
IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 1

Measuring ALL the Software not just what the Business Uses

Pam Morris and Jean-Marc Desharnais

Total Metrics and SELAM

Function Point Analysis (FPA) is used by organisations worldwide as one of the measures used to
establish the baseline size of their software assets in outsourcing contracts. This paper introduces new
techniques, which enable all the functionality delivered and worked on by the supplier to be included in
the productivity performance monitoring of these contracts. Typically only the business applications
layer can be measured using FPA. The infrastructure software e.g. Utilities, device drivers and gateway
applications, are usually overlooked because FPA is not designed to, nor easily adapted to, measuring
internal layers of functions not delivered to the business user. This new Full Function Point Technique,
developed by the University of Quebec in Montreal and SELAM, is a refinement of the FPA technique. It
is no longer limited to only measuring MIS type applications but was specifically designed to meet the
needs of organisations that build and support infrastructure applications, real-time and embedded
software.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 2

1 Introduction
Outsourcing Information Technology’s (IT) software development and maintenance activities has
become increasingly popular as a means of enabling an organisation to more effectively focus on
their core business activities.

The high cost and risk associated with these IT outsourcing contracts means that they need to be
carefully monitored and managed. Both the client and the supplier need to establish a means by
which the client’s software assets can be quantified and the supplier’s performance can be
evaluated and compared to agree targets. The most common mechanism for providing these
performance measurements is to measure the supplier’s productivity rates in units of software
product delivered per unit effort or units of software product delivered per unit cost.

The units of software product delivered are usually measured using a Functional Size Measurement
(FSM) method called Function Point Analysis (FPA). FPA was developed by Alan Albrecht in the
late 1970s and has since been refined by the International Function Point Users Group (IFPUG).
Until recently the use of FPA has been concentrated within the business application domains i.e.
software which delivers functionality to the human business user. These applications are typically
commercial and management information systems (MIS) software. FPA has been found to very
effective in measuring the functionality delivered by these types of applications, particularly when
used for measuring the productivity of software development and as input into estimates for project
resources and schedules. However, in recent years the need to quantify software has extended
beyond just measuring business applications for these purposes. Many developers are working on
real-time embedded and control software where the users are equipment rather than people. Other
developers are building infrastructure software, which enable the business applications software to
operate and have other applications as their users. With the advent of outsourcing, the client and
supplier need to monitor all software worked on by the development teams, not only the
applications which deliver software directly to the business users, but also include software that has
other applications or equipment as its primary users. The functionality delivered by these ‘other
types’ of applications does not behave in the same way as functionality delivered primarily to
human users.

Many functional size measurement specialists have found that FPA is less effective when
measuring software, which delivers functionality to ‘users’ other than the business user compared
to when it is applied in its traditional domain for which it was designed. This creates a problem in
outsourcing contracts where all the supported software needs to be included in the performance
measures. This paper explores the reasons for these observed limitations of FPA and shows how
they were overcome using a new functional size measurement technique called ‘Full Function
Points’ (FFP). Using this FFP technique the authors were able to successfully measure these ‘other
types’ of applications or ‘non-business’ software as they are referred to. The paper presents the
results from a pilot project, which measured these non-business software applications, using both
the FPA and FFP techniques. These types of applications constituted about one-tenth of the total
applications for the outsourcing contract. Results obtained showed that the FFP measures have the
potential to be used successfully for productivity monitoring and estimating, where FPA measures
have been tried and were found to be lacking.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 3

2 Types of Software

Software that is usually included within the scope of the MIS organisation can be categorised based
on the types of service by software (Figure A).

Business

Infra-
structure

Business Application
Software

Embedded or
Control Software

Utility
Software

Users Tools
Software

Developers
Tools Software

Systems Software

Figure A

2.1 Business Applications Software
These applications deliver functionality that supports the organisation’s core business.

