
International Workshop on Software Measurement (IWSM’99) – September 8-10, 1999
Lac Supérieur, Canada

AUTOMATIC FUNCTION POINT COUNTING USING STATIC

AND DYNAMIC CODE ANALYSIS

Keith Paton
350 Pine Avenue

Saint Lambert (Quebec)
Canada
J4P 2N8

Tel (450) 671-1969
fax (450) 465-9386

internet paton@total.net

SUMMARY

We define an intermediate representation of a
program P as a data flow graph DF(P) and
shown that this representation allows us to
express the program as a quadruple Q={F,T,r,w}
useful in function point analysis.

We show that we can derive DF(P) by program
slicing, a form of static code analysis. Starting
with one given output file, A say, we derive the
smallest program A(P) that mimics P in its
writing to A. When we repeat this process for all
output files,(A,B,C,D say) we obtain a set of
programs A(P), B(P), C(P) and D(P) in which any
two are disjoint or identical. The number of
unique such programs is the number of
transactions and straightforward analysis yields
DF(P).

We shown that we can also derive DF(P) by
program tracing, a form of dynamic code
analysis. In this case, we can modify the

program P being studied into a second program
P’ such that P’ has the same behavior as P and
P’ generates a trace showing what it is doing.
From the trace, we can automatically derive the
intermediate representation DF(P). The
modification of P to P’ can be carried out
automatically by methods of static code analysis
now under development.

1. INTRODUCTION

This paper discusses the question

Given a working program, how can we apply
some simple methods of static and dynamic
code analysis to generate files that will be
valuable in automatic function point analysis?

I shall interpret the phrase a working program to
mean an exe file derived from a set of C source
files and headers. This means that we can
investigate in three ways:

1 We can run the exe file as
supplied and observe its
behaviour.

This is the fly-on-the-wall technique, in which we use
whatever tools we have available to examine the
external behaviour of the program.

2 We can analyze the source files
and header files and predict the
behaviour of the exe file from that

This refers to static code analysis, in which we use tools
to examine the code of the program for evidence that
certain files exist, certain transactions exist, certain
transactions read certain files, and so on. We discuss
this in section 3.

3 We can modify the source files in
such a way that when we
regenerate the program the
program writes a trace file
describing its behaviour.

This refers to dynamic code analysis, in which we use
tools to modify the program itself in such a way that the
modified program not only does its original work but
also tells us about the files, the transactions, the reading
and so on. We discuss this in section 4.

What do we mean by the phrase

282

files that will be valuable in automatic function
point analysis?

If we can extract from the working program a list
of files and a list of transactions together with a
statement of which transactions read and write
which files, we shall have almost enough to
count function points. We shall also need a list
of applications and a statement of which
applications own which files and which
transactions. In short, we need a sextuple
S={A,F,T,r,w,o} where

• F is a set of files

• T is a set of transactions

• r is a reads relation on (T,F)

• w is a writes relation on (T,F)

• A is a set of applications

• is an owns relation on (A,T∪F)

In this paper we show how to derive the
quadruple Q={F,T,r,w}.

I should add that the files we talk of here are
physical files. I think there is no way of seeing
into the mind of the user to detect the logical
files , defined as grouping of data as perceived
by the user. Since our files are physical, our
transactions (constructed programs that
manipulate files) are also physical.

Section 1 introduces a family of test cases and
explains why they it is relevant to function point
analysis. Section 2 defines a representation of

the program as a data flow graph from which we
can derive the quadruple Q. Section 3 shows
how we can use static code analysis to obtain
the data flow graph. Section 4 shows how we can
use dynamic code analysis to derive a program
trace from which we can to obtain the data flow
graph.

1. TEST CASES

The programs P1 and P2 to be analyzed will be
handed out at the talk. Each program reads one
integer per record from files W and X and each
program writes one integer per record to files A
and B. The relation between inputs and outputs
is as follows

P1 P2
a=w+x
b=w-x

a=w
b=-x

Att first sight both programs are two-input, two-
output transactions, but this is to ignore their
internal structure. We can break down P1 to two
transactions, each involving one input and one
output, whereas we can break down P2 in these
two ways:

• one transactions each involving two inputs
and two outputs

• two transactions each involving two inputs
and one output

Since the inputs variables (w,x) come from the
files (W,X) respectively and the output variables
(a,b) go to the files (A,B) respectively, it follows
that the output files depend on the input files like
this:

output output output

input A B input A B input A B

W T1 W T3 T3 W T4 T5

X T2 X T3 T3 X T4 T5

P1 P2 (first view) P2 (second view)

Figure 1: Dependence of output files on input files

We have identified transactions in a way that will
become clear in section 3. We shall show at the
talk that we can derive these three views by
static code analysis (section 3) or dynamic code

analysis (section 4). We can now identify each
unique index as a transaction and obtain these
descriptions of the subprograms:

International Workshop on Software Measurement (IWSM’99) – September 8-10, 1999
Lac Supérieur, Canada

Subprogram Description
P1 There are four files {A, B, W, X,} and two transactions {T1,T2}.

