
1 INTRODUCTION

Digital Instrumentation and Control (I&C) tech-
nology is expected to enhance the safety and per-
formance of nuclear power plants by offering proc-
ess control improvements, such as reduced
instrument calibration requirements and improved
plant condition monitoring displays [Gill et al.1994].
These systems also incorporate self- testing capabili-
ties for reduced maintenance requirements. On the
other hand, digital control systems can introduce
new failure modes [Thadani et al. 1993].

Software in nuclear power plants, even in safety-
critical applications can differ substantially in its
functionality and its complexity. Nuclear power
plant software spans the range from a programmable
system controller implementing one simple function
or operation to a digital shutdown system controlling
multiple devices and responsible for the detection of
transients and the activation of shutdown process.
Accordingly, assuring quality for software in nuclear
power plants must address a wide range of applica-
tions and must fully account for the system level in-
teractions, which exist.

In a nuclear power plant safety system, software

will perform two types of functions. The first type is
concerned with performing the plant safety functions

themselves. These safety functions are identified at
the system level and flow down through the software
requirements, design and code. The second type is
concerned with maintaining the integrity of the sys-
tem and software elements that perform the primary
safety functions, such as error checking and fault
tolerance. These integrity functions are partially
identified at the system level, but are significantly
expanded within the software itself.

There are two general approaches to assuring
software quality/reliability: (1) controlling (review-
ing) the software development process and (2) veri-
fying the end product. Neither of the classic ap-
proaches can produce a highly reliable software
product, as noted in a National Research Council
[NRC 1995] report. For software, the reliability and
quality assurance responsibility is known as soft-
ware Verification and Validation (V&V or Inde-
pendent V&V).

Several studies have shown that about 50% of

software errors are introduced early in the software
development. The later those software errors are de-
tected, the more costly they are to correct. Lutz
[1992] has reported results of the study of faults de-
tected during the integration/testing of Voyager and
Galileo spacecraft as following: (1) Very few seri-
ous errors were introduced during the later stage of
the software life cycle. The primary sources of

System-Software Interfaces for Safety-
Related Digital I&C Systems

N. Kececi, C. Smidts, M. Modarres & Y-S. Hu
University of Maryland, Center for Reliability Engineering MD USA

ABSTRACT: The purpose of this paper is to discuss a structured software development process based on a
graphical method which relates functional requirements and software specifications to the detailed software
design and implementation. This paper presents a systematic logic-based method. The approach may be used
to model the functional specifications of digital instrumentation and control systems used for safety purposes.
The graphical representation of functional requirements is depicted through a multilevel hierarchical decom-
position technique which allows one to (i) show functional interrelations between system and software (ii)
map to follow functional information from the system level to the software implementation (requirement, de-
sign, code), (iii) address incomplete, inconsistent, and ambiguous requirements.

catastrophic failures are faults in the requirement
specification. (2) 197 faults were characterized as
cause of catastrophic failure; of these, 3 were coding
errors and 194 were traced to problem in the specifi-
cation of functions and interfaces.

It is clear that correct requirements are necessary
for reducing cost and increasing the quality and reli-
ability of software. Moreover, we need to develop
mechanisms to map the system level information to
the software requirements/design/code, i.e., which
system requirements are related to which software
requirements. From this perspective, identification
of system/software functional relationships to re-
solve the problems highlighted in this introduction is
the purpose of this paper.

2. SOFTWARE REQUIREMENT ANALYSIS
TECHNIQUES

Two types of software development specifi-
cations exist. The first is the statement of the user’s
needs in documents referred to as a requirement
specification. Clearly, the users must validate these
documents since only they know what they want.
The software developers draw up the second set of
specifications, technical document, which restates
the requirements in a form meaningful to the soft-
ware developers.

Most software projects arise from require-
ments expressed in natural language, either orally or
textually. If these requirements are expressed textu-
ally in a requirement specification, then a number of
validatory processes can take place. First, the docu-
ments can be checked for correct spelling and
grammar. Many variants of ambiguity can be de-
tected automatically [Mander 1980]. Experience has
shown that some of the reasons why more errors
tend to occur in the requirements phase are as fo l-
lows: (1) Lack of a common terminology and use of
natural language: There is no known way in which
details of functionality can be extracted from natural
language text with any degree of certainty, as noted
in the Hennell (1987) study. Contrary to the views
expressed in many books [DeMarco 1979, Jackson
1983], functions cannot be deduced necessarily or
exclusively from the use of verb. (2) Incomplete and
incorrect requirements specifications. (3) Ambigu-
ous and inconsistent requirements specification. In
general, no method can be certain to detect occur-
rences of (2) and (3). The reason for this is that un-
der a particular interpretation inconsistency or con-
sequential errors may not exist. There also appears
to be no way to identify those aspects, which have

been forgotten, or were not understood as reported
by Wingrove (1987).

