
International Workshop on Software Measurement (IWSM’99) – September 8-10, 1999
Lac Supérieur, Canada

CONCEPTION AND EXPERIENCE OF METRICS-BASED
SOFTWARE REUSE IN PRACTICE

Andreas Schmietendorf, Deutsche Telekom AG, Entwicklungszentrum Berlin

Evgeni Dimitrov, Deutsche Telekom AG, Entwicklungszentrum Berlin

Reiner Dumke, Otto-von-Guericke-Universität Magdeburg

Erik Foltin, Otto-von-Guericke-Universität Magdeburg

Michael Wipprecht, Deutsche Telekom AG, Entwicklungszentrum Berlin

ABSTRACT

There are already a number of studies and
»success stories” about practical applications
related to software reuse. For the most part
however, the actual benefits of reuse, particularly
for concrete technologies, are difficult to verify.
The SW-WiVe project performed by Deutsche
Telekom in collaboration with the Otto-von-
Guericke University provides a detailed analysis
and offers strategies for software reuse within
industrial software development that can be
subjected to critical evaluation. Traditional
evaluation approaches, such as reuse metrics,
were critically studied and necessary processes
for continuous reuse were developed for this
purpose. In a further step, currently available,
valid reuse metrics for the software development
process were classified and lacking metrics-
based evaluation approaches were identified.
This paper focuses on a description of the
project's metrics-oriented terms of reference.

1 INTRODUCTION

In areas of industrial production such as the
automotive industry, a high degree of reuse of
previously manufactured intermediate products is
considered to be a key for a high level of
productivity, short product supply times, low
costs per manufactured product, and a high level
of quality. The basis for such a procedure is a
process consisting of a division of labor between
»suppliers” and »final assembly,” as well as
standards for functional and qualitative properties
of the intermediate products used in order to
fulfill customer requirements for the final product.
Software developers also want to adopt this
process, which has been successfully applied in
all engineering-based industries, and are
attempting in particular to use new technologies,

such as object or component orientation, in order
to improve what has been a mostly
unsatisfactory situation up to the present.

The ability to achieve high reuse levels has been
especially ascribed to object-oriented software
development. As early as 1994, however,
[Udell1994] proposed the thesis that the object-
oriented approach would not be able to fulfill the
high expectations for software reusability, and
that software components would be more
suitable for this. This discussion, which has been
a matter of controversy up to the present, rejects
other forms and types of reuse, as well as criteria
other than software technology that influence
reuse.

[Biggerstaff & Perlis 1989] provide the following
generic definition of reuse:

»The reuse of software is the renewed use of
artifacts and collected knowledge arising from
the development of a software system when
developing a new software system, in order to
reduce the expenditure for creating and
maintaining this new system.”

Another definition for software reuse as a whole,
i.e. for the reuse process, is provided by [Ezran
1998]:

»Software reuse is the systematic practice of
developing software from a stock of building
blocks, so that similarities in requirements and/or
architecture between applications can be
exploited to achieve substantial benefits in
productivity, quality and business performance.”

The following conclusions can be drawn from
both definitions: Software reuse (referred to
hereinafter simply as »reuse”) must always be
considered in relation to software development.

179

Artifacts and/or assets include a variety of
reusable components, such as requirements,
models, and implementation codes. Objectives
for reuse include increased productivity, higher
quality, cost reduction, lower maintenance costs,
and also shorter development times. The
characterization of reused components as a
»stock of building blocks” and/or the two types of
components relating to requirements or
architecture (components) and the description of
reuse as a »systematic” process.

2 EXAMPLES OF SUCCESSFUL REUSE

 Capers Jones, an acknowledged expert in
software metrics, recommends a reuse rate of
more than 75% in order to achieve a »best in
class” organization in software development
[Jones 1998].

 »Software reuse of design, code and test cases
averages > 75 % for all projects”

 Published examples of successful reuse can be
found in [Jacobson 1997], with some companies
in individual projects or application areas
achieving a reuse level of almost 90%, according
to their own figures:

! Within a period of ten years, beginning in
1984, Hewlett-Packard achieved a 25-50
percent reuse rate in firmware for
instruments and printer products.

