
Functional Size Measurement of Multi-Layer Object-
Oriented Conceptual Models

Geert Poels 1, 2

1 Department of Management Information, Operations Management, and Technology Policy
Faculty of Economics and Business Administration

Ghent University, Hoveniersberg 24, 9000 Gent, Belgium
geert.poels@ugent.be

2 Centre for Industrial Management, Katholieke Universiteit Leuven
Celestijnenlaan 300, 3010 Heverlee, Belgium
geert.poels@econ.kuleuven.ac.be

Abstract. This paper builds on previous work showing a way to map the
concepts used in object-oriented business domain modelling onto (a subset of)
the concepts used by the COSMIC Full Function Points (COSMIC-FFP)
functional size measurement method for modelling and sizing a software
system from the point of view of its functional user requirements.  In this paper
we present a refined set of measurement rules resulting from a careful revision
of our previous proposal, based on ‘field trials’ and feedback from function
points experts.  The main contribution of the paper is, however, an extended set
of rules to be used when applying COSMIC-FFP to multi-layer conceptual
models, including at least an enterprise layer and, on top of this, an information
system services layer.

1 Introduction

This paper presents results of ongoing research into the size measurement and cost
estimation of software systems that are developed using the Model-Driven
Architecture framework envisioned by the Object Management Group [1].  This
approach to software development prescribes the construction of software systems
through the transformation, via platform-independent design patterns and platform-
dependent implementation schemes, of computation-independent conceptual
representations of the enterprise and its (required) information system(s).

First research results, consisting of a set of rules for applying COSMIC-FFP [2],
which is a generic functional size measurement method, to object-oriented business
domain models were published in [3].  In particular, we showed that the meta-model
of methods that take an event-based approach to business domain modelling (e.g. OO-
Method [4], MERODE [5]), can naturally be mapped onto (a subset of) the abstract
model of functional user requirements that is used by COSMIC-FFP as the basis for
measuring the system’s functional size.

In this paper we extend this previous work by showing how to measure the
functional size of models that are organised in a layered architecture.  We present



specific COSMIC-FFP rules for the information system services model, which is a
layer on top of the enterprise layer (i.e. the business domain model) in a layered
conceptual model.  The information system services model is used to model
information system functionality related to the information needs of system end-users
(e.g. management reports, business documents), the support of system end-users
involved in business operations (e.g. the input of business transaction data) and the
support of system (or business) management activities (e.g. system’s (or business)
performance monitoring).

We also present a revised and refined version of the COSMIC-FFP rules for
business domain models proposed in [3] and show how to separately size the
enterprise and information system service models.

Although COSMIC-FFP allows sizing separate layers of a software system, the
application of the COSMIC-FFP concept of software layer has, to the best of our
knowledge, not been demonstrated yet, neither are we aware of measurement rules or
guidelines for specific architectural paradigms.  The theoretical contribution of our
work is therefore a proof of concept of measuring multi-layer conceptual models by
separately mapping the meta-models of interacting conceptual model layers onto
(overlapping) subsets of the COSMIC-FFP model.

To substantiate the proposed mapping of concepts and to exemplify the proposed
measurement rules we use MERODE [5], a semi-formal conceptual modelling
method that prescribes a layered object model of system specifications and a CASE-
supported model-driven (i.e. transformation-based) approach to systems development.
Hence, the practical contribution of our research is a MERODE-specific set of rules to
apply COSMIC-FFP to multi-layer conceptual models.  Once such a set of rules has
been established, the sizing of MERODE conceptual models can be automated in
order to maximise the efficiency of the measurement process and to assure the quality
(e.g. reliability, consistency) of the measurement results.

After a brief review of related work in section 2, we list in section 3 the main
concepts of COSMIC-FFP, before proceeding to a discussion of layered conceptual
models in section 4.  In section 5 we map the modelling concepts of the enterprise and
information system service models onto the concepts of the abstract COSMIC-FFP
model and derive specific functional size measurement rules from this mapping.
Conclusions are presented in section 6.

2 Related Work

The mapping of object-oriented modelling concepts onto the abstract COSMIC-FFP
model of functional user requirements, resulting in the proposal of more specific
measurement rules than the general rules provided by the COSMIC-FFP measurement
manual [2], has received some research attention lately.

