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Abstract

COSMIC-FFP is a rigorous measurement method that makes possible to measure the functional
size of the software, based on identifiable functional user requirements allocated onto different
layers, corresponding to different levels of abstraction. The key concepts of COSMIC-FFP are
software layers, functional processes and four types of data movement (sub-processes). A precise
COSMIC-FFP measure can then be obtained only after the functional specification phase, while for
forecasting reasons the Early & Quick COSMIC-FFP technigue has been subsequently provided,
for using just after the feasibility study phase.

This paper shows how the Analytic Hierarchy Process, a quantification technique of subjective
judgements, can be applied to this estimation technique in order to improve significantly its self-
consistency and robustness. The AHP technique, based on pair-wise comparisons of all (or ome
of) the items of the functional hierarchical structure of the software provided by E& Q COSMIC-
FFP, provides the determination of a ratio scale of relative values between the items, through a
mathematical normalization. Consequently, it is not necessary either to evaluate the numerical
value of each item, or to use statistical calibration values, since the true values of only one or few
components are propagated in the ratio scale of relative values, providing the consistent values for
the rest of the hierarchy.

This merging of E&Q COSMIC-FFP with AHP results in a more precise estimation method
which is robust to errors in the pair-wise comparisons, and self-consistent because of the
redundancy and the normalization process of the comparisons.

1. COSMIC Full Function Point Overview

The COSMIC-FFP measurement method conssts of the gpplication of a set of rules and
procedures to a given piece of software in order to measure its functiond sze. Two diginct and
related phases are necessary to perform the measurement: mapping the functional user requirements
(FURs) for the software to be measured onto the COSMIC-FFP software model and then measuring
the specific e ements of this software mode (Figure 1).
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Figure 1. COSMIC-FFP measurement process model [1].

The COSMIC-FFP software modd captures the concepts, definitions and relationships
(functionadl dructure) required for a functiond sSze measurement exercise. Depending on how the



FURs are dlocated, the resulting software might be implemented in a number of pieces. While dl
the pieces exchange data, they will not necessarily operate a the same levd of abdtraction. The
COSMIC-FFP method introduces the concept of the software layer to hep differentiate levels of
abstraction of the FURS,

The functiondity of each layer may be composed of a number of functiona processes A
functiona process is defined as a “unique and ordered set of data movements (Entry, eXit, Read,
Write) implementing a cohesve st of FURs” The COSMIC-FFP software modd distinguishes
four types of data movement sub-process. in the “front end” direction, two types of movement
(Entry and eXit) dlow the exchange of data attributes with the users (or other layers); in the “back
end” direction, two types of movement (Read and Write) dlow the exchange of data attributes with
the storage hardware (Figure 2). These data movements are dso referred to as BFC's (Base
Functiond Components).
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Figure 2. COSMIC-FFP software model and data movement types|[1].

The COSMIC-FFP measurement rules and procedures are then applied to the software modd in
order to produce a numerica figure representing the functionad sze of the software, layer by layer.
The unit of measurement is 1 data movement, referred to as 1 COSMIC Functiond Size Unit, eg. 1
Crsu. Theoreticaly, functional processes can be assigned any size expressed in Gegy (from 1 to no
theoretica limit - they are not bounded, but in practice they're expected to have some sort of
“natural” upper boundary, or cut-off).

Conceptudly, the mapping phase of the COSMIC-FFP method can be considered as a process of
“viewing” a software from different levels of functiond detal. Fird, the software is viewed a the
highest level as composed of software layers, if gpplicable. Then, each software layer is viewed a a
lower levdl of detal, i.e. functiond processes. Findly, each functiona process is in turn viewed a
the lowest levd of detall of interest for measurement with COSMIC-FFP, that is, sub-processes
(data movement types, or BFC's).

2. Early & Quick COSMIC-FFP Overview

Functiond dze of software to be developed can be measured precisely after functiond
specification dage. However, functiona specification is often completed reatively late in the
development process and a significant portion of the budget has dready been spent. If we need the
functiond sze earlier, we must accept a lower levd of precison since it can only be obtaned from
less precise information.

