor can it prove that 
the requirement specification is correct. Testing a 
specification will not find all possible errors. 
 

The Traceability Assessments establish existence  
(or the lack thereof) of mapping relationships be-
tween requirements, design, and coding. The advan-



tages of the traceability assessments are reported by 
Groundwater et al. [1995]. These assessments help 
detect unintended functions and omission, incom-
plete and incorrect requirements. Detection of unin-
tended functions is important from a safety view-
point. The non-specified additional functions might 
lead to unexpected errors and /or safety problems.  

It is clear that functional relationships should be 
addressed at the system level. It is equally clear that 
traceability analysis is necessary, from system func-
tional requirements to software specifications to de-
tailed design and to implementation.  
 
3.PROPOSED APPROACH 
 
3.1 A functional modeling framework: goal tree suc-
cess tree and dynamic master logic diagram –GTST-
DMLD. 

 
Interactions between the basic elements of almost 

all-physical systems are very complex. For example, 
the objective of cooling a nuclear reactor core during 
an accident involving loss of reactor coolant can be 
achieved through the so-called emergency core cool-
ing systems (ECCS). However, to attain the objec-
tive of cooling the reactor core requires harmonious 
operation of a number of interacting components 
(the components that are ‘part-of’ the ECCS) an ac-
cident involving loss of reactor coolant can be 
achieved through the so-called emergency core cool-
ing systems (ECCS). To attain the objective of cool-
ing the reactor core requires harmonious operation 
of a number of interacting components (the compo-
nents that are ‘part-of’ the ECCS). These compo-
nents perform sub-functions to attain the overall ob-
jective of providing adequate cooling. Additionally, 
this equipment may require support elements (in the 
form of auxiliary functions provided by people, 
software and other equipment/functions) to cool, 
turn on and off, and power ECCS equip-
ment/functions. These supporting elements form an-
other, complementary hierarchy (i.e., the support hi-
erarchy) 

Modeling complexity based on hierarchies has 
been around for many years. GTST-MLD modeling 
is a functional decomposition framework to describe 
and model complex physical systems in terms of ob-
jects, relationships, and qualities. GTST-DMLD has 
been used to represent and model all- important 
modules of system diagnostic software [Modarres et 
al. 1999] and have been proposed to model the soft-
ware development life cycle  [Kececi et al. 1998]. 
An example of a partial GTST-MLD model repre-
senting the effects of a ‘loss of offsite power’ event 

in a nuclear power plant is shown in Figure 1. The 
lowest level of this tree shows the systems that per-
form the physical functions. These systems have 
many redundancies and interdependencies  

 
3.2 A graphical approach to integration of sys-
tem/software specifications. 

 
This study is an application of the GTST-DMLD 

modeling to the integration of system functional re-
quirements and software integrity functions. A 
graphical representation of system functional re-
quirements using the GTST-DMLD framework, as 
shown in Figure 2, may help to identify interrela-
tionships between system and software specifica-
tions. 

The approach proposed is a five-step process: 

• Step 1. Software Requirement Collection and 
Grouping: Requirements are collected from the 
system specification and are grouped dependent 
upon the system’s goals and functions. After 
that, functional requirements are classified into 
two groups describing respectively the main 
functions and the support functions.  

• Step 2. Requirement Decomposition: Main and 
support functions are decomposed hierarchically 
into sub-functions.  

 
• Step 3. Define the relationships: The relation-

ships in the hierarchies show a connection be-
tween different nodes of a hierarchy or between 
nodes of two different hierarchies.  The relations 
can be characterized as logical, physical or fuzzy 
(this is not to say that these are all the categories 
of relationships in a system). Each type is ex-
plained below. 

 
1. Logical (Boolean) connectivity relationships: 

Logical relations are used to show the redun-
dancy and connectivity between various 
nodes (objects, functions, behaviors, goals 
and classes). In a logical relationship the 
states of the input and output nodes are bi-
nary. In this case the nodes can either take a 
binary value of 0 or 1. 

2. Physical connectivity relationships: A phys i-
cal relation refers to node relations that are 
described by some physical laws, and are 
mostly represented by a continuum of values 
as opposed to binary values in the case of 
logical relations. Accordingly, physical rela-
tionships are analog in nature. 



Figure 1 A partial GTST-DMLD Model for a Nuclear Power 
Plant 
 
 

3. Uncertain (fuzzy) connectivity relationship: 
When the relationships are not fully known, 
a physical-based description is not available, 
or if available is uncertain. In this case, a 
fuzzy relation may be most appropriate. 
More detailed work on the fuzzy relations 
has been described in Hu Y.S  et. al (1994).  

• Step 4: Define the logical operators and/or 
physical macro functions: By using the GTST-
DMLD based computer tool, we are able to cre-
ate different types of macro functions and opera-
tors to represent the instrumentation and control 
system rules. Some examples of macro functions 
are as follows: math functions, data/time func-

tions, string functions, aggregate functions, data 
type conversion functions, array functions, sys-
tem functions, graph functions, hierarchy func-
tions and database functions. The operators in an 
expression describe what type of action the ex-
pression should perform, or how the expression 
should compare or relate two values. Some ex-
amples of operators are Arithmetic and Text Op-
erators, Logical Operators, Comparison Opera-
tors, Conditional Operators, Loop Control 
Operators. Logical, physical and fuzzy gates in 
the hierarchies can be customized and config-
ured by the users. This flexibility allows us to 
define, modify and delete logic gates used in de-
fining relationships.  

• Step 5: Translation: Translate the natural lan-
guage requirements into equivalent prepositional 
expressions using the definitions in step 4. 
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Figure 2. A graphical approach to integration of sys-
tem/software specifications 
 
3.2 Tools for Analysis 

  
There are two software tools that are currently 

used for modeling GTST-DMLD models. These are 
(1) REVEAL-W [Scientech, 1997] and (2) DML-US 
98 [Hu Y-S et al.1999].  

These tools are designed to help the users build 
the GTST-DMLD and use it for analysis. Both of 
these tools are commercial products and have been 
used extensively for a broad range of applications. 
While these tools are very helpful, the total approach 
described in this paper requires additional tool de-
velopment fully to automate the process.  

 
4. CONCLUSIONS AND FUTURE WORK 
 
This paper has discussed a new graphical technique 
to integrate the system/software functional require-
ments, especially for safety-related digital control 
systems. Using a GTST-DMLD, this paper argues, 
leads to the following advantages: 

(1) After decomposition, each node will only be 
associated with a limited number of rules. 
Experts may organize rules hierarchically 
instead of considering the whole complex 
system at the same time. Thus, the errors in-
troduced early in the life cycle can be 
avoided.  

(2) A graphical presentation can help identify 
functional interrelationships between system 
and software. This can minimize the genera-
tion of faults between development life cy-
cle interfaces.  

(3) Using a graphical presentation instead of 
natural language to describe the requirement 
specification can reduce inconsistencies, in-
completeness, ambiguities and better reveals 
requirements not specified. 

(4) It is easy to trace the functional require-
ments from system level to implementation 
and vice versa. The GTST-DMLD model 
and tool can be used as a traceability analy-
sis tool. 

  
In future related work, we will apply the methodol-
ogy to the Generic Westinghouse Nuclear Reactor 
Protection System and its software requirements. 
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