Bévo et al. [6] have mapped the concepts used in UML class diagrams and use case
diagrams onto the abstract COSMIC-FFP model, in order to measure the functional
size of software based on high-level specifications.  Similar work has been done by
Jenner for UML sequence diagrams [7].  Both proposals focus on finding an
appropriate mapping for UML modelling concepts, without reference to the modelling



method that is used.  An equivalence to the software layer concept in COSMIC-FFP is
only suggested by Jenner, in the form of ‘swimlanes’ in sequence diagrams.  The
author does, however, not present an example of a sequence diagram with
‘swimlanes’, and in a later publication on the automation of COSMIC-FFP
measurement of sequence diagrams [8], this idea is not elaborated any further.

Not unlike Jenner, the work of Diab et al. [9], [10] aims at developing a set of
automatable rules for applying COSMIC-FFP to object-oriented specifications.  It is
argued that such automation support will significantly reduce the measurement
variance and cost that is usually observed when applying ‘function points’-based
measurement methods.  The mapping and rules proposed by Diab et al. are specific to
the Real-time Object-Oriented Modelling (ROOM) method, as supported by the
Rational Rose RealTime (RRRT) toolset, thereby distinguishing this work from the
aforementioned work on the modelling language UML.  In their first proposal [9], the
authors use a type of statechart diagram, called ROOMcharts, as the primary basis for
functional size measurement.  In their follow-up work [10] a complete RRRT model
is required.  In this latter work, the concept of a COSMIC-FFP software layer is
interpreted as a set of capsules (i.e. active objects) in a RRRT model.  It is, however,
not mentioned how such sets should be delineated in a model.

The application of COSMIC-FFP functional size measurement to multi-layer
conceptual models, resulting from an architectural decomposition guided by well-
defined layering principles, is the most distinguishing feature of our work compared
to the works presented in this section.

3 The COSMIC-FFP Model

The main COSMIC-FFP concepts, relevant for this paper, are listed below.  Where
necessary, concepts will be further clarified in the rest of the paper.
– A scope of measurement is defined to delimit the software system to be sized and to

separate this system from its environment.
– Within this scope of measurement, the software system can be broken down into

pieces of software, either as separate software layers or as peer items within a
software layer.

– The collection of functional user requirements for a piece of software allows
identifying one or more users of that piece of software.

– These users are in the environment of the piece of software and interact with it
across a boundary.

– The collection of functional user requirements for a piece of software is
decomposed into one or more functional processes.

– On the piece of software side of the boundary there is persistent storage, i.e.
continuously accessible storage that enables functional processes to store/retrieve
data beyond their individual lives.

– Any functional process can be decomposed into two or more data movements.
– A data movement is a sub-process of a functional process that moves a data group

(one or more data attributes) about a single object of interest, and which may
include some associated data manipulation operations.



– There are four types of data movement:
– An entry moves a data group from a user across the boundary into the piece of

software.
– An exit moves a data group from the piece of software across the boundary to a

user.
– A write sends a data group from the piece of software to persistent storage.
– A read retrieves a data group from persistent storage for the piece of software.

– The COSMIC-FFP measurement standard , 1 COSMIC Functional Size Unit
(CFSU), is defined as being equal to a single data movement.

– The functional size of a piece of software is the sum of the functional sizes of its
constituent functional processes; the functional size of a functional process is the
sum of the functional sizes of its constituent data movements; the functional size of
a data movement is, by definition, 1 CFSU.

4 Multi-Layer Object-Oriented Conceptual Models

Although the conceptual model architecture described in this section is specific to
MERODE, its underlying layering principles are sufficiently general to be
observed/applied in other object-oriented modelling methods.

We first discuss the general model architecture as in [5] and next present a
system’s view on the enterprise model and the information system services model,
which are the layers for which COSMIC-FFP measurement rules are proposed in this
paper.

4.1 A Layered Architecture for Conceptual Models

A multi-layer conceptual model is obtained through the partitioning of the object
model that is a conceptual representation of the enterprise and its (required)
information system.  The basic principle guiding this partitioning is the expected
change rate of the things that are represented in the conceptual model.