The Early & Quick COSMIC-FFP method (E&QCFFP, [2]) has been designed to provide
practitioners with an early and quick forecast of the functiond Sze based on the hierarchicd
system representation cited in the previous section, which can be used for preliminary technica and
manageria decisons a ealy stages of the development cycle. Of course, a precise standard
measure must dways be caried out in the later phases to confirm the vaidity of decisons dready



taken. Here, “Early” means tha we may obtain this vaue before having committed a sgnificant
amount of resources to a project; “Quick” means tha we may dso use the technique when the
software IS an existing asset and some condraints (such as costs and time) prevent a precise
measurement.

The darting point for an E&QCFFP edimation is the acknowledgement of the hierarchica
dructure in the functiond requirements for the software to be estimaed: when we document a
software dructure, we usualy name the root as the application level and then we go down to
defining single nodes, each ore with a name that is logicdly corrdated to the functions included;
we reach the leef levd when we don't think it is useful to proceed to a further decompostion. In the
COSMIC-FFP modd, the leaves are the functional processes.

On the one hand, in the early sages it is not possible to digtinguish the sngle data movements, or
BFC's, because the information is not available a this level of detall. On the other hand, however,
the preliminary hierarchica dructure of the software shows as leaves what are actudly nodes in the
detailled verson. What is required early on in the life cycle is, then, to assgn forecasts of average
process sze, in Crgy, @ the intermediate and top levels in such a way that the find result will be
obtained by the aggregation of the intermediate results.

The E&QCFFP technique is based on the capability of the estimator to “recognize’ a software
item as belonging to a particular functiond class, an appropriate table, then, dlows the estimator to
asdgn a Cryy average vaue for that item (this is applied for each identified layer separatdy). Each
functions can be classfied, in order of increesng magnitude, as Functiond Process, Generd
Process, or Macro-Process (Figure 3):
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Figure 3. Hierarchical process decomposition in E& QCFFP.

a) A Functiona Process (FP) is the smalest process, performed with the ad of the software
sysem, with autonomy and ggnificance characteridics. It dlows the user to atan a unitary
business or logica objective a the operatiiond levd. It is not possble, from the user’s point of
view, to proceed to further useful decompostion of a Functiond Process without violating the
principles of dgnificance, autonomy and conssency of the sysem. A Functiond Process can
be Small, Medium or Large, depending on its estimated number of BFC's (E,.X,R,W).

b) A Generd Process (GP) is a set of medium Functional Processes and may be likened to an
operational sub-system of the application. A GP can be Smdl, Medium or Large, based on its
estimated number of Functional Processes.

c) A Macro-Process (MP) is a set of medium Generd Processes and may be likened to a relevant
sub-sysem of the overdl Information System of the user’s organisation. A MP can be Smadl,
Medium or Large, based on its estimated number of Genera Processes.

Note that each level is built up on the basis of the previous one. There is a 4" type of process, the
Typicd Process (TP), which is off-line from the hierarchicd dructure outlined: it's just the sat of



the four frequently used Functional Processes, which are Create, Retrieve, Update and Delete
(CRUD) information in arelevant data group.

Each E& QCFFP dement is associated with three vaues in terms of Gy (minimum, most likdy
and maximum). These numerica assignments are not reported, since they are currently subject to
definition and trid on the bass of the daa collection activity and datigicd andyss for actud
projects in the Field Trid Phase of the COSMIC-FFP method. Next Table 1 reports the ranges to
help in dassfy the items of the esimation (the quantities n;, Ny, N3 are to be found out empiricaly
during the Field Tria Phase).

Table 1. Scale ranges and numerical EFP assignments.