! AT&T: 40-92% in software for
telecommunications support systems

! Brooklyn Union Gas: 90-95% at the process
level and 67% at the level of user interfaces
and business objects

! Ericsson AXE: 90% in hundreds of customer-
specific configurations

! Motorola: 90% reuse and a tenfold increase
in productivity in the development of
compilers and compiler test tools.

 General information on the essential advantages
of reuse can also be found at the management
level. Typical statements involve product supply
times (time to market), which are reduced two to
five times, error frequencies, which are reduced
5 to 10 times, and a five- to tenfold reduction in
production costs.

 None of these »success stories” provide a basis
for their calculations, meaning that their
statements can generally be dismissed as simply
marketing. According to [Poulin 1997], there is no
uniform model that establishes what counts as
»reuse” and shows how to calculate the added
value created in this way. This requirement
means that the use of metrics can play a decisive
role in successful reuse.

3 OVERVIEW OF REUSE ASPECTS

The »Fifth International Conference on Software
Reuse 1998” classified the problem of reuse
according to various aspects, and presented it
schematically in a so-called »reuse diamond.” A
short description of the equally ranked aspects
contained in this reuse diamond is presented
below. The purpose of the description is to
clearly demonstrate the complexity of the topic,
as well as to present the content limits defined in
the SW-WiVe project.

Strategy and Management - This aspect
involves such elements as the establishment of
reuse strategies and management support, as
well as the need for an organizational
development (frequently described as a reuse-
centered organization).

People - The literature contains various role
models [Jacobson 1997], [Sodhi 1998],
[Coulange 1998] that interact closely with the
selected organizational form.

Assets - The term »assets” describes all
reusable products such as components, objects,
requirements, analysis and design models,
codes, documentation, etc. The term »artifacts”
is often used as a synonym for »assets.”

Technology - This refers primarily to software
production environments and the repositories
used to store necessary information on software
development, as well as appropriate component
databases containing reusable assets.

Process - The traditional software development
process provides insufficient support for reuse.
Thus necessary roles and/or personnel
requirements, for example, are not defined.

Measurement - The use of software metrics
serves primarily to provide an element of
quantification in the entire reuse process. We will

180

go into greater detail on this problem in a
separate section.

Because the applicability of metrics is closely
associated with process quality, which is also
expressed, for example, within the CMM model
for evaluating the maturity of software
development, the SW-WiVe project focuses on
the aspects of »Process” and »Measurement.”

4 ANALYSIS OF AVAILABLE SOFTWARE
METRICS IN REUSE

4.1 Analysis Procedure

The analysis of the initial situation is based upon
a general framework proposed by the Otto-von-
Guericke University at Magdeburg for the
implementation of so-called »metrics programs»
[Dumke 1998] and the classification developed
by [Fenton 1991] using product, process, and
resource as starting points for software
measurement.

The framework mentioned above consists of a
CAME1 strategy, a CAME2 framework, and the
CAME3 tools for the recording and processing of
metrics. While the CAME strategy refers to
aspects such as the need for the existence of a
group to promote the implementation of software
metrics and the need for management decisions,
the CAME framework relates, for example, to the
selection process of metrics, the analysis of
scale properties of these metrics, the degree of
coverage reached, and the efficiency of metrics
usage by means of tools support. Because
Deutsche Telekom has already made strategic
decisions regarding the use of software metrics,
the analysis concentrates on the selection of
metrics (CAME framework) and the
determination of an overall degree of coverage
for available reuse metrics.

4.2 Metrics Selection (Choice)

When selecting metrics, the traditional approach
in evaluating software reuse has usually been
based on »local optimization,” in that

1 C - Community, A - Acceptance, M - Motivation, E -
Engagement
2 C - Choice, A - Adjustment, M - Migration, E - Efficiency
3 C - Computer, A - Assisted, M - Measurement, E -
Evaluation

a an individual aspect (usually a cost aspect) is
studied closely and used for evaluation, or

b a special (empirically established) target area
is selected, and then questions for
improvement are derived for this area and the
metrics are determined in the sense of a
GQM (Goal Question Metrics) approach
according to [Basili et al. 1998].

[Poulin 1997] gives Relative Cost of Reuse
(RCR) for simple components and Relative Cost
of Writing for Reuse (RCWR) as examples of a)
in the sense of special cost metrics which take
product architecture into account to a certain
degree.