One partition is formed by the business domain model (also called enterprise
model), which represents business entities, business events, their interactions, and the
rules governing these interactions (i.e. business rules).  This is the most stable part of
the conceptual model as it describes ‘real world’ phenomena that are also observed in
the absence of an information system.  The modelling diagrams, formalisms and
techniques used in the process of constructing this enterprise model include class
diagrams (using UML notation), an object-event table showing which (types of)
business events affect which (types of) business domain objects, and state transition
diagrams to model object behaviour.

Another conceptual model partition consists of the representation of the required
information system services.  The information system services model specifies the
end-user facilities to generate events from business transactions or activities and
transmit these to the enterprise model.  It also represents the facilities to satisfy the
end-user information needs.  This part of the conceptual model is less stable than the



enterprise model as the functions that an information system must fulfil depend
heavily on the particular work organisation in the enterprise and the specific end-user
information needs.

The conceptual model can be further extended with business process models and
workflow models.  Information system end-users involved in workflow activities
invoke business events and satisfy their information needs through the user interface
model.  A third partition therefore represents the required facilities to trigger, interrupt
and resume the execution of the information system services.  This user interface
model also captures presentation aspects, which are volatile as they depend on end-
user preferences (which are dynamic by nature).

In object-oriented approaches to conceptual modelling, like MERODE, the basic
modelling concept is the object (type or class).  The different partitions of the
conceptual model can be organised as a hierarchy of layers of objects such that the
enterprise objects are in the lowest layer, the information system service objects are in
the middle layer, and the user interface objects are in the highest layer.  Objects are
only allowed to invoke the functionality of objects in the same layer or in a lower
layer.  They are unaware of objects in higher layers.  That way, objects are prevented
to depend upon less stable objects (found in higher layers), ensuring a strict control on
the propagation of changes.

To model the interaction between service objects and enterprise objects MERODE
uses two object communication mechanisms:
– To transmit business events to the enterprise model use is made of the event

broadcasting mechanism meaning that, from a conceptual modelling point of view,
service objects 'broadcast' event messages without knowing where exactly these
messages will be received in the enterprise model.  At implementation time, an
event handling layer can be introduced to act as 'middleware' between the services
and enterprise layers in the information system.  The objects in this intermediate
layer are responsible for invoking the right class methods, checking method
preconditions, etc.

– The state vector inspection mechanism allows service objects to access an
enterprise object's attributes (whose values form, collectively, the enterprise
object's state vector).  The realisation of this inspection mechanism in the object
system (for instance via accessor or selector methods in the class definitions of
enterprise objects) is again an implementation issue, which should not be
determined during the conceptual modelling process.

4.2 A Taxonomy of Service Objects

Fig. 1 depicts the information system services and enterprise layers of the conceptual
model as a cybernetic dynamic system (as defined in Systems Theory).  The
enterprise objects form the processing component of the system.  These persistent
objects are responsible for processing business events and maintaining (i.e. creating,
updating, destroying) business data, using the services offered by a database
management system via a database mediator like an object broker (which is outside
the scope of the conceptual model).



The information system services model contains three types of non-persistent
service objects:
– Input objects collect data on business transactions and activities, and generate one

or more business events, which are transmitted to the enterprise model.  They are
allowed to inspect the state vector of enterprise objects.  Their functionality is
invoked by a timer or by end-users via user interface objects when performing
business (or workflow) tasks.  These elements are in the environment of the
system as they belong to conceptual model layers that are not considered here.

– Output objects extract information from business data that are obtained through
state vector inspections of enterprise objects.  The required information products
are sent to end-users via user interface objects, upon end-user request or,
automatically, upon occurrence of a business (or clock) event.

– Control objects are similar to input objects, except that their functionality is
invoked by managerial end-users in order to control the performance of the
system (or the business).

Fig. 1. System's view on enterprise model and IS services model [11]

In practice, services required from an information system often involve interactive
functions, which combine input and output facilities (e.g. input of modified customer
data, after having selected a customer by means of a pick-list).  To keep our taxonomy
simple, we assume that such functions are modelled by means of combinations of
input and output objects, and that the required dialogue and sequencing aspects are
modelled in higher layers of the conceptual model.