Small Functiona Process N (Crsu)
Medium Functiona Process N, (Crsy)
Large Functiona Process N3 (Crsu)
Smal Generd Process 6-12FP's
Medium General Process 13-19FP's
Large Genera Process 20-25FP's
Smal Macro-Process 2-3GP's
Medium Macro-Process 4-7GP's
Large Macro-Process 8-12GP's

One advantage of this technique is tha edimates can be based on different and non
homogeneous levels of detail in the knowledge of the software dructure. If a part of the software is
known a a detall leve, this knowledge may be used to edimate it a the Functional Process leve,
and, if another pat is only supeficidly known, then a higher level of dassfication may be used.
The ovedl globd uncetanty in the edimate will then be the weighted sum of the individua
components uncertainties. This property is better known as multi-level estimation.

Ancther characterigtic of the E&QCFFP technique is that it mixes both an andyticd agpproach
(use of the compogtion table, Table 1) and an andogy-based approach (the analogy can be used
with respect to an abstract modd or to a concrete set of software objects actualy collected and
classfied, helping to dassfy the unknown items).

3. The Analytic Hierarchy Process (AHP)
The Andytic Hierarchy Process ([4]) provides a means of making decisons or choices among

aternatives, particularly where a number of objectives have to be sdisfied (multiple criteria or
multi-attribute decison making) (Figure 4).
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Figure 4. Generic hierarchy scheme.



Let's assume that n items are being consdered with the god of providing and quantifying
judgements on the relative weight (importance) of each item with respect to dl the other items. The
fird sep (design phase) set the problem as a hierarchy, where the topmost node is the overdl
objective of the decigon, while subsequent nodes a lower levels consst of the criteria used in
ariving a this decison. The bottom leve of the hierarchy condsts of the alternatives from which
the choice isto be made, i.e.,, the n items we wish to compare.

The second step (evaluation phase) requires pair-wise comparisons to be made between each two
items (of the given levd of the hierarchy), with respect to ther contribution towards the factor from
the levd immediately above them. The comparisons ae made by posng the question ‘Of two
eements i and j, which is more important (larger) with respect to the given factor and how much
more?. The drength of preference is usudly expressed on a ratio scade of 19. A preference of 1
indicates equality between two items while a preference of 9 (absolute importance) indicates that
one item is 9 times larger or more important than the one to which is being compared. This scae
was origindly chosen, because in this way comparisons are being made within a limited range
where perception is sengtive enough to make a distinction [4].

These pair-wise comparisons result in a reciprocal nby-n matrix A where a; = 1 (i.e, on the
diagond) and a; = 1/ &; (reciprocity property, i.e, assuming that if dement i is “x-times’ more
important than item j, then necessarily item j is “1/x-times’ more important, or equdly “x-times’
lessimportant than item i).

Suppose firdly that we provide only the firs column of the matrix A, i.e., the relative importance
of items 2, 3, .., n, with respect to item 1. If our judgements were completely consistent, the
remaning columns of the matrix would then be completely determined, because of the trangtivity
of the reaive importance of the items. However we do not assume consisency other then by
sting g = 1/ a;j. Therefore we repesat the process of comparison for each column of the matrix,
making independent judgements over each par. Suppose that a the end of the comparisons, we
have filled the matrix A with the exact rdative weights, if we multiply the matrix with the vector of
weightsw = (w1, Wo, ..., Wy), we obtain:
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S0, to recover the (overdl) scae from the matrix of ratios, we must solve the problem:
Aw = nw, or (A-nl)w = 0,

that is a sysem of homogenous linear equations (I is the unitary marix). This sydem has a
nontrivid  solution if and only if the determinant of (A-nl) vanishes i.e, n is an eigenvalue of A.
Notice that A has unit rank since every row is a congtant multiple of the first row and thus dl its
elgenvaues except one are zero. The sum of the eigenvaues of a matrix is equd to its trace andin
this case, the trace of A isequa to n. Thus n is an eigenvaue of A and we have a nontrivid solution,
unique to within a multiplicative congtant, with al pogdtive entries. Usudly the normdized vector is
taken, obtained by dividing dl the entriesw; by their sum.

