
QUIM: A Framework for Quantifying Usability Metrics
in Software Quality Models

A. Seffah
Dept. of Computer Science
Concordia University
seffah@cs.concordia.ca

N. Kececi
Dept. of Computer Science

University of Quebec
at Montreal

nkececi@lrgl.uqam.ca

M. Donyaee
Dept. of Computer Science

Concordia University
donyaee@cs.concordia.ca

Abstract

This paper examines current approaches to usability
metrics and proposes a new approach for quantifying
software quality in use, based on modeling the dynamic
relationships of the attributes that affect software usability.
The Quality in Use Integrated Map (QUIM) is proposed
for specifying and identifying quality in use components,
which brings together different factors, criteria, metrics
and data defined in different Human Computer Interface
and Software Engineering models. The Graphical
Dynamic Quality Assessment (GDQA) model is used to
analyse interaction of these components into a systematic
structure. The paper first introduces a new classification
scheme into graphical logic based framework using QUIM
components (factors, criteria metrics and data) to assess
quality in use of interactive systems. Then, we illustrate
how QUIM and GDQA may be used to assess software
usability using subjective measures of quality
characteristics as defined in ISO/IEC 9126.

Keywords: usability, quality in use, usability metrics,
ISO-9126, software quality model, interactive systems

1. Introduction

Although quality in use – commonly usability or user
perspective of software quality - has received widespread
attention within both the software engineering and human
computer interaction (HCI) communities, there are few
integrated software quality models for specifying and
measuring our current meaning of usability (McCall, 1977;
Boehm, 1978). The HCI community has developed
different models for specifying or measuring usability. One
of their weaknesses is that they are not well integrated
within the software engineering models.
A good quality in use model should define all the
characteristics that are required for a product to meet
predefined usability goals in a specified context of use.

Furthermore, the list of characteristics should include
efficiency, learnability human satisfaction and safety as
well as the measurable attributes (metrics). In addition, a
good quality in use model should explicitly define the
relationships that can exist between the characteristics and
the measurable attributes. Other requirements of a good
model are:
• Decomposability – Stakeholders often express their

needs in qualitative characteristics such as use
satisfaction and efficiency. These characteristics are
easy to understand but most of the time difficult to
measure. A model for usability should decompose
consumer-oriented characteristics into measurable
oriented attributes.

• Functionality – An efficient quality in use model
should be flexible in such a way it can be used at
various steps of the software development lifecycle.

• Usability – The model should be itself easy to use and
learn by all the person involved in the software
development lifecycle including novice software
quality engineers, usability engineers as well as user
interface developers who are not necessary familiar
with usability.

• Automated support – A quality model should be
supported by tool that can facilitate the process of
gathering usability requirements as well as
testing/predicting usability. The tool should also
mediate the communication between usability
engineers and software engineers. This is one of the
major weaknesses of the current usability models that
software engineering approaches can improve.

As a model for quality in use, our QUIM (Quality in Use
Integrated Map) addressed these requirements. QUIM can
be seen as a framework for: (1) reconciling the existing
software engineering and human computer interaction
quality models in particular those that address the
usability, (2) facilitating the specification and measurement
of quality in use in conjunction with the two other
dimensions of software quality – developer and manager
perspectives -, (3) making usability more approachable by

software engineers. QUIM is a framework for studying,
defining and validating a specific model for quality in use
for specific kind of application. Many inconsistencies are
identified in the existing quality in use and usability
models as well as the relationships
(factors/criteria/metrics) that have not been clearly defined.
Logic-based Dynamic Quality Analyses (DQA) method is
used to remove inconsistencies as well as to clear
definition of the relationships. While QUIM defines the
components of quality system, DQA analyzes the
relationships between these components. It helps quality
engineers to clarify relationships from factor to data or
vice-versa.

2. Usability in Existing Software Quality
Models – A brief Overview

In this section, the similarities and differences of different
standards and models for defying usability, specifying,
measuring or predicting quality in use are reviewed.

2.1 Usability in Human Computer Interaction

In human computer interaction community, many
definitions of usability and frameworks for its specification
and measurement exist, making sometimes usability a
confusing concept. Many standards that address explicitly
usability are also available (Bevan95). Among them, we
list the following:
• ISO 9241-11 standard defines usability as a high-

level quality objective: “The extent to which, a
product can be used by specified users to achieve
specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”. This model
suggests different metrics. The major limitation of
this standard as quality model is that it is so abstract,
and the relationships between metrics and usability
objectives are not explicitly defined.