[Ezran 1998] gives the following example for b),
presented as an excerpt. In this example, the
necessary metrics are determined almost directly
based upon the objectives, although the metrics
are only generally stated and are not subjected
to any theoretical measurement analysis.

181

Table 1: Examples of metrics given by [Ezran 1998]

Objectives Repository use Reuse
expansion in a
project

Component
costs

Process costs,
including reuse

Component
quality

Reusability

Metrics • Number of
components

• Number of
accesses

• Reuse level
per project

• Number of
accesses to
the
components
per project

• RCR
• RCWR

• Company
ROI

• Payment
threshold
values

• Reliability
• Compre-

hensibility

• Portability
• Functional

complete-
ness

Further analysis of the literature available within
the SW-WiVe project also showed in particular a
lack of reuse metrics for product usage, the role
of development personnel, and the influence of
hardware. There is also a lack of metrics to
consider the complexity effects of reuse based
on the product, the development process, and
the resources used.

4.3 Determining the Scale Properties
(Adjustment)

In the second step, namely the determination of
measurement properties (adjustment), it was

found that the metrics approaches known from
the literature primarily relate to the (reuse) cost
share; in other words, they are »potentially ratio
scaled” from an empirical standpoint. This
therefore involves an indirect measurement or
evaluation into which the properties of the
development components cannot be
incorporated. Poulin proposed the following
empirical valuation-models [Poulin 1997]:

Reuse Metrics

Reuse Level
Models

Reuse Leverage
Models

Reuse Economics
Models

Cost Avoidance
Models

Return on
Investment
Models ROI

Cost-Benefi t
Models

How much reuse? How much bet ter wi th reuse?

Fig. 1: Reuse metrics and economic models

A study of the formulaic presentation of metrics
listed in [Barnard 1998], [Poulin 1997], and
[Ezran 1998] showed that the currently proposed
reuse metrics generally do not involve any

dimensions.4 Altogether we find following
metrics-situation regarding their measurement
properties:

4 We define a (software) dimension as a relatively (ratio)
scaled metric provided with a measurement unit.

182

Metric Measure-
ing type

Calculation Scale Properties

Amortization (Gaffney) Calculation (RCR + RCWR/n –1) * R +1,
n – number of expected reuse,
R – proportion of reused code in the
 product

potentially ratio scaled

COCOMO Modification
(Balda)

Estimation
respectively
Measure-

ment

LM = aiNi
b

N1= KDSI for unique code developed
N2= KDSI for code developed for reuse
N3= KDSI from reused code
N4= KDSI from modified components

potentially ratio scaled

Consumer/Producer
Reuse (Chen)

Estimation Reuse(S,P) = Σ weights
 S – Systems, P – Repositories,
AppReusePerc(S) = Reuse(S) / Size(S)
RepReusePerc(S,p)
=Reuse(S,p)/Size(p)

ordinal scaled

Cost Benefit (Bollinger) Estimation Benefit = withoutReuse – withReuse
 - ReuseInvestment

potentially ratio scaled

Cost Benefit (Henders.) Estimation ROI= (withoutReuse – withReuse)/
 producedReuseComponents

potentially ratio scaled

Cost Benefit (Malan) Estimation Costs= (withoutReuse – withReuse)
 - ReuseOverhead
 (considering a set of products)

potentially ratio scaled

Cost Benefits (Poulin) Estimation Σ costs - Σ benefits potentially ratio scaled
DISA (DoD) Calculation Defense Information Systems Agency:

 - lines of new custom code
 - lines of new reusable code (code
 written for reuse by others)
 - lines of verbatim reused code
 - lines of adapted reused code

potentially ratio scaled

Generic Reuse (Bieman) Calculation Number of generic classes or functions
or parameters (for templates)

potentially ratio scaled

RCA (Poulin) Estimation ReuseCostAvoidance=Development
CostAvoidance+ServiceCostAvoidance

ordinal scaled

RCR (Poulin) Estimation Portion of effort that it takes a similar
component without modification (black-
box reuse)

potentially ratio scaled

RCWR (Poulin) Estimation Portion of effort that is take to write a
similar reusable component

potentially ratio scaled

Reusable Index (Sodhi) Valuation Component: 4 – most reusable, . . .,
 1 – least reusable

ordinal scaled

Reusability (Barnard) Calculation Calculation-formula based on CBO, DIT,
NFC and other OO-metrics

ordinal scaled

Reuse Level (Frakes) Calculation (InternalReuseLevel + ExternalReuse
Level)/ TotalNumberOfItems

ordinal scaled

Reuse Leverage (Banker) Calculation TotalObjectsUsed/ NewObjectsBuilt ordinal scaled
Reuse Leverage (Poulin) Estimation ProductivityWithReuse/