Thus given the comparison matrix we can recover the scale. In this exact case the solution is any
column of A normaized. Note aso that in the exact case A is condgent, i.e, its entries satisfy the
condition ajx = aj/ay (transitivity property). However in rea cases we cannot give the precise vaues
of wilw; but estimates of them, the judgements which in generd are different from the actud
weights ratios From matrix theory we know that smal perturbation of the coefficients implies



andl perturbation of the eigenvaues. Therefore, we ill expect to find an eigenvaue, with vaue
near to n: this will be the largest eigenvalue (I max), Since due to the (smal) errors in the judgement,
aso other eigenvaues are different from zero, but ill the trace of matrix ) is equd to the sum of
elgenvaues (some of which can be complex).

The solution of the largest eigenvdue problem, i.e, the weight eigenvector w corresponding to
| max, When normalized, gives a unique esimate of the underlying ratio scde between the dements
of the studied case. Moreover, the matrix whose entries are wi/w; is till a condstent matrix, and is a
consgent edimate of the “actud” marix A. A itsdf need not be condgent (for example the
judgements could have stated that item 1 is more important than item 2, 2 is more important than 3,
but 3 is more important than 1!). It turns out that A is congstent if and only if | max = n and that we
adways have | nax 2 n. That's why we take as a “consstency index” (CI) the (negative) average of
the remaning egenvaues, which is exactly the difference between | nax and n, divided by the
normdizing factor (n-1):

_Imax_n

-al,
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To measure the error due to inconsistency, we can compare the Cl of the sudied case with the
average Cl obtained from corresponding random matrices with order n and maximum ratio scde r.
Table 2 shows the random average consstency indexes Ciy, for various n and r. Revisons in the
par-wise comparisons are recommended if the consstency ratio (CR) between the studied CI and
the corresponding Cl, ; is congderably higher than 10%.

Table 2. Consistency indexes (Cin ).

R
n|2|3|4|5|6 |7 ]|8]|9]10
0,07 0,13] 0,20| 0,26| 0,31 0,37] 0,41| 0,48] 0,51
0,07| 0,14] 0,21] 0,27 0,34] 0,39| 0,46 0,50| 0,57
0,07| 0,15/ 0,22| 0,29| 0,35 0,42| 0,48| 0,53] 0,60
0,07| 0,15/ 0,23| 0,30| 0,37 0,43] 0,49| 0,57| 0,62
9 0,08| 0,15 0,23] 0,31] 0,38| 0,44 0,50| 0,57| 0,64
10| 0,08 0,16| 0,23 0,31] 0,38 0,45/ 0,52 0,59] 0,65
11| 0,08 0,16| 0,24| 0,31] 0,39 0,46| 0,53 0,60| 0,66
12| 0,08 0,16] 0,24 0,32 0,39 0,47] 0,54 0,61 0,67

This conggtency ratio CR samply reflects the condstency of the pair-wise judgements and shows
the degree to which various sets of importance rdativities can be reconciled into a sngle st of
weights. In the above example, (1 larger than 2, 2 larger than 3, and 3 larger than 1) the consstency
score would be poor, and would be conddered a violation of the axiom of trangtivity. AHP
tolerates incondgtency through the amount of redundancy of judgements. For a matrix of dimension
n only (n-1) comparisons are required to establish weights for the n items. The actud number of
comparisons that can be performed in AHP is n(n-1)/2. This redundancy is conceptudly anaogous
to edimating a number by cdculating the average of repeated observations. the resulting set of
weightsisless sengdtive to errors of judgement.

A quick way to find the weight eigenvector, if one cannot solve exactly the largest eigenvaue
problem, is that of normdizing eech column in A, and then average the vaues across the rows. this
“average column” is the normalized vector of weights (or priorities) w. We then obtain an estimate
of | max dividing each component of Aw (= | naxW) by the corresponding component of w, and
averaging. Findly, we can compute Cl (and the corresponding CR) from this estimate of | nax in
order to verify the goodness of the judgements.