• The ISO/IEC 14598-1 suggests a model for studying
and measuring quality in use from the internal
software attributes in a particular context of use.
Software quality attributes are the cause - quality in
use, the effect. Quality in use is (or at least should
be) the objective; software product quality is the
means of achieving it.

The user’s needs in terms of usability goals are expressed
as a set of requirements for the behavior of the product in
use (for a software product, the behavior of the software
when it is executed.) These requirements will depend on
the characteristics of each part of the overall system
including hardware, software and users. The requirements
should be expressed as metrics that can be measured when
the system is used in its intended context, for instance by
measures of effectiveness, efficiency and satisfaction.
Even if this model is incomplete in the sense that it
addressed only the software quality attributes and their

impact on usability, this model can be used as the basic
foundation of an integrated model that combines usability
and software engineering models.

2.2 Usability in Software Engineering

In the software engineering community there are few
agreed metrics that capture our intuitive meaning of
usability. The following are the most important models
that introduce usability as one of the software quality
factors:
• Boehm model – This model is one of the first quality

models for software quality (Boehm, 1978). He
proposed a multilevel hierarchy or a tree of software
criteria. He suggested that a software product is
usable if it is portable, maintainable and in turn at the
next level he decomposed those criteria to the others,
for example, he decomposed maintainability into
testability, understandability, and modifiability.

• McCall model - This model, is also called GE model
(Fenton, 1997) or FCM (Factor, Criteria and Metric
was proposed by McCall in 1977). It is based on three
uses of a software product, i.e. product revision,
product operations and product transition. For every
one of those uses, this model defines different factors
that describe the external view of the system, as it is
perceived by end-users. Each factor is decomposed
into criteria that describe the internal view of the
product as perceived by software developer. Criteria
could be common between different factors.

• IEEE 1061 (1998) Standard on Software Quality
Metrics Methodology. This standard provides a
methodology for establishing quality requirements as
well as identifying, implementing, analyzing and
validating process and product software quality
metrics. This methodology applies to all software at
all phases of any software life cycle. This standard
does not prescribe any specific metric. The model
suggests a hierarchy including different levels for
quality factors, quality sub factors and metrics as
well.

• The ISO/IEC 9126 – This standard breaks software
quality down into six broad categories of
characteristics of the software: functionality,
reliability, usability, efficiency, maintainability and
portability. These can be further broken down into
sub characteristics that have measurable attributes.

3. QUIM: Quality in Use Integrated Map

QUIM is a hierarchical model like the software
engineering models discussed in the previous section. The
difference is that, it distinguishes four levels called factors,
criteria, metrics and data (Figure 1). The relationship
between these layers is an N-M relationship.

Figure 1: QUIM Structure and Usages

3.1 Quality in Use

In QUIM, we define quality in use as the end user
perspective of software quality. The definition of quality in
ISO 8402 reflects the user view. User is mainly interested
in using the software, its performance and the effects of
using it. Then the user is not concerned with the internal
aspects of the product. The user just sees observable
external attributes of the software. Or one may say user is
interested in final product quality.
QUIM is also an open model in the sense that the
cause/effect relationship between the user and developer
perspectives of quality is explicitly considered. As an
example, user and developer both are interested in
performance of the software, but user could see this
attribute as response time to the event entered by him, and
developer thinks of it as data structure depth or path length.

3.2 Factors

The following are factors that are included in QUIM
(Donyaee and Seffah, 2001):
1. Effectiveness: The degree of accuracy and

completeness with which the user achieves a specified
task in a certain context.

2. Efficiency: The amount of resources expended in
relation to the accuracy and completeness with which
the user achieves a goal.

3. Satisfaction: Freedom from discomfort and positive
attitude towards the use of the software product.

4. Productivity
5. Safety
6. Internationability: The degree to which software can

be used for the global marketplace, taking into account
variations in regions, population stereotypes,
languages, and cultures.

7. Accessibility: The degree to which software can be
used comfortably by a wide variety of people,

including those who require assistance technologies
like screen magnifiers or voice recognition.