ProductivityWithoutReuse
potentially ratio scaled

Reuse Percent (Poulin) Estimation ReusedSoftware/TotalSoftware ordinal scaled
ROI (Poulin) Estimation ReturnOnInvestment = Σ Coeff * Reuse

in Phase i
potentially ratio scaled

RVA (Poulin) Calculation ReuseValueAdded= (TotalSource
Statements + SourceInstructionsReused
ByOthers)/ (TotalSourceStatements –
ReusedSourceInstruction)

ordinal scaled

Verbatim Reuse
(Bieman)

Calculation Classes (functions) included by use or
has relationships

potentially ratio scaled

183

That shows, that the most cost-benefit-metrics
('without Reuse', 'with Reuse') only a "procla-
matic" character have. At the scale properties the
best case was accepted presently. For the
potentially ratio scaled was accepted therefore,
that an empirical experience to the possible
statement of a measurement unit is given.

4.4 Support of a Metrics-Based Workflow
(Migration)

Regarding the migration following starting-points
are recognizable:

• the reuse-process is among other things
supported by metrics, that a assessment is
viewed to the reusability of existing software-
components. The so-called reusability-
metrics become classifies (to [Poulin 1997])
into empirical and qualitative methods, the
are presently on the other hand module- or
has component-oriented. Examples of such
metrics are from Selby, Caldiera/Basili, and
Torres for empirical methods and the IBM
Reusability Guidelines respectively the so-
called 3C-Modells for qualitative methods.

• for a reusable-component as product-
component we can find the special problem
of the contemplation-area (especially
regarding the internal and external reuse),
the so-called Boundary-problem.

The following can be stated in regard to
migration, i.e. the applicability of reuse metrics in
all phases of the software life-cycle and all
created products:

• The course of development is generally
considered only cumulatively in regard to the
respective reuse costs or benefits.

• The progress of the process is considered
only in terms of how the components'
reusability relates to the actual reuse.

• A special process consideration ultimately
serves to determine the degree to which
components in repositories are reused.

• Reused components are considered only in
regard to program lines, objects or classes,
and so-called »items” (program excerpts or
functions).

Only Bieman and Barnard go out from a detailed
model of object-oriented systems, look at
however not the development-phases. On the
other hand is showy, that exclusively reusable
code comes in into the analyses and other
development documents is viewed doesn't
quantify. On the empirical side the essential
goals are described with metrics (expenses,
benefits, expenditure etc.), however followed the
registration of concrete measurement values
likely only over coarse time-estimations.

4.5 Efficiency of the Reuse Process
(Efficiency)

In existing solutions, the efficiency of a metrics-
based reuse process refers primarily to the
(computer-aided) access statistics. Otherwise,
the manual collection of reuse figures dominates,
although the (statistical) analysis of these figures
is generally also made with the help of a
computer. Bieman, for example, created a
component-based, tool-supported metrics
analysis.

Metrics databases were generally not used.
Metrics data are usually organized only implicitly
in the repositories in regard to access statistics.

5 REQUIREMENTS OF A METRICS-
SUPPORTED REUSE APPROACH

Based on the analyses performed and the
general metrics program framework developed
by the Otto-von-Guericke University at
Magdeburg, the following general requirements
were established for a software reuse that is
quantified and thus can be evaluated:

1. In software reuse, the already existing reuse
metrics can also be used, as well as the
metrics valid for other paradigms, in order to
make them easier to quantify and thus
evaluate.

2. Selected metrics should be relatively scaled
to the extent possible.

• An empirical experience, which can
service the basis for an initial scaling unit,
must be prepared or selected for
component-based metrics,

184

• A component relationship that makes a
detailed evaluation possible must be
created for empirical metrics (costs,
expenditure, etc.).