To deal with inconsistent and incomplete re-
quirements, many approaches to software require-
ment analysis have been developed over the last few
years. According to a survey and assessment of con-
ventional software V&V methods [Groundwater et
al.1995], requirements and design techniques consist
of four major classes and various subclasses. These
major classes of techniques and the total number of
individual techniques are as follows:

1. Formal methods are based on a translation of re-

quirements into mathematical form. Eight differ-
ent techniques were discovered.

2. Semi-formal methods are based on the expres-
sion of requirement specifications in a special
requirement language. Eleven different individ-
ual techniques were discovered.

3. Reviews and Analysis (informal method) are
based on reviews by special personnel of the
adequacy of the requirement specification ac-
cording to a pre-established set of criteria and
detailed checklists and procedures. Seven differ-
ent techniques were identified.

4. Requirements Tracing and Analysis Techniques
are based on matching of each unique require-
ment element to design elements and then to the
elements of the implementation. Two different
techniques were identified.

 Formal methods involve mathematical and logi-

cal calcula tions for expressing relationships among
data and other objects and the processes, which act
upon them. But mathematical verification of re-
quirements does not seem to greatly simplify deve l-
opment.

The Semi-formal methods are less difficult to
apply than the formal methods. They often involve
rigorous constraints on notations, sequencing, and
selection of operator/objects to achieve the goal of
guiding the analysis or specification within well de-
fined boundaries. Their major advantage is the phi-
losophy of supporting system-engineering descrip-
tions in a graphical mode, a characteristic that
greatly facilitates simulation or animation of re-
quirements and design. But formalization itself can-
not guarantee error detection, nor can it prove that
the requirement specification is correct. Testing a
specification will not find all possible errors.

The Traceability Assessments establish existence
(or the lack thereof) of mapping relationships be-
tween requirements, design, and coding. The advan-

tages of the traceability assessments are reported by
Groundwater et al. [1995]. These assessments help
detect unintended functions and omission, incom-
plete and incorrect requirements. Detection of unin-
tended functions is important from a safety view-
point. The non-specified additional functions might
lead to unexpected errors and /or safety problems.

It is clear that functional relationships should be
addressed at the system level. It is equally clear that
traceability analysis is necessary, from system func-
tional requirements to software specifications to de-
tailed design and to implementation.

3.PROPOSED APPROACH

3.1 A functional modeling framework: goal tree suc-
cess tree and dynamic master logic diagram –GTST-
DMLD.

Interactions between the basic elements of almost

all-physical systems are very complex. For example,
the objective of cooling a nuclear reactor core during
an accident involving loss of reactor coolant can be
achieved through the so-called emergency core cool-
ing systems (ECCS). However, to attain the objec-
tive of cooling the reactor core requires harmonious
operation of a number of interacting components
(the components that are ‘part-of’ the ECCS) an ac-
cident involving loss of reactor coolant can be
achieved through the so-called emergency core cool-
ing systems (ECCS). To attain the objective of cool-
ing the reactor core requires harmonious operation
of a number of interacting components (the compo-
nents that are ‘part-of’ the ECCS). These compo-
nents perform sub-functions to attain the overall ob-
jective of providing adequate cooling. Additionally,
this equipment may require support elements (in the
form of auxiliary functions provided by people,
software and other equipment/functions) to cool,
turn on and off, and power ECCS equip-
ment/functions. These supporting elements form an-
other, complementary hierarchy (i.e., the support hi-
erarchy)

Modeling complexity based on hierarchies has
been around for many years. GTST-MLD modeling
is a functional decomposition framework to describe
and model complex physical systems in terms of ob-
jects, relationships, and qualities. GTST-DMLD has
been used to represent and model all- important
modules of system diagnostic software [Modarres et
al. 1999] and have been proposed to model the soft-
ware development life cycle [Kececi et al. 1998].
An example of a partial GTST-MLD model repre-
senting the effects of a ‘loss of offsite power’ event

in a nuclear power plant is shown in Figure 1. The
lowest level of this tree shows the systems that per-
form the physical functions. These systems have
many redundancies and interdependencies

3.2 A graphical approach to integration of sys-
tem/software specifications.

This study is an application of the GTST-DMLD

modeling to the integration of system functional re-
quirements and software integrity functions. A
graphical representation of system functional re-
quirements using the GTST-DMLD framework, as
shown in Figure 2, may help to identify interrela-
tionships between system and software specifica-
tions.