The reads relation is {(T1, W), (T2, X)}.
The writes relation is {(T1, A),(T2, B) }.
Each of the two transactions has one input and one output.

P2 (first view) There are four files {A, B, W, X,} and one transaction {T3}.
The reads relation is {(T3, W), (T3, X)}.
The writes relation is {(T3, A),(T3, B) }.
The transaction has two inputs and two outputs.

P2 (second view) There are four files {A, B, W, X,} and two transactions {T4,T5}.
The reads relation is {(T4, W), (T4, X),(T5,W),(T5,X)}.
The writes relation is {(T4, A),(T5, B) }.
Each of the two transactions has two inpus and one output.

We now have to show how we can get from the
programs to these descriptions automatically. In
section 2 we define an intermediate
representation of the program as a data flow
graph.

2. DATA FLOW GRAPH

We now define an intermediate representation of
the program as a form of data flow graph. We
recall that a graph consists of nodes and edges
joining pairs of nodes. In our case a node can
represent a datum or a statement. A datum is
one of

• A file name

• A file pointer

• A variable

• A statement is one of

• An fopen statement

• A write statement

• A read statement

• An assign statement

We first show the graph for P2 and then explain
how it is built up from an analysis of the code.

W X

fpW=fopen(“W”,”r”); fpX=fopen(“X”,”r”)

fpW fpX

w=readInt(fpW) x=readInt(fpX)

w x

A=w+x B=w-x

a b

WriteInt(fpA,a) WriteInt(fpB,b)

fpA fpB

fpA=fopen(“A”,”w”) fpB=fopen(“B”,”w”)

A B

Figure 2: Program Graph for P2

Nodes in solid boxes denote data; nodes in
dotted boxes denote statements. Nodes in
double solid boxes denote files; nodes in single
solid boxes denote variables. I shall explain the
edges of this graph at the talk.

We show the first few steps of the analysis that
generates this graph.

284

We start by choosing a statement such as
fpA=fopen(“A”,”w”) that opens an output file.

We generate a node for this statement.

We examine the statement and find in it two
data, the file name “A” and the file pointer fpA.

We generate nodes for these two and draw
edges (fpA, fpA=fopen(“A”,”w”)) and
(fpA=fopen(“A”,”w”), A).

We now examine the datum fpA and find that it
is involved in statement writeInt(fpA,a).

We generate the node for the statement and
draw the edges (writeInt(fpA,a), fpA).

We now examine the statement writeInt(fpA,a)
and find that it involves the variable a.

We generate a node for a and draw the edge
(a, writeInt(fpA,a)).

We now examine the datum a and find that it is
involved in statement a=w+x

We generate the node for the statement and
draw the edges (a=w+x, a).

We now examine the statement a=w+x and
find that a depends on w and x.

We generate nodes for w and x and draw the
edges (w,a=w+x) and (x,a=w+x).

We now examine the datum w and find that it
is involved in statements b=w-x and
readInt(fpW).

We generate nodes for w and x and draw the
edges (w,a=w+x) and (x,a=w+x).

… and so on …

Thus the analysis proceeds by alternate
examination of statements and data. When no
more analysis can be done starting from the
statement fpA=fopen(“A”,”w”) we choose another
open statement such as fpB=fopen(“B”,”w”) and
continue. When we have analyzed the two
fopen statements that open files for writing, we
are done.

The next step is to do a connectivity analysis on
the graph G. We can do this in two ways.

First, we can start at A and trace backwards
along all the arrows, generating g(A), then start
again at B and trace backwards along all the
arrows, generating g(B). Note that g(A) and g(B)
share the subgraphs rooted at w and at x. In fact
g(A) = G1 + G3 and g(B) = G2 + G3 where G1,
G2 and G3 are pair-wise disjoint and G1+G2+G3
gives us back the whole graph. This leads to the
first view (two transactions each with one output)

Alternatively, we can start at A and trace
backward and forward along all the arrows. This
generates the whole graph G. This leads to the
second view (one transaction with two outputs)

Section 3 shows how to derive this data flow
graph using program slicing; section 4 shows
how to derive it using program tracing.