3.3 Criteria

Like many others model, criteria are sub-factors. The
difference is that they are measurable through a set of
metrics. The following are examples of criteria.
3. Attractiveness: Indicator expressing the extent of

which user likes the software during the operation.
4. Consistency (Lin, 1997): Attributes that bear on the

uniformity of user interface.
5. Minimal Action (Lin, 1997): The extent to which user

needs to take minimal effort to achieve a specific task.
6. Minimal Memory load (Lin, 1997): The extent to

which user needs to keep minimal amount of
information in mind to achieve a specified task.

7. Completeness: The extent to which the user can
complete a specified task.

3.4 Metrics

The IEEE metrics standard defines a software metric as “a
function whose inputs are software data and whose output
is a single numerical value that can be interpreted as the
degree to which the software possesses a given attribute
that affects its quality “. In the context of QUIM, the
output of a metric function is a numeric value that
summarizes the status of specific criteria.
We have identified about 100 usability metrics, some of
them are functions and some are just simple countable
data. As examples of metrics, we are going to introduce
some that are defined previously and have been validated,
and also are general enough, so they could be applied to
most software and context of use. To have detailed
explanation and examples of calculation one may refer to
the mentioned reference in every case.
• Task Concordance (Constantine, 1999): This is an

index of how well the expected frequencies of tasks
match their difficulty, good design will generally
make the more frequent tasks easier (less steps or less
efforts). To calculate this first we have to list all tasks
ranked in order of descending expected frequency,
along with their number of user steps in use case.
This metric, in brief TC, is determined by the
following function:

TC = 100 × D / (N × (N – 1) / 2)
Where N is the number of tasks being ranked, and D,
i.e. Discordance Score, is the number of pairs of tasks
whose difficulties are in right order minus those pairs
whose difficulties are not in right order.

• Visual Coherence (VC) (Constantine, 1999): Shows
how well a user interface keeps related components
together and unrelated components apart. VC is
determined using the following function:

VC=100 × G / (N × (N - 1) / 2)

Where G is the number of related visual component
pairs in the group, and N is the number of visual
components in the group.

3.5 Data

The basic of QUIM is the data that is required to estimate
metrics. Data can be qualitative or quantitative. There are
different methods to estimate a metric from data:
• Countable: Sometimes data is a countable entity, and

in that case it could be considered as a metric and
directly related to a criterion. The example is Number
of individual items on the screen, or Time to
complete a specific task. The data gathered from
questioners are falling also in this category, and they
feed input of statistical function metrics.

• Calculable: Some data are determined by calculation.
For example, percent of task completed. This data is
used in metric Task Effectiveness (TE):

TE = Quantity x Quality / 100
Where Quantity is the percent of task completed and
Quality is the percent of goal achieved (Bevan, 1995).

Data are gathered from different sources including: (1)
users and usability engineers, (2) questionnaires, (3) final
user documentation (4) system (5) design artifacts such as
object-oriented models (6) task analysis and others
requirements artifacts (7) user interfaces high and low-
fidelity prototypes such as storyboard, paper, video and
software prototypes (8) process improvement data
including specification, design, implementation reviews

3.6 The relationship between QUIM layers

As mentioned before, QUIM is not exactly a tree. A
specific metric could affect more than one criterion and
then it is connected to more than one criterion. This is also
the case at every level. Figure 2 is an example that shows
those relationships. As we can see in the example, the data
“Number of visual components” is an input to two
different metrics “Visual Coherence” and “Layout
Uniformity” (Constantine, 1999). Those metrics measure
the criteria “Minimal Memory Load” which affect
“Efficiency” and “Satisfaction”. What ever is coming in
the example map is just to show that the relationship
between components of QUIM can be very complex.
On the other hand, consider that you would like to predict
how the different values for data that are used for
determining a metric or different combination of metrics
could affect your system’s quality in use. Consider the
metric Task Concordance (Constantine, 1999) affects the
criteria Completeness and the latter in order affects the
factor Effectiveness. Then if we increase Task
Concordance value, the effectiveness of user interface is
increased. Again, consider the metric Interface
Shallowness (Yamada, 1995) who affects the criteria
Minimal Memory Load that has an impact on efficiency
and effectiveness. It means if we reduce the shallowness of

interface and so the user memory load, then we have
increased both Efficiency and Effectiveness. Now let’s use
this information gathered from the model. If Efficiency and
Effectiveness of the user interface are desired at the same
degree, then we have to put more effort on reducing the
Interface Shallowness, during the design phase. It is
important to recall that all above relationships came just as
example to see how one may use QUIM. As we will see in
the next section, those relationships need to be defined