So far, we have illudrated the process for only one leved in the hierarchy: when the modd
consgs of more than one leve then hierarchicd composition is used to weight the eigenvectors by
the weights of the criteria. The sum is taken over al weighted elgenvector entries corresponding to
those in the lower leve, and s0 on, resulting in a globd priority vector for the lowest level of the
hierarchy. The globa priorities are essentidly the result of digtributing, or propagating, the weights
of the hierarchy from one levd to the next leve beow it. For the purpose of applying AHP to
E& QCFFP estimation, this multi-level weighting is not required, as shown in the following section.

4. Merging E& QCFFP and AHP

The andogy between the hierarchicd functiond decompostion of E&QCFFP and the intringc
hierarchy of AHP can be quite confusng; we must recal that the nodes in different levels in a AHP
hierarchy cary very different meaning (going from the objective levd, to the dtribute leve, to the
dterndive levd), while in the E&QCFFP agpproach the decompostion is made only in order to
separate different ranges (or groups) of functions. This means that the eements of a E& QCFFP
hierarchy are indeed al homogenous with respect to the dtribute to be edtimated, i.e, the
functiond size. So there is no drict correspondence between the hierarchical structures in the two
techniques, but dill a srong tie can be found. Although AHP was developed as a mathematica
method for prioritizing the dternatives, we can recognize tha what we cdled importance is just an
extensive property as many others, as software functional size is expected to be, too.

When egimating the software functiond sze (number of Crgg), the only criteria is the size itsdlf.
Consequently, we can condder a smple AHP hierarchy, with only one levd (and the objective
“edimated Sze” above it); the nodes of this levd are the n items liged by the edimator, eventualy
prior to the functiond decompogtion (this lig could even indude dl from possble functiond
Jorocesses to macro-processes).

In order to review the possble ways to merge E&QCFFP and AHP, let's recdl the intrinsic
characterigtics of both: AHP makes the subjective comparisons consgtent through a mathematical
dep (the largest eigenvdue solution) and provides the CR to evduate the sdf-condgtency of the
edimation, while the E&QCFFP done provides a edimation together with an uncertainty range
(minimum, mogt likey, and maximum vaues), permitting to assgn a class to each item based on
andogy (eventudly with respect to known cases); note that the uncertainty range in the E& QCFFP
can be quite large when usng maostly the macro-process level.

We could gain better forecasts by combining the two techniques, the possible ways to do the join
are basicdly the fallowing:

a) AHP technique first gpplied to prioritize the items on a numericd scde, then automatic
assgnation of the E& QCFFP class from the scale.

b) E& QCFFP technique first applied to dlocate the set of items in functiond classes, then AHP
applied to refine the first estimation.

The &) case can be consdered as a “re-dlocation” of a pure AHP egtimation on the E& QCFFP
classes, here some not-yet-solved problems may rise, as for example how to decide which AHP
resulting numerica range should be asigned to a given E& QCFFP class. If we manage to solve this
and amilar problems, we can obtain a hierarchicd representation of the estimated system as in a
pure E& QCFFP technique, but with more robustness in the input (nonetheless, this could not result
aways in a more robust output forecast, due to the fact that E& QCFFP categories necessarily “blur”
the exact ratios given by AHP).

The b) case is to be conddered more ggnificantly, since it requires firdly an andogica
approach, which is usudly easer a the beginning for the human estimator, and after that a robust
refinement of the etimation in amathematicd way.

Depending on the desred precision or the time a our disposa in doing the estimation, we should
decide on which variant to gpply to estimate the COSMIC-FFP number: only by E& QCFFP, only



by AHP, with the a@) case or with the b) case. The last gpproach should result in the most accurate
forecast, dill saving us from goplying an exact (and more time-consuming) COSMIC-FFP counting
procedure. Next section dedls more deeply with the b) case.

5. The“b) case’: E& QCFFP + AHP

Thecaseis,
1. E&QCFFPto dlocate the itemsin subsets,
2. AHPto reviserefine the etimation.