3. PROGRAM SLICING

We use a minor variant of the program slicing
technique explained to me by Ettore Merlo in his
lectures at Ecole Polytechnique. We shall
illustrate it at the talk on program P2. We select
the single fopen statement involving A and
construct the smallest subprogram of P
containing this fopen statement. We identify
this program slice as one transaction with two
inputs (W and X) and one output (A). We then
select the fopen statement involving B and
repeat. This yields a program slice which we
identify as one transaction with two inputs (W
and X) and one output (B). This approach leads
to the first view of P2.

In this slicing technique we have used this rule.

• If statement S is live and statement S
requires statement T then statement T
becomes live.

This approach generates the smallest program
containing the initial statement.

Suppose now that we vary the rule to this pair of
rules.

• If statement S is live and statement S
requires statement T then statement T
becomes live.

285

• If statement S is live and statement T
requires statement S then statement T
becomes live.

This corresponds to the forward tracing we saw
in section 2. This approach leads to the second
view of P2.

4. PROGRAM TRACING

We now turn to program tracing, a form of
dynamic code analysis in which we make the
program tell us what it is doing while it is doing it.
To make the program speak like this we have to
add statements to it. We have done this by hand
for purposes of explanation but the
transformation can be dome mechanically.

The transformations can be tabulated as follows:

Whenever we see … We …

fp=fopen(…) Replace by the statement
Fp=myfopen(…)

fclose(fp) Replace by the statement
Myfclose(fp);

A=<expression involving two variables w,x> Add the statement
Depends2(&a,&w,&x)

w=readInt(fpW) Add the statement
WasRead(&w, fpW)

WriteInt(fpA,a) Add the statement
WasWritten(&a,fpA)

We create five functions myfopen, myfclose,
depends2, wasRead and wasWritten. Each one
writes into the trace file the appropriate
information. I shall show at the talk the program
trace and demonstrate that we can recover from
the trace the graph shown in figure 2.

5. DISCUSSION

The techniques described here work well in the
absence of aliasing and external tables.

5.1 Aliasing

Aliasing means that one quantity is known by
different names at different places in the
program. In a C function, like foo say, the
programmer can add x to y and assign the result
to z. The names x,y,z are local to the function
foo.

Program slicing knows how to trace variables
from one function to another; it does so by
concentrating not on the name but on the
address of the variable. C programmers like
names but compiler writers like addresses.
Aliasing is therefore not a problem for slicing.

Program tracing, as I have implemented it, finds
aliasing rather tedious to deal with and I shall

discuss at he talk how to overcome these
difficulties.

5.2 Use of External Tables

We have assumed that the names of the files
are hard-wired into the code but programmers
frown on this in C. They would no doubt prefer
one of two alternatives:

1. Pass the file names as arguments to the
program

2. Store the files names in a table whose name
is passed to the function.

I think program slicing can probably cope with 1
but not with problem 2.

Program tracing can cope with both versions
above; whenever a file is opened the modified
program will write a statement of the form

File N opened in mode m at pointer p

where N stands for the name of the file, m
stands for the mode (read or write) and p stands
for the pointer.

286

6. CONCLUSION

We have defined an intermediate representation
of a program P as a data flow graph DF(P) and
shown that this representation allows us to
express the program as a quadruple Q={F,T,r,w}
useful in function poiht analysis.

We have shown that we can derive DF(P) by
program slicing, a form of static code analysis.
Starting with one given output file, A say, we
derive the smallest program A(P) that mimics P
in its writing to A. When we repeat this process
for all output files,(A,B,C,D say) we obtain
programs A(P), B(P), C(P) and D(P) in which any
two are disjoint or identical. The number of
unique such programs is the number of
transactions and straightforward analysis yields
DF(P).

We have shown that we can also derive DF(P)
by program tracing, a form of dynamic code
analysis. In this case, we can modify the
program P being studied into a second program
P’ such that P’ has the same behaviour as P and
P’ generates a trace showing what it is doing.
From the trace, we can derive the intermediate
representation DF(P). The modification of P to
P’ can be carried out automatically by methods
of static code analysis now under development.

7. REFERENCES

I will supply these at the talk.