3. Above all, the selection of metrics must
include every area (i.e. the products, the

process, and the resources) in the
evaluation.

4. The objective for the selected metrics must
also be to achieve the highest possible level
of automation. This also includes »traditional”
measurement tools. The following table
describes the current situation:

Table 2: Reuse metrics and tool-support

Metric for Paradigm Tool-support Empirical experiences
Amortization (Gaffney) no restriction no Case study
COCOMO Modification
(Balda)

no restriction no Calculation-example

Consumer/Producer
Reuse (Chen)

no restriction AST Case study (C-Programs)

Cost Benefit (Bollinger) not practical
Cost Benefit (Henders.) not practical
Cost Benefit (Malan) not practical
Cost Benefits (Poulin) no restriction no
DISA (DoD) no restriction no statement Calculation-example
Generic Reuse (Bieman) OOSE ARMA-Tool for Ada Case study
RCA (Poulin) no restriction Worksheet defined
RCR (Poulin) Module oriented no Literature-comparison

(∅ = 0.2)
RCWR (Poulin) Module oriented no Literature-comparison (∅ = 2)
Reusable Index (Sodhi) no restriction no no
Reusability (Barnard) OOSE MOOD experiment-covered
Reuse Level (Frakes) imperative rl tool Case study (C-Programs)
Reuse Leverage (Banker) OOSE no Case study
Reuse Leverage (Poulin) not practical
Reuse Percent (Poulin) no restriction no Calculation-example
ROI (Poulin) sequence life

cycle
Worksheet defined Calculation-example

RVA (Poulin) imperative Worksheet defined Calculation-example
Verbatim Reuse
 (Bieman)

OOSE ARMA-Tool for Ada Case study

5. The measured values themselves must be
integrated into metrics databases. This also
applies for access statistics of individual
reused components.

6. In addition to the predominately cost-oriented
metrics, the aspects of quality improvement or
influence must also be considered. That is
valid for such questions how

• the previous determination the quality of
imported software-components,

• the "updating" of the quality at the
utilization of components with a definite
quality of Q1 in a system with a quality of
Q2.

7. Particular attention must be paid to the
motivation for reuse. For this is to investigate

• how far developers early to have
included,

• a reuse bonus model could be introduced,

• effective experiments the basis could
form.

An efficient use of metrics is however of the
analysis of the current software development
situation and the so recognizable success-
promises starting-points dependent.

185

6 SUGGESTION OF A METRICS-BASED REUSE-CONCEPT

6.1 Integration of the software-development- and reuse-process

Conception

Analysis

Design

Implementation

Test

Reuse-initiation

Repository candidates

" Team def in i t ion
" Reuse Plan
" market-overv iew

" Identi f icat ion/ select ion of
reusable components
(concept)

" Identi f icat ion/ select ion of
analys is-components

" COTS-candidates

" Identi f icat ion/ select ion of
des ign-components

" Evaluat ion/ select ion of
C O T S

" Identi f icat ion/ select ion of
Implementat ions-
components

" Identi f icat ion/ select ion of
test -components

Integration

" Integrat ion of the
components into the
appl icat ion

" Compartment- lex icon
" Use-Case-speci f icat ion (BP)
" Architecture-specif icat ions
" Templates
" ...

" Use-Case-d iagrams
" Class-d iagrams
" Interact ion-diagrams
" state-diagrams
" ...

" Design-c lasses
" Subsys tems
" Package-Diagrams
" Deployment-Diagrams

" Class-l ibrar ies
" Interfaces
" Module
" ...

" Test-cases
" ...

Precondi t ion

OO process model

186

Fig. 2: Integration of the software-development- and reuse-process

6.2 Evaluating Reuse Maturity

Sodhi’s Software Reuse Maturity Model

Using the »Capability Maturity Model (CMM)”
proposed by the SEI5, which evaluates the
maturity of a software development in five levels,
[Sodhi 1998] proposed a corresponding
»Software Reuse Maturity Model.” The starting
point for considerations was the insufficient
evaluation of necessary details in the process for
software reuse within the CMM. This evaluation
model contains the levels described briefly
below. The achievement of a level is determined
by means of a questionnaire.