The users are primarily human business users, however a small proportion of the functionality may
also be delivered to, or triggered by, other Business Applications. This type of software is typically
business or commercial (MIS) software and would include Payroll applications, Accounts
Receivable or Fleet Management systems.

2.2 Embedded or Control Software
These applications also deliver functionality, which supports the organisation’s core business.

The users are primarily other software applications embedded in equipment. This type of software
typically operates under strict timing conditions and is often referred to as Real-time software.
Examples would include Equipment monitoring Systems, Telephone Switching Systems.

2.3 Utility Software
These applications deliver software that provides the infrastructure to support the Business
Applications Software. The users are primarily Business Applications, which trigger the operation
of the utilities but may include the developers or business administration people as the
administrative users. Examples would include backup utilities (to ensure the data reliability of the
Business Application) or archiving utilities (to optimise the performance of the Business
Application). Other examples are installation and conversion software.

2.4 Users Tools Software
These applications are tools used by administrative users to create the functionality delivered by the
Business Applications Software.

The users are primarily Business Applications Software, which utilise functionality delivered by
the tools to enable them to deliver functionality to the business. Administrative human users of
these tools may be from either the Business or IT. Examples would include Report Generators,
Spreadsheets, and Word processors.

2.5 Developers Tools Software
These applications are tools used by developers to create the functionality delivered by the
Business Applications Software. The users are primarily other applications, which are either
generated by, or used as input to, the tools operation. Human Users may also include IT developers
as administrative users. Examples would include, Code Generators, Testing software, New Product
Generators etc.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 4

2.6 Systems Software
These applications enable all other types of software to operate and deliver functionality. The users
are primarily other applications with a limited interface to Human IT operational staff. Examples
would include operating systems, printer drivers, protocol converters, and presentation software.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 5

3 FPA and FFP Concepts
This section compares the differences between the basic concepts of FPA and FFP. FFP was
developed by the University of Quebec in Montreal (UQAM) and the Software Engineering
Laboratory in Applied Metrics (SELAM) to take into account functional characteristics specific to
real-time software. However its concepts have been found to be equally applicable to other types
of software particularly where the primary users are not human.

FPA was designed and refined for Business applications software, which usually constitutes about
70% - 80% of a commercial organisation’s software portfolio. This section describes the basic
concepts of FPA, which have contributed to it being able to be used to effectively measure
Business Applications software over the past 20 years. Full details of the rules for applying FPA
can be found in the IFPUG Counting Practices Manual 4.0

3.1 FPA concepts
The FPA technique measures functionality by quantifying the software’s processes (inputs, outputs,
enquires) and data files (internal and external). It is based on the following fundamental principles:

1. Functional size is the measure of the functionality delivered to the end business user. Only
processes that send or receive data to, or from, the external user boundary are included in the
measurement of functionality delivered to the user.

2. A process is required to have a predominant role of either inputting or extracting data. This
predominant role determines the process type (input, output or enquiry).

3. The functional size of a process is directly related to the amount of data, which crosses the
external user boundary of the software during the execution of the predominant side of the
process.

4. An extremely complex process of a particular type can only be measured to have, at the most,
double the functionality of the simplest process of that type.

5. Functionality delivered by stored data is a significant contributor to the overall functional size
of the software.

6. Functionality changed is recorded as being the measure for the whole function irrespective of
the proportion of the process being changed.

3.2 FFP concepts
1. The FFP technique measures functionality of the software by quantifying the software’s sub-

processes within each process and control data (internal and external). It is based on the
following fundamental principles:

2. It measures functional size from the functional perspective instead of the external user view.
I.e. measures the functionality required to be delivered by a process to the user of the process
not just the functionality experienced directly by the user. Sub-processes that read and write
the data to and from data groups are included in the measurement of functionality in addition to
the sub-processes required to receive data (entry) and extract data (exit).

3. A process is not required to have a predominant role per se. In order to measure size it is only
necessary to identify all the entry, exit, read and write sub-process types.