The approach proposed is a five-step process:

• Step 1. Software Requirement Collection and
Grouping: Requirements are collected from the
system specification and are grouped dependent
upon the system’s goals and functions. After
that, functional requirements are classified into
two groups describing respectively the main
functions and the support functions.

• Step 2. Requirement Decomposition: Main and
support functions are decomposed hierarchically
into sub-functions.

• Step 3. Define the relationships: The relation-

ships in the hierarchies show a connection be-
tween different nodes of a hierarchy or between
nodes of two different hierarchies. The relations
can be characterized as logical, physical or fuzzy
(this is not to say that these are all the categories
of relationships in a system). Each type is ex-
plained below.

1. Logical (Boolean) connectivity relationships:

Logical relations are used to show the redun-
dancy and connectivity between various
nodes (objects, functions, behaviors, goals
and classes). In a logical relationship the
states of the input and output nodes are bi-
nary. In this case the nodes can either take a
binary value of 0 or 1.

2. Physical connectivity relationships: A phys i-
cal relation refers to node relations that are
described by some physical laws, and are
mostly represented by a continuum of values
as opposed to binary values in the case of
logical relations. Accordingly, physical rela-
tionships are analog in nature.

Figure 1 A partial GTST-DMLD Model for a Nuclear Power
Plant

3. Uncertain (fuzzy) connectivity relationship:
When the relationships are not fully known,
a physical-based description is not available,
or if available is uncertain. In this case, a
fuzzy relation may be most appropriate.
More detailed work on the fuzzy relations
has been described in Hu Y.S et. al (1994).

• Step 4: Define the logical operators and/or
physical macro functions: By using the GTST-
DMLD based computer tool, we are able to cre-
ate different types of macro functions and opera-
tors to represent the instrumentation and control
system rules. Some examples of macro functions
are as follows: math functions, data/time func-

tions, string functions, aggregate functions, data
type conversion functions, array functions, sys-
tem functions, graph functions, hierarchy func-
tions and database functions. The operators in an
expression describe what type of action the ex-
pression should perform, or how the expression
should compare or relate two values. Some ex-
amples of operators are Arithmetic and Text Op-
erators, Logical Operators, Comparison Opera-
tors, Conditional Operators, Loop Control
Operators. Logical, physical and fuzzy gates in
the hierarchies can be customized and config-
ured by the users. This flexibility allows us to
define, modify and delete logic gates used in de-
fining relationships.

• Step 5: Translation: Translate the natural lan-
guage requirements into equivalent prepositional
expressions using the definitions in step 4.

Generalized
functions

Functional
objective

Abstract
functions

Physical
functions

Success
paths

FO: Core damage prevented
AF1: Heat generation controlled
AF2: Reactor energy removal successful
GF1: Reactivity controlled
GF2: Long-term reactor energy removed via transfer
GF3: Short-term reactor energy removed via transport
PF1: Short-term reactivity controlled
PF2: Long-term reactivity controlled
PF3: Long-term reactor energy removal via transfer
PF4: Short-term reactor energy removal via transfer
PF5: Short-term reactor energy removal via transport
PF6: Long-term reactor energy removal via transport

SP-M1: Reactor protection system
SP-M2: Chemical & volume control system
SP-M3: Main feedwater system
SP-M4: Auxiliary feedwater system
SP-M5: High pressure safety injection system
SP-M6: Power-operated relief valve
SP-M7: High pressure recirculation system

SP-S1: Room cooling system
SP-S2: Service water system
SP-S3: Emergency a.c. power
SP-S4: Normal a.c. power

FO

AF1 AF2

GF1 GF2 GF3

PF3 PF4 PF5 PF6

SP
-
M
1

SP
-
M
2

SP
-
M
3

SP
-
M
4

SP
-
M
5

SP
-
M
7

SP
-
M
6

PF1 PF2

P

UP

P PP

Cooling

Power

P

U

loop

SP-S1

SP-S2

SP-S3

SP-S4

Support hierarchy

In
te

rd
ep

en
de

nc
y

m
at

rix

P

U

: Special AND gate

: Special OR gate

Legend

(see section 3.2
for more information)

Figure 2. A graphical approach to integration of sys-
tem/software specifications

3.2 Tools for Analysis

There are two software tools that are currently

used for modeling GTST-DMLD models. These are
(1) REVEAL-W [Scientech, 1997] and (2) DML-US
98 [Hu Y-S et al.1999].

