
 
 
 

Thoughts on Teaching Software Quality 
Engineering 

 
Witold Suryn 

Department of Electrical Engineering  
École de Technologie Supérieure Montréal, Canada 

wsuryn@ele.etsmtl.ca 
 

ABSTRACT  
The article presents an overview of the subject of Software Quality 
Engineering (SQE) education. Four different perspectives are taken into 
account: why to teach SQE, how the subject is being taught today, what 
support teachers have to teach SQE and how could the Software Quality 
engineer be educated. The latest trends in methods and tools pertinent to the 
domain are also presented. 

 

1. Introduction 
Quality becomes a critical attribute of a software product since its absence 
results in dissatisfied users, loss of money, and – in the most critical 
situation – in lost lives. Increasing recognition of the importance of software 
quality makes the software engineering “center of gravity” shift from 
creating a technology solution toward a quality solution. Development 
organizations confronted with such an approach are, in general, not 
prepared to deal with it since their engineers too often are not adequately 
educated. And if such knowledge exists, it is still more of an empirical 
nature than resulting from a formal educational process.  This reality makes 
the role played by Software Quality Engineering (SQE) education to change 
– or sometimes “about to change” - from “Cinderella” to a full member of 
Software Engineering Education family.  This paper presents a quick look at 
today’s situation in Software Quality Engineering education from four 
different points of view: why should SQE be taught, how is SQE being 
taught, what has an SQE teacher for his disposition and what and how could 
the future SQE engineer be educated. This paper has no ambition to cover 
the subject to its fullest extent, seeking rather a wide reaction from the 
community of academic teachers and researchers.  
  



2. Why should Software Quality Engineering be 
taught 

 
Applying a simplistic mathematic formula the answer could be presented in 
the following manner: 
 
 

RISK= F (1/quality) 
or,  
 

The increased quality mitigates the risk 
 
The ways in which the risk resulting from missing quality can manifest 
itself are numerous, however for a user the mostly recognized or 
experienced categories could be: 

• Discomfort (ex: famous blue screens) 
• Social or professional losses (information/data, time, money, 

job etc.) 
• Loss of health or life (ex: over-X-rayed patients in one of 

Bristol hospitals)   
  
It is rather obvious that our (i.e. users’) dream about a bug-free, highest 
level quality solution for a small price will remain a dream for next n years, 
but how big this n will be, depends on the level of SQE education and 
knowledge that will find its way to software development companies. Most 
probably there is a chance to buy one day a software Rolls Royce but let’s 
not forget that for car manufacturers it took a hundred years to obtain a 
sustainable high quality. Do we have to wait that long? 
Missing quality takes its toll also from a developer/supplier even if his 
position is still so privileged that better word would be “untouchable”. Until 
recently the biggest risk resulting from low or missing quality of software 
that a supplier could face was loosing a customer, money or market. An 
individual user was entirely helpless against a supplier whose low quality 
software created problems. But this situation evolves in the direction where 
a user or a group of users can seek compensation of their losses through 
legal actions [1]. Such an option adds two other risks to the list of supplier’s 
risks: 

• A court trial with a full range of consequences, and, when worse 
comes to the worst, 

• An imprisonment. 



It is then understandable why SQE receives a continuously increasing 
attention from software development companies. One of very positive 
consequences of the recent software-related legal evolution is an observable 
intensification of industry-funded joint research projects aimed to develop 
science and best practices in SQE [2, 3].  
To conclude one could propose the following statement: Software Quality 
Engineering should be taught because the time when both customers and 
suppliers will be fighting for best quality is knocking to our door.  
  

3. How is Software Quality Engineering being 
taught 

How in reality SQE is being taught today only a teacher can answer so as 
many theories and practices as many teachers. Such a “liberty” is usually 
symptomatic to domains of knowledge that would obtain maximally CMM 
level “one-and-a-half” on the maturity scale. And that is true; SQE is 
immature, but not entirely. There are some considerable efforts aiming to 
create a structured approach to the SQE body of knowledge and teaching 
practices. First serious, professional efforts can be dated to early ‘90s [4] 
however in this paper only two most recent projects will be discussed.  
Project 1: “Guidelines for Software Engineering Education” Version 1.0. 
Software Engineering Institute (USA), 1999. [5] 
The document proposes the following structure of the body of knowledge of 
Software Engineering education: 

 Core Area:  
 Software Requirements 
 Software Design 
 Software Construction 
 Software Project Management 
 Software Evolution 

 Foundations Area 
 Computing Fundamentals 
 Human Factors 
 Application Domains 

 Recurring Area (Components in the Recurring Area are threads 
that occur through all of the Core Area components): 

 Ethics and Professionalism 
 Software Processes 
 Software Quality 
 Software Modeling 



 Software Metrics  
 Tools and Environments 
 Documentation 

 Supporting Area that includes, but is not limited to general 
education, mathematics, […] and engineering 
 

The proposed structure is well organized and offers a good support for those 
responsible for devising education curricula, however from SQE 
perspective of year 2003 this solution is hardly acceptable. Putting Software 
Quality in Recurring Area (refer to the explanation above) allows “gluing” 
this component freely wherever one could please. Moreover, it is practically 
infeasible to “glue” such a large component in one piece to another 
component, so in order to allow “gluing” the component has to be 
partitioned. How and following what logic?  
 