Level 1 - Informal practices: Describes the
entry level of reuse. Practical forms of reuse are
utilized, although the organization does not
explicitly support the process. The type and
manner of reuse basically depends upon the
personal involvement of the individual
developers.

Level 2 - Formal software reuse: If Level 2 is
achieved, then reproducible results of reuse
already exist through a certain formalization of
the process. For example, quality assurance for
the reused components has been introduced,
time and cost estimates take reuse into account
to a certain extent, and initial steps have been
taken to define the necessary processes for
reuse.

Level 3 - Implementation of formal reuse: A
mandatory process has been defined for reuse.
Repositories are now available with certified and
sufficiently tested reusable components.
Coordinated technical application domains offer
a basis for the reuse of architectural
components. A set of initial metrics must be
introduced in this phase, referring in particular to
the testing or clarification of advantages from
reuse.

 Level 4 - Management return on investment
ROI6: The metrics introduced in Level 3 are
used, for example, to provide evidence for a ROI
or to present practical benefits of implemented
component databases by means of reuse indices

5 Software Engineering Institute
6 ROI Return on Investment

for each component. The expenditures
necessary for reuse can be quantified in regard
to both already implemented application domains
as well as new ones.

 Level 5 - Optimization: All processes for
software reuse are optimized. An implemented
procedure supports the economically optimal
achievement of a higher level for software reuse
in each case. The effects of a necessary
»reengineering” of existing assets can be
tracked, and rules also exist for measuring the
aggressive development of implemented reuse
processes.

Adjusted Variants for Evaluating Reuse
Maturity

In summarizing the evaluation possibilities
studied, the SW-WiVe project proposed a variant
for evaluating software reuse maturity that is
adapted to Deutsche Telekom's requirements.
This variant uses the following three levels:

Reuse initiatives: This level basically implies
the contents of Level 2, and considers the
aspects of reuse separately from one another for
the most part. Typical here are the
implementation of prototypical reuse databases
with more technical assets, but without defining
the processes necessary for effective use and
without a strategic decision by management on a
procedure for reuse.

Assessment-based reuse: This level basically
implies the contents of Level 3. The introduction
of valid metrics related to reuse means that
processes, resources, and the product (assets)
can be evaluated. The prototypical reuse
databases that were implemented are developed
further into comprehensive approaches, and are
thus available to everyone involved in the
software development. A reuse-centered
organizational development has been
established in order to develop domain-specific
components, which are already recognized as
standard.

Controlled reuse Process: This level basically
implies the contents of Level 4, i.e. a metrics-
supported reuse approach is established in order
to clearly quantify the value added by reuse. In
addition, the necessary organizational
development has progressed to the point that

187

centers exist for actual component creation,
management of available components, and
actual application development.

6.3 Metrics in the process of the software-
reuse

Selection of the metrics and statement of the
attributes (Choice/Adjustment) corresponding the
GQM-method (Goal Question Metric). With it a
definition of the goals is presupposed.

current situation

! explicit /implicit
Reuse

! Related to the staff

! Internal/external
Reuse

Potential

! Reusability

! Costs

! Availability

Potential benefit

! Save of time

! Quality-
improvement

! Save of costs

Software-reuse-assessment

Fig. 3: Initial stage for the metrics choice

The goals already imply the questions and led
immediate to the metrics. The concrete
alignment of the metrics is however regarding

product, processes or resources to plan. We
want to restrict ourselves first of all on the
product.

188

Estimation/ measuring

! Life-Cycle-metrics
! Reuse-benefit

estimation
! Reuse-(Quality-/Effort-

/Share-) Reproduction
(outside/inside Reuse)

! Staff related
! architecture-levels
! architecture-areas

! Repository-metrics
! access-distribution
! use-frequency
! Akzeptanz

Evaluation

! Difference-
procedure

! Regressions-
analysis

! Threshold-
analysis

! Exploration

Software-reuse-controlling

Improves/ Changes

! Asset- Expansion

! Asset-
Substitution

! Expansion/
improvement of
the Reuse-
techniques

! Repository-
Improvement

Fig. 4: Supplement of the metrics with life-cycle- and architecture-assessments

7 SUMMARY AND PENDING TOPICS

In conclusion, it is clear that the level of
knowledge regarding software reuse depends
upon the respective (process) level. In the same
way that relationships (quality, productivity,
efficiency, etc.) in software development have
until now largely been observed only on a »case-
by-case” basis or studied very generally and
without differentiation, there is also a lack of
comprehensive or complex studies of the reuse
process. All phases of development lack
applicable reuse metrics to consider the various
aspects of reuse, particularly in relation to a
metrics-supported reuse approach.