These tools are designed to help the users build
the GTST-DMLD and use it for analysis. Both of
these tools are commercial products and have been
used extensively for a broad range of applications.
While these tools are very helpful, the total approach
described in this paper requires additional tool de-
velopment fully to automate the process.

4. CONCLUSIONS AND FUTURE WORK

This paper has discussed a new graphical technique
to integrate the system/software functional require-
ments, especially for safety-related digital control
systems. Using a GTST-DMLD, this paper argues,
leads to the following advantages:

(1) After decomposition, each node will only be
associated with a limited number of rules.
Experts may organize rules hierarchically
instead of considering the whole complex
system at the same time. Thus, the errors in-
troduced early in the life cycle can be
avoided.

(2) A graphical presentation can help identify
functional interrelationships between system
and software. This can minimize the genera-
tion of faults between development life cy-
cle interfaces.

(3) Using a graphical presentation instead of
natural language to describe the requirement
specification can reduce inconsistencies, in-
completeness, ambiguities and better reveals
requirements not specified.

(4) It is easy to trace the functional require-
ments from system level to implementation
and vice versa. The GTST-DMLD model
and tool can be used as a traceability analy-
sis tool.

In future related work, we will apply the methodol-
ogy to the Generic Westinghouse Nuclear Reactor
Protection System and its software requirements.

7. REFERENCES

1. DeMarco T. 1979. Structured Analysis and Sys-
tem Specification. Prentice-Hall.Jones C.B.
(1980) Software Development. Prentice-Hall.

2. Groundwater E.H., Miller L.A., Mirsky S.M.
1995. Guidelines for the Verification and
Validation of Expert System Software and
Conventional Software. Survey and Document of
Expert System Verification AND Validation
Methodologies NUREG/CR-6316, SAIC-
95/1028. Vol.1-7 3. Gill, W., Harmon, D., Rozek, T., and Wilkosz,
S. 1994. Nuplex 80+ Advanced Control Com-
plex: Enhanced Safety through Digital Instru-
mentation and Control. 9th Annual KAIF/KNS
Conference, April 6-8, 1994.

4. Hennell M.A.1987. Requirements, Specification

and Testing. Software Reliability Achievement
and Assessment, Edited by B. Littlewood.
Blackwell Scientific Publication.

5. Hu Y-S, Modarres M.,1994. Time-dependent
system knowledge representation based on dy-
namic master plant logic diagram. Proceedings
of 2nd IFAC Workshop on Compute Software
Struct. Integ. AI/KBS Syst. In Proc Cont, Lund,
Sweeden August 1994.

6. Hu Y-S, Modarres M., 1999. Applying Fuzzy-
Logic-Based Hierarchy for Modeling Behaviors
of Complex Dynamic System. System and Soft-
ware Computing in Nuclear Engineering, Da
Ruan ed., Springer-Verlage (in Print).

7. Jackson M.A. 1983. System Development. Pren-
tice-Hall.

8. Kececi N., Modarres M. 1998. Software Deve l-
opment Life Cycle Model to Ensure Software
Quality. Proceeding of the 4th International Con-
ference on Probabilistic Safety Assessment and
Management, New York City, USA.

9. Lutz R., 1992. Analyzing Software Requirement
Errors in Safety-Critical Embedded Systems.
TR92-27, Iowa State University

10. Mander K.C.& Presland S.G. (1980) An Intro-
duction to Specification Analysis-SPAN.SCM
Dept, University of Liverpool Report.

System Specification

Software Specification

Preliminary Design

Detailed Design

Implementation

GTST-MLD
Based-Tool

Planning

Requirement

 Design

Implementation

Integration

Validation

Installation

Maintenance

11. Modarres M. 1993. Functional Modeling of
Complex Systems Using a GTST-MLD Frame-
work. Proceeding of the 1st International Work-
shop of Functional Modeling of Complex Tech-
nical Systems, Ispra, Italy.

12. National Research Council (NRC), 1995. Digital
Instrumentation and Control Systems in Nuclear
Power Plants: Safety and Reliability Issues,
Committee on Application of Digital Instrumen-
tation and Control Systems to Nuclear Power
Plant Operations and Safety, National Academic
Press, Washington, DC.

13. Scientech, 1997. REWEAL-W –TM User’s
Manual, Scientech Corporation, Rockville, MD
(www.scientech.com)

14. Thadani A.C., Perch R.L.1993 Consideration of
Important Technical Issues for Advance Light
Water Reactors. Proceeding of the 2nd
ASME/JSME Joint Conference, San Francisco,
CA.

15. Wingrove A. (1987) Software Failures are
Management Failures. Center for Software Reli-
ability The City University, London ECIV 0HB