Enterprise
objects:

Processing
Business Events

&
Maintaining

Business Data

Input objects:
Input of
Business

Transaction/
Activity Data

&
Generating

Business Events

Output objects:
Extracting

Information
&

Output of
Information

Products

business
events
carrying
business
data

state
vector
inspections
carrying
business
data

Control objects:
Controlling
the System’s
Performance

business events
carrying business data

DBMS

Enterprise
Layer

Information System
Services Layer

Environment including Information System End-Users



Tables 1, 2 and 3 provide further details on input, output, and control objects by
listing their respective triggers and functions.1

Table 1. Properties of input objects

Triggers (1) Input service request message from UI object
(2) Input service request message from clock object

Functions (1) Broadcast business event message
(2) Send error/confirmation message to UI object2

Table 2. Properties of output objects

Triggers (1) Output service request message from UI object
(2) Output service request message from clock object
(3) Business event message from input/control object

Functions (1) Send required information product to UI object
(2) Broadcast IS event message3

(3) Send error/confirmation message to UI object

Table 3. Properties of control objects

Triggers (1) Control service request message from UI object
Functions (1) Broadcast business event message

(2) Send error/confirmation message to UI object

5 Measuring Conceptual Model Layers

We first review the COSMIC-FFP rules for the enterprise model as proposed in [3].
Since their proposal, these rules have been refined based on experiences gained by
applying them to a benchmark functional size measurement case-study [12].

Next, new COSMIC-FFP rules are presented for the information system services
layer in a conceptual model architecture.

                                                                
1 It should be noted that the taxonomy presented here does not cover the entire range of

information system services supported by MERODE (see [5] for a more detailed discussion).
We believe, however, that the main concepts that can be generalized to the class of model-
driven conceptual modeling methods, are included in our framework.

2 A return message might be sent to the requesting UI object in order to confirm the delivery of
the service or to report errors.

3 Information system events are events that are broadcasted to a subset of the persistent objects
in the enterprise model (called information objects) to guarantee the correct functioning of
the output facilities.  An example is the request to print a statement for a checking-account
[5].  Such a statement lists all deposit and withdrawal events since the last time this output
facility was invoked.  Hence, printing the statement is an information system event carrying
data (e.g. a timestamp) that must be stored by persistent objects (i.e. information objects).



5.1 COSMIC-FFP Rules for the Enterprise Model

Table 4 establishes an equivalence between the concepts of the COSMIC-FFP model
and the enterprise model, when used as a separate layer within an object-oriented
conceptual model architecture.

Table 4. COSMIC-FFP and business domain modelling

COSMIC-FFP MERODE
Scope of measurement Enterprise layer of the conceptual model architecture
Users Objects of the information system services layer
Persistent storage Storage devices accessible via database mediator and

DBMS
Functional process Set of class methods, over all enterprise objects, that are

invoked by the occurrence of a type of business event
Entry Class method invocation by a business event message
Exit -
Read Retrieval of enterprise object state vector
Write Storage of enterprise object state vector

Some further clarifications and CFSU counting rules (in italic) are presented
below:
– If the scope of measurement is the entire conceptual model, then the enterprise

model qualifies as a software layer.  According to the COSMIC-FFP measurement
manual [2], one software layer can be the user of another software layer.  Here we
consider the objects of the information system services model as users of the
functionality offered by the enterprise model.

– According to the measurement manual, a functional process is triggered by an
event (type) and is complete when it has executed all that is required to be done in
response to the triggering event (type).  Hence, for each business event type a
functional process is identified that includes all class methods that can be invoked
by occurrences of this type of event.

– The objects of interest about which data is moved in the functional processes are
business events and enterprise objects.

– Business event message arguments carry data about business events from input
objects to enterprise objects.  These message arguments correspond to the
parameters in the signature of the class methods that are invoked by the event.
Hence, an entry data movement is identified for each method in the enterprise
object classes that can be invoked by a business event.

– Although, conceptually, state vector inspections move data from the piece of
software under consideration (i.e. the enterprise model) to the users (i.e. service
objects), their corresponding messages are only specified in the information
system services model and their implementation (e.g. through accessor or selector
methods) is not a conceptual modelling issue.  Therefore, no exit data movements
are identified.

– The retrieval of an enterprise object’s state vector from persistent storage qualifies
as a read data movement.  Such a read data movement occurs whenever the
method body or preconditions need to know the value of at least one enterprise



object attribute.  The number of read data movements for a class method is equal
to the number of different enterprise object state vectors that must be accessed.