Figure 2. The example of QUIM components relationships

4. GDQA Graphical Dynamic Quality
Analysis

The Graphical Dynamic Quality Analysis (GDQA) method
has been developed for building high quality requirement
specifications (Keceli, 2001). The GDQA offers a
graphical presentation of quality requirements based on
logic-based framework. It assumes that each quality
requirement can be expressed as multi-variable functions,
which are independent from each other in terms of their
objective; however, each quality factor may have other
dependencies, such as sharing primitive measures or
indirect measures.
Constructing a function with GDQA is relatively easy for
software developer. The logic-based graphical method
provides a conceptual framework for analyzing and
understanding the relationships between the components of
any complex system. Procedure for constructing functional
requirements with GDQA have been summarized into
following three-steps.
• Decompose each quality factors (requirement) into

hierarchical level until reach their metrics.
• Decompose each metric into hierarchical level until

reach data, which are necessary for calculating these
values.

• Identify the relationships between
data/metrics/criteria/ factors. Relationships between
factors and data can be an entity, a simple calculation

(division, multiplication etc.) or a complex formula
(prediction model) that helps to calculate related
values of factors.

Figure 3 illustrates GDQA framework in a conceptual
form. While F1 represents a quality factor, F1-1 and F1-2
represent its relevant criteria. High-level goal is

decomposed into vertical direction with its related factors
and criteria until reach to their metrics. Many variables
could be necessary to calculate one metric. To specify
these variables, different quality model is integrated into
QUIM such as ISO/IEC 9216, ISO/IEC 9241, ISO/IEC
14595-1, Boehm, McCall and others.

Figure 3. Graphical Dynamic Quality Analysis

4.1 Analyzing the components of QUIM
framework using GDQA

More than 100 measures for quality in use are identified
and integrated into QUIM framework. GDQA Model helps
to identify data as well as their relationships with metrics,
criteria and factors. In addition, it helps to identify data
that are used for computing more than one metrics and it
gives clear picture for the relationships between factors-

criteria as well as the relationships between factors- data.
Figure 4 illustrates a sample implementation of QUIM
components given in Figure 2. It shows clearly the
relationships between factors and the direct metrics and
data. A criterion can support different factors or one data
can be used to compute different metrics. Moreover, when
user defined quality factor GDQA will bring automatically
all the data that are required for quantifying the factor.

Figure 4. GDQA framework using QUIM measures

Quality Prediction

FF 22

FF 11 -- 11 FF 22 -- 11

FF 11

MM 22

MM 33

FF 22 -- 22FF 11 -- 22

Read

Calculate

MM 11 -- 33 ---- 11

MM 11 -- 33 --22

MM 11 --33

MM 11 -- 11

MM 11 -- 22

MM 11

Predict

Quality Prediction

FF 22

FF 11 -- 11 FF 22 -- 11

FF 11

MM 22

MM 33

FF 22 -- 22FF 11 -- 22

MM 22

MM 33

FF 22 -- 22FF 11 -- 22

ReadRead

CalculateCalculate

MM 11 -- 33 ---- 11

MM 11 -- 33 --22

MM 11 --33

MM 11 -- 11

MM 11 -- 22

MM 11

MM 11 -- 33 ---- 11

MM 11 -- 33 --22

MM 11 --33

MM 11 -- 11

MM 11 -- 22

MM 11

PredictPredict

F1=Quality Factor

F2= Quality Factor
M 1= Model

M2 = Model

M 3=Measure

MM 11 --1=1=Measure

MM 11 --2=2=Measure

MM 11--3=3=Mode l

MM 11--33--1 = 1 = Measure

MM 11--33--2 = 2 = Measure

Effectiveness Efficiency

Quality in Use

#of nodes

#of related visual
component pairs
#of visual
components
#of different height
#of different width

Sum of interface
distances for the
shortest path from
root to node i
#of task
Discordance score

Visual Coherence Interface
Shallowness Layout Uniformity

Minimal Memory Load

Satisfaction Factors

Metrics

Criteria

Data

Task Concordance

Objective

Completeness

Effectiveness Efficiency

Quality in Use

#of nodes

#of related visual
component pairs
#of visual
components
#of different height
#of different width