The general relationships between reuse models
and economical models, which are ultimately
essential for evaluating reuse, have not yet been
subjected to sufficiently comprehensive analysis,
nor have they been standardized independently
of individual companies.

The currently practical process consists of
preparing a company-specific evaluation model

for reuse, in order to at least achieve an
appropriate level of transparency within the
company. This naturally means that comparisons
cannot be made with other companies.

The measurement approaches presented in the
literature (particularly by [Poulin 1997]) have not
yet been validated to the extent that they can be
used to create solutions or reuse strategies that
can be sufficiently generalized. Current solutions
incorporate almost exclusively process
experiences in software development. An
essential basis for validation is the use of a
metrics database to manage the various series of
measurements and achieve the necessary
statistical reliability.

In order to expand the range of experience for
reuse technologies, practical applications are
needed for other application classes and areas of
application. This applies above all for differently
»scaled” companies and IT departments.

In addition to improving reuse technologies, the
expenditures and the costs of reuse must
themselves be examined. For example, it is also

189

necessary to study the extent to which the reuse
technologies utilized in each case may increase
the complexity of the development to an
unacceptable degree and ultimately make it
unmanageable.

The SW-WiVe project paid particular attention to
the specified success factors for software reuse,
and shows how one part of the problem can be
approached and/or how a solution could be
created. In addition to the studies presented here
regarding the use of metrics, the project also
undertook the company-specific definition of
necessary processes for software reuse, as well
as a proposal for a generic description of assets
and an initial approach for formalizing this
description through the use of metrics. The
project also made a practical study of reused
components already employed by specific
companies, and identified features that are
closely associated with a successful reuse of
these components.

8 SOURCES

[Barnard 1998] Barnard, J.: A new reusability
metric for object-oriented software. Software
Quality Journal, 7 (1998), S. 35 – 50.

[Basili et al. 1988] Basili, V.; Rombach, D.: The
TAME-Project: Towards Improvement-
Oriented Software Engineering. IEEE Trans.
on Software Engineering, 14(1988)6, S. 758
– 773.

[Biggerstaff & Perlis 1989] Biggerstaff, T. and
Perlis, A.: Software Reusability, Volume I
and II in the Frontier Series. ACM Press,
1989.

[Coulange 1998] CoulangeB.: Software Reuse,
Springer-Verlag, London 1998.

[Dumke 1998] Dumke, R., Foltin, E., Winkler,
A.S.: A Framework for Object-Oriented
Software Measurement and Evaluation.
Proceedings of the IASTED Conference on
Software Engineering, Oct. 28-31, 1998, Las
Vegas, S. 129 – 132.

[Ezran 1998] Ezran, M., Morisio, M., Tully, C.:
Practical Software Reuse: The essential
Guide. Paris: Freelife Publ., 1998.

[Fenton 1991]Fenton, N.: Software Metrics - A
Rigorous Approach. London: Chapmann &
Hall Inc., 1991.

[Jacobson 1997] Jacobson, I, Griss, M., Jonsson,
P.: Software Reuse (Architecture, Process
and Organization for Business Success),
Reading/MA: Addison-Wesley 1997.

[Jones 1998] Jones, C.: What it means to be
»Best in class” for Software. Vers. 5,
Software Productivity Research, 1998.

[Poulin 1997] Poulin, J.S.: Measuring Software
Reuse. Principles, Practices, and Economic
Models. Reading/MA: Addison-Wesley
1997.

[Sodhi 1998] Sodhi, J.; Sodhi, P.: Software
Reuse. Domain Analysis and Design
Processes. New York ...: McGraw-Hill 1998.

[Udell 1994] Udell, J. Component software,
BYTE, 19(5):46-55, 1994.