4. The functional size of a process is determined by measuring the size of individual sub-
processes, which are not limited to those which only accept (entry) or extract (exit) data. The
predominant role of a process to either extract or accept data does not influence its size.

5. An extremely complex process of a particular type can be sized accordingly by awarding
proportionally more points. In theory, there is no limit to the number of points awarded for one

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 6

specific process.
6. Functionality delivered by stored data is a less significant contributor to the overall functional

size of the software, than functionality delivered by the processes.
7. Functionality changed is recorded at the level of the sub-processes. Only a part of the process

(identified by the sub-processes) is credited for the change.
The FFP technique has taken into consideration current industry practices in the design of real-time
software and the design of what is currently documented regarding the user requirements from a
functional perspective. It introduces new concepts for measuring data and transactional function
types, which cater for the characteristics of non-business applications software1

Overview of FFP Technique

FFP, like FPA, measures functional size by evaluating transactional processes and logical groups of data. However
unlike FPA, the transactional processes are evaluated at sub-process level. I.e. the sub-processes within a process are
identified, classified and assessed. Points for functional size are awarded at sub-process level. The sub-processes within
each transactional process can be categorised into one of four types:

• External Control Entry (ECE)

• External Control Exit (ECX)

• Internal Control Read (ICR)

• Internal Control Write (ICW)
 The data groups, which contribute, to the overall size fall into two categories.

• Multiple record data groups, which can be either updated or only, read by the processes. These are similar to the
Internal Logical files and External Interface files counted for FPA.

• Single Record (single occurrence) data groups. These data groups may be maintained by the processes (Updated
Control Group - UCG) or only read by the processes (Read-only Control Group - RCG). The single occurrence
data groups contain all instances of single control values used by the processes. There may be only one instance of
a UCG or RCG per application.

1 . A full description of the FFP technique is available in the Full Function Points: Counting Practices Manual
Technical Report 1997-04

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 7

4 COMPARISON OF FPA and FFP FOR Non-Business Applications
Software

 The following section illustrates how the conceptual differences between FPA and FFP impact
their capability to measure functional size in non-business applications software.
 4.1. Identifying Functionality Delivered to the End User
 In the past functional size measurements using FPA have usually only included functionality of
processes that send or receive data to or from the external user boundary I.e. FPA is usually used to
report the size of the functions delivered to the external business user. In contrast, the end user of
the non- business applications software is primarily other software applications. Many outsourcing
contracts are based on the payment for function points delivered (added, changed or deleted) to the
end business user. Contention arises when the customer requests infrastructure functionality to be
developed or changed and the charges for a contract are based on function points impacted. (E.g. A
client request is to improve the performance of all database accesses. The developers do this by
modifying the archiving software to archive selected data). The quality of the end user functionality
(i.e. performance) is improved but the functional size of the business applications software is not
impacted. FPA specialists consider performance as a general system characteristic rather than
functionality changed in software. Problems with the contract arise when the supplier requires
payment for the software changes but the client maintains that contract implies that only changes to
function points delivered to the business will be paid for. Issues also arise when a project needs to
build infrastructure software in addition to the Business Application software but the infrastructure
software is not included in the project’s functional size. Consequently, the impact on the effort for
building the infrastructure software is not adequately catered for by the adjustment for the technical
and quality features in the VAF of the Business Application. The FFP approach, from the
functional perspective instead of external user view enables the functionality delivered by non-
business Applications to be effectively measured. I.e. when estimating projects, it enables
infrastructure software, which supports the Business Applications to be sized, and their
productivity rates and resource estimates to be separately established.