– An enterprise object's state vector must be stored whenever the value of at least
one of its attributes is updated in a method body.  Hence, if there is at least one
update operation in the method body, a write data movement is identified.4

5.2 COSMIC-FFP Rules for the Information System Services Model

Table 5 is similar to table 4, but now shows the mapping of COSMIC-FFP concepts
into the MERODE information system services model.

Table 5. COSMIC-FFP and information systems modelling

COSMIC-FFP MERODE
Scope of measurement Information system services layer of the conceptual

model architecture
Users Objects of the user interface layer
Persistent storage Persistent objects in the enterprise layer
Functional process A non-persistent service object invoked by an input,

output or control service request message or (for output
objects only) a business event occurrence

Entry Input/Control objects:
Service method invocation by a service request message
Output objects :
Service method invocation by a service request message
or a business event message

Exit Input/Control objects:
Confirmation/Error message
Output objects :

- Confirmation/Error message
- Information product (return) message

Read State vector inspection of persistent object in enterprise
layer

Write Input/Control objects:
Broadcasting of a business event message
Output objects :
Broadcasting of an information system event message

Further clarifications of the mapping and CFSU counting rules (in italic) are
presented below:
– Again, if the scope of measurement is the entire conceptual model, then the

information system services model qualifies as a software layer.  The user

                                                                
4 Whereas the methods in an enterprise object class definition are allowed to access the

attributes of enterprise objects of different types (following the links in the class diagram),
they may only modify the attribute values of their own enterprise objects (i.e. of the type
described in the class definition).



interface objects can be considered as users of the service objects, which are in
turn users of the enterprise objects.  The use of the COSMIC-FFP layer concept
allows identifying entry/exit data movements across the boundary between the
user (i.e. the user interface objects) and the piece of software considered (i.e. the
information system services model).

– The collection of input/control objects and the collection of output objects can be
considered as peer items within the information system services layer.  This point
of view allows identifying the transmission of business event messages from
input/control objects to output objects as data movements.

– As service objects are not persistent, they cannot store business or information
system data beyond their lives.  Therefore, conceptually, they use the storage
facilities offered by the persistent objects in the enterprise layer.  This perspective
allows identifying read/write data movements from/to the enterprise model.

– Due to their non-persistent nature, service objects offer their input/output/control
functionality by means of, usually, a single method that is invoked by a service
request message or (for some output objects) a business event message.5  For
simplicity’s sake we do not further distinguish between service object and
method.  They are the functional processes within the information system services
model.

– The objects of interest about which data is moved in the functional processes
include business transactions, business events, enterprise objects, information
requests, information products, and information system events.

– The following data movements occur within the functional processes of the
input/control objects:

– Input/control service request messages carry data on business transactions or
(managerial) end-user information system tasks.  Hence, an entry data
movement is identified for each input or control object.

– Confirmation/error messages may be sent in response to service requests.  We
follow the COSMIC-FFP convention by counting one exit data movement for
each input or control object that can send confirmation/error messages
(regardless of the number of different messages that can possible be sent) [2].

– Within each input or control object, every state vector inspection of a
persistent object in the enterprise layer counts as a read data movement.

– Each business event message that is generated by an input or control object
counts as a write data movement.  Note that because of the event broadcasting
mechanism, each message is counted only once, regardless of the number of
objects that receive the message.

– The data movements that occur within the functional processes of the output
functions are the following:

– There is an entry data movement for each output object, either as a
consequence of an output service request message or a business event message.
In either case data is moved from another piece of software (layer or peer item)
into the output functional process.

– Again, we count one exit data movement for each output object that can send
confirmation/error messages.  Moreover, there is one exit data movement for

                                                                
5 At implementation time, classes can be defined with facilities to create and destroy service

objects.  The main facility in such a class definition would be the service method that realizes
the input/output/control functionality offered by the service object.



each output object, representing the transmission of the required information to
the user interface.

– Within each output object, every state vector inspection of a persistent object in
the enterprise layer counts as a read data movement.

– Each information system event message that is generated by an output object
counts as a write data movement.

A Brief Note on Additivity of Functional Size Values.  The COSMIC-FFP
measurement manual [2] advises not to sum the functional size values of different
software layers.  This is a pragmatic guideline following the observation that different
layers might be implemented using different technologies, and consequently size-
based effort estimation is best performed at the level of the software layer.  It should
be noted further that there is no danger of ‘double counting’ functionality as long as
each layer has been properly sized.  That is exactly the reason why there are no exit
data movements in the enterprise layer.  In the conceptual model of the business
domain no specific functionality to handle state vector inspections (e.g. by means of
accessor methods) should be defined.