Sum of interface
distances for the
shortest path from
root to node i
#of task
Discordance score

#of nodes

#of related visual
component pairs
#of visual
components
#of different height
#of different width

Sum of interface
distances for the
shortest path from
root to node i
#of task
Discordance score

Visual Coherence Interface
Shallowness Layout Uniformity

Minimal Memory Load

Satisfaction Factors

Metrics

Criteria

Data

Task Concordance

Objective

Completeness

5.Case Study: Using QUIM and GDQA for
Defying the ISO/IEC 9216 Model for Usability

Usability is proposed as a quality factor in the ISO/IEC
9216. Internal usability characteristics have been studied in
this research. The result is illustrated in Figure 5 as an

example. The data (variables), which are listed in Table 2,
are taken from ISO 9126. The measures, which are used
more than once, are detected with the GDQA method.
Criteria and metrics, which are listed in Table 1, are used
in the GQAM model as components of usability
objectives/goal.

Figure 5. GDQA Model with ISO/IEC 9216

Table 1. Usability in ISO 9256
Criteria Metrics Description Metrics

(Xn=An/Bn)
Number of

Data
Completeness of function understood IUX1= IUA1/IUB1 2
Evident Functions IUX2=IUA2/IUB2 2

Understandability

Function Understandability IUX3= IUA3/IUB3 2
Easy of Learning ILT-TIME 1
Easy of use help system ILX1=ILA1/ILB1 2

Learnability

Effectiveness of help system ILX2=ILA2/ILB2 2
Self Explanatory error message IOX1=IOA1/IOB1 2
Error Correction IOT1=IOT2-IOT3 2
Input undo-ability IOX2=IOA2/IOB2 2
Error undo-ability IOX3=IOA3/IOB3 2

Operability

Customizability IOX4=IOA4/IOB4 2
Interface appearance customizability IAX1=IAA1/IAB1 2 Attractiveness
User Operational frequency IAX2=IAA2/IAT1 2

Table 1 Usability model proposed in ISO/IEC 9126

FACTORS

IUB2

IUA3

IUB3

IUA1

IUB1

IUA2

OperabilityUnderstandabilityCRITERIA

IUX1 IUX2

Usability

IOX1 IOT1 IOX2IUX3 IOX3

Learn-ability

ILX1 ILX2ILT

ILA1

ILA2

ILB2

L avgT

ILB1

IOX4 IAX1 IAX2

Attractiveness

IOB1

IOT2

IOT3

IOA1

IOA2

IOB2

IOA3

IOA4

IOB4

IOB3

IAA1

IAB1

IAA2

IAT1

METRICS

DATA

FACTORS

IUB2

IUA3

IUB3

IUA1

IUB1

IUA2

OperabilityUnderstandabilityCRITERIA

IUX1 IUX2

Usability

IOX1 IOT1 IOX2IUX3 IOX3

Learn-ability

ILX1 ILX2ILT

ILA1

ILA2

ILB2

L avgT

ILB1

IOX4 IAX1 IAX2

Attractiveness

IOB1

IOT2

IOT3

IOA1

IOA2

IOB2

IOA3

IOA4

IOB4

IOB3

IAA1

IAB1

IAA2

IAT1

METRICS

FACTORS

IUB2

IUA3

IUB3

IUA1

IUB1

IUA2

OperabilityUnderstandabilityCRITERIACRITERIA

IUX1 IUX2

Usability

IOX1 IOT1 IOX2IUX3 IOX3

Learn-ability

ILX1 ILX2ILT

ILA1

ILA2

ILB2

L avgT

ILB1

IOX4 IAX1 IAX2

Attractiveness

IOB1

IOT2

IOT3

IOA1

IOA2

IOB2

IOA3

IOA4

IOB4

IOB3

IAA1

IAB1

IAA2

IAT1

IAA1

IAB1

IAA2

IAT1

METRICSMETRICS

DATADATA

Data Description
IUA1 Number of functions understood
IUB1 Total number of functions
IUA2 Number of functions identified by the user
IUB2 Total number of actual functions
IUA3 Number of interface functions whose purpose

is correctly described by the user
IUB3 Number of functions available from the

interface
ILA1 Number of tasks for which correct online help
ILB1 Number of tasks tested
ILA2 Number of tasks successfully completed after