 4.2. Measuring internal and external sub-processes
 FPA measures functionality by evaluating the amount of data, which crosses the external boundary
during the processing of the predominant side of a process. The processes within Business
Applications software tend to be primarily involved with inputting and extracting data so the
amount of data movement is a good indicator of overall process size. However problems arise with
non-business applications where there is significant internal processing compared to the processing
required to move the data into or outside the boundary. This poses a problem in outsourcing
contracts where the performance of the suppliers is measured in Function Points delivered. Since
any process which has significant internal processing but little external visibility will not be
accredited for the full amount of functionality it delivers. This will result in low recorded
productivity rates for the project since although considerable effort may have been expended
adding or changing the internal logic within a process, if it only accepts a minimal number data
items then its function points will be low. For example, a process, which receives the coordinates
of a radar system and only sends out confirmation or an alarm, may have significant internal
processing to check positioning and exception conditions. The FPA measurement standards, which
consist of measuring only the external data moverments, do not represent an adequate measure of
the functionality delivered by this process.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 8

 In comparison FFP measures all the sub-processes within a process i.e. not only the data entering
and exiting the process but the internal processes of reading and writing to the data groups. By
measuring all the functionality that a process is required to deliver rather than just the external
aspects of a process it captures its full complement of functionality for estimating and productivity
comparisons.

 4.3. Categorizing processes which do not have predominant role
 FPA requires a process to have a predominant role of either inputting or extracting data. This
predominant role determines the process type (input, output or enquiry). The processes within non-
business Applications software tend not to have a predominant role making them difficult to
categorize unequivocally into type, since they often:

• Accept data which enters one side of the application boundary, process it and send the results
immediately externally across the boundary to another application. (e.g. translation process in a
gateway protocol converter or extraction process in screen scraper software)

• Involve the processing of multiple and variable sets of incoming data and outgoing data.
Neither side of the process is predominant. (e.g. processes in real-time equipment monitoring)

 It is difficult to consistently measure these types of processes since the same process may be
categorised into differently each time it is sized, resulting in a range of reported functional sizes for
the same application. I.e. different people will categorise the same process as either an input,
output or enquiry each of which will be allocated a different number of function points. These
variations in results cause contractual problems when performance targets fall within the error
boundaries of the measures.

 In comparison FFP categorises sub-processes within processes. The number of points awarded is
independent of the type of sub-process. Therefore any errors or variations in categorisation do not
impact the measured size of a process.

 4.4. Sensitivity to large variations in functionality delivered by Processes
 The FPA rating scale used to award function points to a process increases by just over two fold
between the points awarded for the simplest process (e.g. Low complexity input is awarded 3
points) and the points awarded for the most complex process (high complexity output is awarded 7
points). The coarseness the FPA measure is usable and acceptable for business applications where
in most cases a two fold difference in size is representative of the range of functionality delivered
by most processes.

 However the processes delivered by non-business Applications software have been found in
practice to deliver a much broader spectrum of functionality than a two-fold difference. However,
no matter how complex the functionality delivered by a process FPA cannot award it points beyond
the maximum number. This can cause vast errors in estimates of effort for a requirement to change
a number of very complex processes. This is a concern in an outsourcing contract where a
requirement of the contract is to provide fix price estimates on projects using historical productivity
rates.

 The FFP measure is not restricted to awarding a maximum number of points to any one process. It
therefore much more sensitive to large variations in size of processes experienced in non-business
applications.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 9

 4.5. Measuring Process Rich, Data Poor software
 FPA measures the data groups accessed by the processes as one of the major contributors to
functional size. FPA is based on the concept that maintaining and reporting on data is the
software’s primary role. It includes within its total size the function points awarded to the logical
data groups accessed by the application. These data groups also contribute to the functionality
attributed to each process that access the data groups. However non-business Applications do not
have the same emphasis on stored and maintained data. Their processes often operate by
referencing relatively static threshold values and parameter controls to make decisions on the data
to output. The processes may involve multiple steps or sub-processes which reference and update
fields in these data groups but the data itself is often minimal compared to the many steps to
analyse it and react appropriately. The data input to the process is not usually permanently stored
but used for the duration of the process. The permanent data, which is accessed, is relatively
simple and usually consists of historical logs, threshold values or parameter controls.