Note that the first step dready provides a first estimation, but its uncertainty could be quite wide,
if the estimator dedt with one or more high-level class (e.g. general processes or mMacro- processes).
The second step could be an AHP application on the global set of items from the first step, but since
the pairwise ratios involved in such a globa application would be of magnitude 10% and higher, it
would be obvioudy very had for a human esimator to provide such esimated ratios in the
comparisons. An enhancement is to apply AHP separatedly on homogeneous subsets of the
E& QCFFPitems:
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or only on two contiguous subsets per time (avoiding double sumsin the total result):
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The second variant, mixing and comparing Functiona Processes with Generd Processes, and
General Processes with Macro-Processes, would be the more salf-consistent and coherent one.

In any case, this gpproach would maintain the hierarchical representation of the system as firdly
posed by the E& QCFFP edtimator, but with a more consstent and robust numerica evauation of
each item compared to the others; the find estimated value is a revison of the firdt, pure E& QCFFP
forecast, but with a lower uncertainty range (the origina uncertainty range should be reduced, based
on the vaue of the resulting CR). Eventudly, some items could be re-dlocaed in terms of ther
E& QCFFP category, if the AHP step shows some sgnificant change with respect to their originad
E& QCFFP dlocation.

We should not be too scared of the quantity of different comparisons to perform in every AHP
sep, since we know from section 3 that not al the comparisons have to be effectively performed,
unless the CR is not low enough. So, monitoring the vadue of the CR after severd incrementd
iterations of the AHP step, we could decide to stop them when the CR satisfies a predefined
accurecy leve.

When deriving the find estimation result, two gpproaches are possble one or more items should
be fixed in ther Crgy vdue, as “landmarks’, to propagate the number of assgned Gegy to the whole
s, or the whole set can be mapped in a “fuzzy” way onto an ordered scde of items, as the
E& QCFFP classes, with assigned quantities of Gy. Future fidd trids should show which gpproach
is preferable.

The landmarks could be put among the origind unknown items to help in both the E& QCFFP
and the subsequent AHP step. These landmarks could be taken from a so-cdled Experience Data
Base (or Cadogue of Typicad Elements). This catdogue could contain for example dl the typicd
processes or functions that can be identified in a generic project, and their average quantities of
Crsu. Once some of these typicd dements are identified among the ligt of items, the comparison
matrix (or matrices) would greetly benefit of the reative ratios between them. A generic ussful case
of “typica dement” would be the dready cited Typicd Process, or CRUD, which is usudly very
easy to identify and to use as a comparison landmark. In case of more than one landmark, further
research is necessary to edtablish the exact mathematicd procedure to fix ther vaues, while
propagating the quantities of CFSU through the unknown items.

A specid case of gpplication would be when the E&QCFFP step provides a list of items, dl
classfied a the Functional Process leve. In this case, the whole set would be taken into account for
a unique AHP gep, in order to compare directly the quantities of data movements contained in each
process, this means that it could be ggnificant to compare directly estimated quantities of CFSU
(but il without exactly counting them).

6. Numerical examples

Severd AHP cases have been studied, as depicted in the following tables. In every case, we have
n = 10 items, and we assume tha the comparisons made between the 1% item and each of the
remaning items (l.e. the fird columnrow of the marix A) ae the “bed” edimates, eventud
inconsitency is put in the remaining comparisons (i.e between 2" 39 ..., and 10" item). What
differentiates each case is the expected ratio between each of the 10 items. Since the fidd trids are
dill to provide actud numbers of Crgy for E&QCFFP, for sake of clarity in the examples we
congder thefirg item dwayswith unitary size.

For each case, different inconsstency erors were introduced separately on each parwise
comparison (except for comparisons between the 1% item and the others, assumed as correct) to
amulae the human parwise compaisons. uniformly random +10%, +£25%, +50%, +75%, +90%,
and £100% errors. For example, the 100% error means that, while the estimator should evauate
“item i is p-timesitem j” the smulation could put “item i is Z-timesitem j” (doubling the expected
ratio, i.e. with a 100% error). For each case and each error range, 1000-samples satistics have been



generated; dl vaues are approximated at one decimd. The firs column of each table denotes the
maximum error for sngle pair comparison.