accessing online help
ILB2 Number of tasks tested
ILA3 Number of functions that can be used
ILB3 Total Number of functions provided
ILT Mean time taken to learn to use a function

correctly
IOA1 Number of error conditions for which the user

propose the correct recovery action
IOB1 Number of error conditions tested
IOT2 Time completing correct specified type errors

of performing
IOT3 Time starting correct specified type errors of

performing task
IOA2 Number of input errors which the user

successfully corrects
IOB2 Number of attempts to correct input errors
IOA3 Number of functions successfully customised
IOB3 Number of error conditions tested
IOB4 Number of attempts to customise
IAA1 Number of turns which user failed to select

input/output expression
IAB1 Number of turns which user tried to select

input/output expression
IAA2 Number of turns which user use the specific

software functions
IAT1 Operation time

Table 2 Data that are necessary for assessing internal
usability factors in ISO/IEC- 9126.

6. Conclusion and Further Research

In this paper, we discussed the similarities, differences, and
limitations of various models for studying, specifying and
measuring usability, contrasting the software engineering
quality models with the human computer interaction
standards for usability. Then we suggested an integrated
framework (QUIM) for measuring and specifying quality
in use models. Our work to date has addressed one of the
major issues towards the integrated framework namely, i.e.
what factors, criteria and metrics should be developed, and
what data should be gathered to calculate these metrics.
Our analysis of the existing models conducted us to the
definition and validation of 7 factors, 12 attributes and
more than 100 metrics that are integrated into QUIM. We
have also shown how GDQA tool can use to study the
relationships between QUIM components. QUIM and
GDQA are being used to develop different quality in use
model.
We would like to highlight that one goal of developing
QUIM, is keeping it as simple, easy and understandable as
possible, in such a way it can reduce software development
risks in a less expensive approach. To achieve this
important goal, we are developing a tool, QUIM editor.
This editor is a four-pane window where the hierarchy of
factors, criteria, metrics and data can be viewed. Like
Class Explorer used in many GUI builders, the QUIM
editor can be used for many tasks such as getting the
definition of a factor, attribute or metrics, understanding
the relationship between them, or adding or modifying
these relationships (Figure 6).

Figure 6. The main interface of QUM Toolset

7. References

[1] Bevan, N., (1995), Usability is Quality of Use, Anzai &
Ogawa (eds) Proceeding of the 6th International
Conference on Human Computer Interaction, July 1995,
Elsevier.

[2] Bevan, N., (1995), Measuring Usability as Quality of Use,
Software Quality Journal, Vol. 4, pp. 115-130.

[3] Constantine, Lockwood, (1999), Software for Use ,
Addison-Wesley, pp. 427.

[4] Fenton, N., Pfleeger, S.L., (1997), Software Metrics A
rigorous and Practical Approach, International Thompson
Publishing Company.

[5] Han X Lin, Yee-Yin Choong, Gavriel Salvendy (1997), A
Proposed Index of Usability: A Method for Comparing the
Relative Usability of Different Software Systems Usability
Evaluation Methods, Behavior and Information
Technology, Vol. 16, no 4-5, pp. 267-278.

[6] IEEE Std. 1061 (1998), IEEE Std. 1061 (1998), Software
Quality Metrics Methodology.

[7] ISO 9126(1991): Software Product Evaluation – Quality
Characteristics and Guidelines for Their Use.

[8] ISO/DIS 9241-11(1996): Guidance on Usability.
Ergonomic Requirements for Office Work with Visual
Display Terminals (VDT).

[9] Shoji Yamada, Jung-kook Hong, Shigehar Sugita, (1995),
Development and Evaluation of Hypermedia for Museum
Education: Validation of Metrics, ACM Transactions of
Computer Human Interface, Vol. 2, no 4.

[10] Kececi, N., Abran, A., Analyzing, Measuring and
Assessing Software Quality in a Logic Based Graphical
Model, 4th International Conference on Quality and
Dependability-QUALITA 2001, 22-23 March 2001,
Annecy, France.

[11] Donyaee, M., Seffah, A., QUIM: An Integrated Model for

Specifying and Measuring Quality in Use, Eighth IFIP
Conference on Human Computer Interaction, July 9-13,
2001, Tokyo, Japan.