 Difficulties arise when using FPA to measure non-business Applications since FPA uses the
amount of stored data as a significant factor in determining the functional size of the application.
Where the stored data is simple but the processing of the stored values is complex, the functional
size of the application is underestimated. In contrast, FFP determines the size of a process by
measuring the number of unique data accesses rather than the number of unique data groups. Thus
giving a better indication of size for applications that have a few groups of simple data but complex
use of that data.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 10

5 The layered applications

If the characteristics of the different types of software are considered, then they can be identified as
being on a different level to that of the business user applications and to each other. In fact, they
constitute different layers: the business user will see the utility software as providing the technical
features of their software, while the user of utilities could consider the developer tools as the
technical means of providing their software. The lowest layer in the non-inclusive list is the
operating systems software.

Within an organisation, especially within a telecommunications organisation, it is possible to
identify additional types of software. For this reason, it is necessary to find definitions and rules to
assist the person measuring the software to identify the different layers of the software. The
functionality delivered by software within one layer is not the same type of functionality delivered
by software within a lower layer. Functionality delivered by software at different layers cannot be
combined nor directly compared. Although the effort to build the different types of software can
be combined and the productivity rates to build and support the different software types can be
compared.

5.1 Definition of a layer

An item of software is typically structured in horizontal “layers”2. Each layer is a world unto itself.
A layer does not need to know how its inputs are generated. It is just required to deal appropriately
with the input when it is received. A layer perceives the layer below it as a set of primitives. Each
layer "sees" the layers below but cannot see the layers above. Similarly, what happens to data
output from a layer is irrelevant to the producer once that output has been dispatched. The internal
operation of one layer does not need to be known by any other layer. Indeed, it is preferable that
internal details be protected from outside alteration. Making one layer dependent upon internal
organisation of another is very undesirable. Such dependency restricts the ability to maintain (i.e.
change or enhance) the layer which is depended upon. This is the basic principle of information
hiding. The organisation ought to be able to entirely re-construct a server layer without affecting
clients, which use its primitives, so long as the software retains the same interface. For this reason,
the organisation usually prevents a client layer from directly using the services of any subordinate
layers except the one immediately below it.

2 "Function Point Counting Practices for Highly Constrained Systems – Release 1.0”, United Kingdom Software
Metrics Association (UKSMA), March 1993, UK.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 11

5.2 Rules for identifying a layer

The following are the recommended rules for identifying a subordinate layer from a superior layer:

A. A subordinate layer is considered as a technical implementation by the superior layer.
B. A subordinate layer does not recognise the superior layer and has no functionality by itself to

communicate with the superior layer.
C. A subordinate layer could work without the assistance of a superior layer. If the superior layer is not

working properly, this will not affect the subordinate layer.
D. A subordinate layer is independent of the technology used by the superior layer.
E. A subordinate layer provides services to the superior layer and could be used by the superior layer.
F. A superior layer could not fully work if the subordinate layer was not working properly.
G. A superior layer does not necessarily use all the functionality of the subordinate layer.
H. A subordinate layer could be a superior layer from the perspective of a layer below it.
I. A layer always delivers functionality
J. A layer is software, not a piece of equipment. The software could be embedded, within the equipment.
K. From one layer to another the data is perceived differently.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 12

6 FIELD RESULTS
6.1 Background
 The following results are from an organisation in the telecommunications industry, which had
outsourced the development and maintenance of the majority of their software applications. At
least 10 –15% of these could be classified as non-business Applications and demonstrating the
characteristics previously described. Previous attempts had been made at measuring the size of
these non-business applications using FPA, but developers had found low correlation between the
measured size of projects, with the actual of effort to develop the software and had abandoned its
use for estimating. They had also experienced significant variance in the size of the applications
when measured by different people. Both factors lowered their confidence in the reliability of the
FPA measure and identified a need to find an alternative effective functional size measurement
technique.
6.2 Method
 In order to ensure consistency of interpretation, only one person was used to measure the
applications. This person had 12 years experience in functional size measurement and was an
IFPUG-certified function point specialist (CFPS) and co-author of the FFP technique.