CaseA: (1,1,1,1,1,1, 1,1,1,1), Total = 10, Cln=10, max ratio=10)=0.65.

Error I max CR Estimates (average) Total Do,
10% 10.0 0.2% | (1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0) 10.3 3%
25% 10.1 1.6% (11,12.1,2.1,1.1,1.1,1.1,1.1,1.1,1.1,1.0) 10.7 7%
50% 10.3 48% | (1.1,1.2,1.2,1.2,1.2,1.2,1.1,1.1,1.1,1.1) 11.6 16%
75% 10.8 14.2% (1.2,1.5,1.4,1.4,1.4,1.3,1.3,1.2,1.2,1.2) 13.1 31%
90% 11.7 28.7% (1.3,1.8,1.7,1.6,1.6,1.5,1.4,1.3,1.3,1.2) 14.8 48%

100% 15.3 90.3% (1.5,3.4,3.6,3.1,2.8,2.3,2.2,1.8,1.6,1.4) 23.6 136%

CaseB: (1,1,1, 1,1,1, 1,1,1,10), Total = 19, Cl(n=10, max ratio=10)=0.65.

Error I max CR Estimates (average) Total Do,
10% 10.0 0.2% | (1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 1.0,10.2) 19.5 3%
25% 10.1 1.2%((1.2,1.1,2.14,1.1,2.1,1.1,1.1,1.1,1.1,10.6) 20.2 6%

50% 10.3 48%| (1.1,1.2,1.2,1.2,1.2,1.1,1.1,1.1,1.1,11.1) 21.4 13%
75% 10.8 14.2% (1.2,1.4,1.4,1.4,1.3,1.3,1.2,1.2,1.2,11.5) 23.0 21%
90% 11.7] 29.1% (1.2,1.8,1.7,1.6,1.5,1.4,1.4,1.3,1.2,11.8) 25.0 32%
100% 15.3 ] 90.1% (1.4,4.0,4.2,3.1,2.7,2.2,1.8,1.8,1.4,13.2) 35.8 88%

Ca% C (1,2,3,4,5,6,7,8,9,10), TOtaI = 55, CI(n:lO’ max ratio:]_()):O.GS.

Error | | max CR Estimates (average) Total Do,
10% 10.0 0.2% | (1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0) 55.0 0.0%
25% 10.1 1.2% | (1.0,2.0,3.0,4.0,5.1,6.0,7.0,8.0,9.0,10.0) 55.2 0.4%

50% 10.3 4.8% (1.0,2.1,3.2,4.2,5.2,6.2,7.1,8.1,9.0,9.9) 56.1 2.0%
75% 10.8 | 14.2% (1.0,2.4,3.5,4.6,5.6,6.5,7.4,8.3,9.1,9.9) 58.3 6%
90% 11.7| 29.6% (1.0,2.9,4.1,5.2,6.2,7.1,7.9,8.6,9.1,9.6) 61.8 12%
100% 15.3| 95.4% | (1.0,4.6,6.4,8.2,8.5,10.1,9.8,10.0,10.0,9.4) 78.0 42%

Ca“% D- (1,1,1, 1,1,10, 10,10,10,10), TOta| = 55, CI(n:]_O’ max ratio:lo):0.65.