6 Conclusions

In this paper we showed the application of COSMIC-FFP to layered conceptual
models.  More in particular, we proposed a mapping of concepts and a set of counting
rules to apply COSMIC-FFP functional size measurement to the enterprise and
information system services layers in a multi-layer object-oriented conceptual model.

We realise that the research results obtained so far are preliminary and only based
on argumentation.  Therefore a series of validation studies based on an evaluation
model for functional size methods [13], [14] and including demonstration proofs,
formal proofs [15], rule verification by function points experts, and controlled
experimentation has been planned.  The evaluation of our proposal following this
approach is ongoing research as well as a topic for continued work.

Our future work further involves extending the rule set to other layers in the
conceptual modelling architecture.

References

[1] OMG: Model Driven Architecture. OMG 01-07-01, Object Management Group (2001)
[2] Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre, D., Symons, C.: COSMIC-FFP

Measurement Manual, Version 2.1. The Common Software Measurement International
Consortium (2001)

[3] Poels, G.: A Functional Size Measurement Method for Event-Based Object-Oriented
Enterprise Models. In: Piattini, M., Filipe, J., Braz, J. (eds): Enterprise Information
Systems. Vol. IV. Kluwer Academic Publishers, Dordrecht (2002) 210-218



[4] Pastor, O., Gomez, J., Insfran, E., Pelechano, V.: The OO-Method approach for
information systems modelling: from object-oriented conceptual modelling to automated
programming. Information Systems 26 (2001) 507-534

[5] Snoeck, M., Dedene, G., Verhelst, M., Depuydt, A.-M.: Object-Oriented Enterprise
Modelling with MERODE. Leuven University Press, Leuven (1999)

[6] Bévo, V., Lévesque, G., Abran, A.: Application de la méthode FFP à partir d'une
spécification selon la notation UML: compte rendu des premiers essais d'application et
questions. In: Proc. 9th Int. Workshop Software Measurement. Lac Supérieur, Canada
(1999) 230-242

[7] Jenner, M.S.: COSMIC-FFP 2.0 and UML: Estimation of the Size of a System Specified
in UML - Problems of Granularity. In: Proc. 4th Eur. Conf. Software Measurement and
ICT Control. Heidelberg (2001) 173-184

[8] Jenner, M.S.: Automation of Counting of Functional Size Using COSMIC-FFP in UML.
In: Proc. 12th Int. Workshop Software Measurement. Magdeburg (2002) 43-51

[9] Diab, H., Frappier, M., St-Denis, R.: A Formal Definition of COSMIC-FFP for Automated
Measurement of ROOM Specifications. In: Proc. 4th Eur. Conf. Software Measurement
and ICT Control. Heidelberg (2001) 185-196

[10] Diab, H., Koukane, F., Frappier, M., St-Denis, R.: McRose: Functional Size Measurement
of Rational Rose RealTime. In: Proc. 6th Int. ECOOP Workshop Quantitative Approaches
in OO Software Eng. Malaga (2002) 15-24

[11] Poels, G.: Functional Size Measurement of Layered Conceptual Models. In: Proc. 5th Int.
Conf. Enterprise Information Systems. Angers (2003) 411-416

[12] Fetcke, T.: The Warehouse Software Portfolio: A Case Study in Functional Size
Measurement. Report No. 1999-20. Software Engineering Management Research
Laboratory, Université du Québec à Montréal (1999)

[13] Moody, D., Abrahao, S., Pastor, O.: Comparative Evaluation of Software Estimation
Methods: An Experimental Analysis. In: Proc. 1st Int. Workshop Software Quality and
Estimation. Denia, Spain (2002) 49-58

[14] Abrahao, S., Condori, N., Pastor, O.: An Experimental Design for Evaluating Functional
Size Methods. In: Proc. 2nd Int. Workshop Software Quality and Estimation. Denia, Spain
(2003)

[15] Poels, G.: Definition and Validation of a COSMIC-FFP Functional Size Measure for
Object-Oriented Systems. In: Proc. 7th Int. ECOOP Workshop Quantitative Approaches
OO Software Eng. Darmstadt (2003)