 FPP and FPA were used to count 5 application areas and 10 sub-applications within those areas.
Of these 10 sub-applications, 5 could be described as non-business Applications software while the
remaining 5 were mostly Business Applications software (B, C2, C3, D1, and D2). Both
measurement techniques were used to measure 7 of the sub-applications. However, due to time
constraints, the remaining 3 sub-applications were measured using only FPA (these sub-
applications were entirely Business Application type (C3, D1, and D2). Measuring them with FPA
only, was not considered to be a problem since our past experience had demonstrated that, for the
Business Applications, the FFP sizes are comparable with those obtained by FPA for applications
like these which have no complex processes.
6.3 Results
 For most of the sub-applications FFP measured significantly more functionality than that measured
using FPA. Table 1 shows that the total FPA size for all applications was 4067 function points and
the total FFP size for all applications was 83703 points. Whilst we are not proposing that FFP
points and FPA function points are equivalent, we believe that the results are significant for the
following reasons:
• When counting typical Business applications with both techniques, the results were similar.

This is demonstrated by the results for sub-Application C2 (FPA=878, FFP=896) and to a lesser
extent sub- application B1(FPA=764, FFP=791).

• Some processes within the non-business sub-applications could not be measured using FPA
because the functionality that they delivered could not be reliably categorised into the FPA
Function types, and did not comply with the definition of an elementary process. This was the
case for D3 (FPA=0, FFP=2604), A1 (FPA=210, FFP=794) and E1 (FPA=43, FFP=318).

• When counting complex processes, within non-business Applications, the difference between
the size measured by the two techniques was found in all cases to be significant. Sub-
applications of A, are typical examples where A1 the difference between the two measures is
74% (FPA=210, FFP=794) and for A2 the difference was 37% (FPA=115, FFP=183).

 3 assuming sub-applications C3,D1 and D2, (all of which are business applications) were the same size if measured by
FFP as that measured by FPA

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 13

 Application Sub-applicn

 FPA
 (fps)

 FFP
 (points)

 Difference Difference
 %

 Type

 A A1- L1 210 794 584 74% Non-Business
 A2- L2 115 183 68 37% Non-Business

 B B1-L1 764 791 27 3% Mostly Business
 C C1-L3 272- 676 404 60% Non-Business 4

 C2-L25 878 896 18 2% Business
 C3-L1 1273 N/C6 0 0% Business

 D D1-L1 727 N/C 0 0%6 Business.

 D2-L1 110 N/C 0 0%6 Business
 D3-L2 0 2604 2604 100% Non-Business

 E E1-L1 43 318 275 86% Non-Business
 4067 8372 3980 51% FFP total

 Table 1

Business

Infra-
structure

Figure B

A-1 A-2 E-1B-1 C-3 D-1 D-2

D-3 (test)

C-1 (protocol converter)

C-2 (converter)

 4 This system could be considered a batch system.
 5 We had difficulty categorising the processes as either an input, output or enquiry. However this did not have an
impact on the overall size.
 6 N/C = Not counted

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 14

6.4 Discussion
 The sub-applications identified within each of the application areas were separately identified if
they delivered functionality to a different category of user. When these sub-applications delivered
functionality hierarchically to each other they were identified as being in a particular ‘layer’.
Where each layer was the ‘user’ for the layer below it. The top layer (L1) being that which
delivered functionality to the core business. Applications within any layer may deliver functionality
to peer applications within the same layer, however their primary user is applications in the layer
directly above them in the hierarchy, i.e.:
• Layer 1 (L1) delivered core business functionality directly to an external user [either a person

in the case of Business applications or equipment in the case of embedded (real-time) software.
• Layer 2 (L2) identifies infrastructure software, which delivers functionality to support its users,

i.e. primarily the applications in L1.
• Layer n identifies infrastructure software, which delivers functionality to support its users, i.e.