Error | | nmax CR Estimates (average) Total Do,
10% 10.0 0.2% { (1.0,1.0,1.0,1.0,1.0,10.2,10.2,10.2,10.2,10.2) 55.9 1.6%
25% 10.1 1.2% | (1.0,1.1,1.1,1.0,1.0,10.5,10.4,10.4,10.4,10.3) 57.3 4.2%
50% 10.3 48%](1.1,2.1,1.1,1.1,1.1,10.9,10.9,10.8,10.6,10.6) 59.3 8%

75% 10.8 14.2% (1.1,1.3,1.3,1.2,1.2,11.7,11.3,11.1,10.8,10.5) 61.4 12%
90% 11.7 29.3% ] (1.1,1.5,1.5,1.4,1.3,12.9,12.2,11.7,10.9,10.5) 65.0 18%
100% 15.3 90.1% | (1.1,2.8,2.5,2.0,1.9,16.5,15.6,14.0,12.3,10.6) 79.5 45%

Case E: (1,5,10, 15,20,25, 30,35,40,45), Total = 226, Cl(n=10, max ratio=50)=2.36.

Error I max CR Estimates (average) Total Do,
10% 10.0 0.1% | (1.0,5.0,10.0,15.0,20.0,25.0,30.0,35.1,40.0,44.9) 226.0 0.0%
25% 10.1 0.3% | (1.0,5.1,10.1,15.2,20.2,25.2,30.1,35.2,40.0,44.9) 227.0 0.4%

50% 10.3 1.3% | (1.0,5.4,10.6,15.8,20.7,25.7,30.6,35.6,40.1,44.5) 230.0 1.8%
75% 10.8 3.9% | (1.0,6.1,11.8,17.2,22.4,27.2,32.2,35.9,40.0,44.4) 238.2 5%
90% 11.7 8.0% | (1.0,7.1,13.7,19.5,24.6,29.3,33.9,37.6,40.9,44.0) 251.6 11%

100% 154 | 25.6% ] (1.0,12.3,21.6,28.7,32.3,41.4,41.2,43.5,42.5,42.6) 307.1 36%

Note that for uniformly random errors from 10% to 50% we aways get acceptable CR vaues,
and the fina per cent deviaion between expected and estimated vaues Oy, is dways no more than
3-timesthe CRvaue.

As we daed in section 3, the largest eigenvaue | nax is dways > n, and increases as the average
eror in the comparisons increases. Moreover, dmost everywhere each item is overestimated with
respect to ts expected value, exception are cases C and E (those with the most widespread values),
where the 10" item is underestimated and counterbalances the overestimation of the remaining 9
items. However, every eimation is globdly over the tota expected vaue this should be taken as a
genera property, i.e. the AHP estimation isto be taken as an upper threshold.



Relevant cases are:

Case A. In this case (al items expected as identicd), the more error we put in the smulation, the
most error we get in the edimated totd. This could be explaned as follows if the st is srongly
homogeneous (al items identicd) we should not be too “easy” in esimating wrong ratios between
the items.

Case E. This case involves a wide range of items, putting together the firg item (unitary Sze)
with a 45-times larger item (the 10™). In this case even a strong (random) error up to 90% on some
comparisonsis “blurred” by AHP to give a 11% deviation for the total estimation.

7. Further discussion and conclusion

The examples above are very encouraging, but much investigation has ill to be made. For
example, very large cases (very high n) introduce difficulties in managing the items. From this
perspective, is noticegble that the origind AHP deds only with smdl n; a suggestion is to try to use
homogenous clugters of items, and to make comparisons between these clusters. Of course, further
research in redidic, fidd trids is srongly encouraged to test the proposed agpproach in different
gtuations.

As cited above, the fact that only a single vaue is to be provided, besdes of the rdative weight
esimates, does not mean that more than one true value cannot be used: eg., if we know the vaues
of items 1, 2 and 3, this means tha we have more confidence in fixing severd weights in the
comparison matrix; de facto, in this way we do use the richer information. A further research theme
should be on how to make some landmarks to “weight” more than others, if ther vaue is far more
accurate.

AHP is a poweful means for severd tasks in the edimaion and decison meking fied. The
proposed combination with the E& QCFFP technique can solve those Stuation in which the only
E& QCFFP does not provide good results, especidly due to atypicad or new Stuations, not collected
in the higoricd datigtics, or when it is used identifying few, high levd items, providing too wide
ranges of uncertainty.
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