the applications in Ln-1.
 Hierarchically layered software, below Layer 1, provides the infrastructure for IT organisations.
Although the users below the first layer are not directly the business users the business users are
still able to take advantage of the infrastructure software because, without it, their applications
would be inoperable. The infrastructure software delivers functionality indirectly to the business
users via other applications. In the context of outsourcing an IT organisation, measuring software
only from a business user perspective i.e. Layer 1, hides a good part of the actual functionality as
shown with application C where 47% (1150 FFP) of the total functionality (2,423 FFP) was
measured to be in infrastructure software. It is important in any outsourcing contract that the
infrastructure software, which is developed and supported as part of the contract, is, identified
separately from the software it services and its functional size is:
• Measured consistently and completely.
• Measured independently of the software it services.
• Analysed independently of the software it services. That is, it is not incorporated into the total

size of the software of which it is a user or software that acts as its user. For estimating and
productivity measures its size is used and reported independently.

 The results of this preliminary field study showed that, for the applications measured, FFP was:
• More effective than FPA in capturing all the functionality delivered by non-business

applications software.
• Was easier to apply more consistently than FPA.
• Needed a greater level of detail of the internal processing requirements of each process in order

to measure it than that required by FPA.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 15

7 Conclusion
 All software developed and supported by the supplier in an outsourcing contract, needs to be able to be
measured in order to provide input into performance monitoring. This software usually includes
applications, which do not deliver functionality directly to the human business users. Experience showed
that the FPA functional sizing technique was not well suited to measuring software that has other software
as its primary users. This initial study indicated that the FFP technique provides a more effective method of
measuring these infrastructure and real-time embedded and control software applications (non-business
applications), than FPA. FFP’s ability to measure:
• consistently across layers,
• in a repeatable way, by different people, and

• effectively i.e. measure all the functionality delivered by these types of applications,
 make it a good candidate to be considered when measuring all the software involved in monitoring a
contract.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 16

8 Bibliography

Alain Abran, Marcela Maya, J-M. Desharnais, Denis St-Pierre, Adapting Function Points Analysis to Real-
time Software, American Programmer, Fall, 1997.
Albrecht, A.J. (1979), Measuring Application Development Productivity, Proceedings of Joint Share Guide
and IBM Application Development Symposium, October, 1997, pp. 83-92.
Desharnais, J.-M., Statistical Analysis on the Productivity of Data Processing with Development Projects
using the Function Point Technique. Université du Québec à Montréal. 1988.
Desharnais Jean-Marc, St-Pierre Denis, Maya Marcela, Abran Alain, Bourque Pierre, Full Function Points:
Counting Practices Manual, Technical Report 1997-04 UQAM and SELAM, Montreal, September, 1997.
Desharnais J.-M., St-Pierre D., Abran A., Gardner B., Definition of When Requirements Should be Used to
Count Function Points in a Project, The Voice, International Function Point Users Group, July, 1996.
Desharnais J.-M., Validation Process for Industry Benchmarking Data, Invited Paper, Conference on
Software Maintenance, IEEE, Montreal, September, 1993, pp. 371-372.
Desharnais J.-M., Morris P., Post Measurement Validation Procedure for Function Point Counts, Position
Paper Forum on Software Engineering Standards Issues, October, 1996.
Galea, S. (1995), The Boeing Company: 3D Function Point Extensions, V2.0, Release 1.0, Boeing
Information and Support Services, Research and Technology Software Engineering, June, 1995.
IEEE, (1990). IEEE Standard Computer Dictionary: A compilation of IEEE Standard Computer Glossaries,
IEEE Std 610-1990, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1990.
IFPUG (1994). Function Point Counting Practices Manual, Release 4.0, International Function Point Users
Group - IFPUG, Westerville, Ohio, 1994.
Illingworth, V. (1991) (editor), Dictionary of Computing, Oxford University Press, 3rd edition, 1991, 510
pages.
ISO/IEC/JTC1/SC7 Standard 14143 – Information Technology - Software Measurement – Functional Size
Measurement – Part 1 : Definition of Concepts.
Jacquet, J.-P. and Abran, A. (1997), ‘From Software Metrics to Software Measurement Methods: A Process
Model’, presented at the Third International Symposium and Forum on Software Engineering Standards,
ISESS ‘97, Walnut Creek (CA), 1997.
Maya M., Abran A., Oligny S., St-Pierre D., Desharnais J.-M., Measuring the functional size of real-time
software, ESCOM-ENCRESS 98, Rome, May 1998, 10 p.
Reifer, D. J. (1990), ‘Asset-R: A Function Point Sizing Tool for Scientific and Real-Time Systems’, Journal
of Systems and Software, Vol. 11, No. 3, March, 1990, pp. 159-171.
St-Pierre, D., Maya, M., Abran, A. and Desharnais, J.-M. (1997a), Full Function Points: Function Points
Extension for Real-Time Software - Concepts and Definitions, Software Engineering Management Research
Laboratory, Université du Québec à Montréal, Technical Report 1997-03, March, 1997, 18 pages.
St-Pierre, D., Maya, M., Abran, A. Desharnais, J.-M. and Bourque, P. (1997b), Full Function Points:
Function Points Extension for Real-Time Software - Concepts, Definitions and Procedures, Software
Engineering Management Research Laboratory, Université du Québec à Montréal, Technical Report 1997-
04, September, 1997, 43 pages.
St-Pierre, D., Abran, A., Araki, M. and Desharnais, J.-M. (1997c), Adapting Function Points to Real-Time
Software, IFPUG 1997 Fall Conference, Scottsdale, AZ, September 15-19, 1997.
Whitmire, S. A. (1992), ‘3-D Function Points: Scientific and Real-Time Extensions to Function Points’,
Proceedings of the 1992 Pacific Northwest Software Quality Conference, June 1, 1992.

IFPUG Fall Conference, Orlando, Florida, September 21-25, 1998 17

Authors

Jean-Marc Desharnais (Master degree in Administration, Master in Computer Management,
CFPS) is a specialist in software engineering measurement. He is one of the co-authors of the FFP
technique. He has carried out a number of software engineering researches projects covering
assessment, budgeting and productivity evaluation. Mr. Desharnais has also evaluated productivity
levels in several organisations and set up quantification programs to include the assessment,
productivity, quality and budgeting of software maintenance. Mr. Desharnais holds Master's
degrees in Computer Management and Public Administration. He is the Executive Director of the
Software Engineering Laboratory in Applied Metrics (SELAM). A Certified Function Points
Specialist since 1993, he has participated in several committees of the International Function Point
Users Group (IFPUG) in the last ten years. He has been Vice-President of CIM since 1989.

Pam Morris
Ms Pam Morris (B.Sc., Dip. Ed., Grad. Dip. Computing, CFPS), is the Director of Consulting and
Training for TOTAL METRICS Pty. Ltd Australia. She has extensive experience in the software
development field, specialising in software process improvement and software metrics since 1989.
She has consulted to a wide range of organisations both in Australia, New Zealand and the United
Kingdom.
Ms Morris is a founding member of the Australian Software Metrics Association (ASMA), holding
a position on the Executive Board and the Function Point Counting and Benchmarking Database
Special Interest Groups. Ms Morris is the international project editor of the ISO Standard 14143
for Functional Size Measurement and is convenor of WG12 (the ISO/IEC standards group
responsible for the development of functional size measurement standards). She plays an active
role internationally in the development of the FPA technique and represents the ASMA on the
International Function Point User Group (IFPUG) Counting Practices Committee. She has
combined her consulting and tertiary teaching experiences to develop and present numerous
Software Measurement and FPA training courses to over 200 organisations and 900 attendees in
Australia and New Zealand since 1991.