Project 2: Software Engineering Education Knowledge (SEEK), IEEE 
Computer Society, ACM. 
After SEEK, First Draft [6]: 
“The education knowledge area group is responsible for defining and 
documenting a software engineering education body of knowledge 
appropriate for guiding the development of undergraduate software 
engineering curricula. This body of knowledge is called Software 
Engineering Education Knowledge or SEEK. The pedagogy focus group is 
responsible for using SEEK to formulate guidance for pedagogy as well as 
course and curriculum design to support undergraduate software 
engineering degree programs. The initial selection of the SEEK areas was 
based on the Software Engineering Body of Knowledge (SWEBOK) 
knowledge areas” 
 
This innovative project with ambitions to become an international reference 
source for Software Engineering education programs as the first recognizes 
Software Quality as an individual knowledge area (KA) that requires 
individual teaching thread. 
 
Phase: SEEK, First Draft, August 2002 [6]. 
Proposing Software Quality as the separate KA makes SEEK the most 
modern path leading to SQE maturity, but in spite of that the project is not 
free from critic. Quoting from [8]: 

 17 hours of core contact (hours of teaching) dedicated to all the 
content of Software Quality component in comparison with 250  
hours for Software Engineering Fundamentals seems to be 
seriously underscored 



 The presence of Software Quality Standards indicates that 
standards have finally become part of modern software engineering 
education; however the documents proposed as seminal do not 
always represent the state-of-the-art. 

 There are subjects that did not yet find their place in SEEK’s 
Software Quality KA, as f.e. Software Quality Management and 
Evaluation or Software Quality Implementation.  

For more details on critic of SEEK, First Daft refer to [8]. 
 
Phase: SEEK Second Draft, December 2002 [7] 
The critical opinions about First Draft expressed by researchers and teachers 
participating in the international conference on Software Technology and 
Engineering Practices (STEP) in Montreal, Canada in 2002 have been taken 
into account during redaction of Second Draft of SEEK project. The 
outcome however still leaves something to desire as the improvements seem 
to be rather cosmetic (ex: the number of teaching hours was increased from 
17 to 21). For more details refer to [7]. 
In summary – SQE education is still being led by “heroes” (CMM level 
one) but what makes it reach the level “one-and-a-half” is SEEK. The only 
thing that has to be done now is to make SEEK also mature.  
 

4. What can a teacher use to teach Software 
Quality Engineering 

In year 2003 even scientific “heroes” do not stay without at least some 
support. In case of SQE this support is present on all crucial levels: theory, 
practice, tools and experience, but unfortunately is not very reach. 
 
On the level of theory two major projects offer some support to an SQE 
teacher: SEEK and SWEBOK.  
SEEK, as it was presented in the previous chapter, is an ambitious project 
with rather good provisions for success but still relatively far from 
completeness and stability. 
 
SWEBOK (Software Engineering Body of Knowledge) [9] however is the 
project with over 5-year history, realized with participation of over 500 
specialists worldwide aiming to create internationally recognized guide to 
Software Engineering Body of Knowledge.  The results of this project were 
found so satisfactory that several educational institutions took SWEBOK as 
the basis for modernizing undergraduate Software Engineering programs 
[10, 11]. 



For SQE education SWEBOK offers: 
 Recognition of Software Quality as a separate Knowledge Area 
 Recommended Software Quality KA contents (several KAs are 

being under thorough revision what already resulted in proposed 
enhancements and improvements [12, 13]). 

 Recommended breakdown of topics (Figure 1) 
 Seminal references, including standards 
 Further reading 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Software Quality

Software Quality
Concepts

Purpose and
Planning of SQA

and V&V

Activities and
Techniques for
SQA and V&V

Measurement
Applied to SQA

and V&V

Measuring the
Value of Quality

ISO 9126 Quality
Description

Dependability

Special Types of
Systems and Quality

Needs

Common Planning
Activities

The SQA Plan

The V&V Plan

Static Techniques

Dynamic Techiques

Other SQA and
V&V Testing

Fundamentals of
Measurement

Measures

Measurement
Analysis

Techniques

Additional Uses
of SQA and
V&V data

Defect
Characterization

Figure 1. SWEBOK’s Software Quality Knowledge Area breakdown of 
topics 
 
On the level of practice an SQE teacher is supported by several elements 
that represent so sought maturity and stability. Among these important 
elements are: 

 Quality models: McCall, Boehm, Dromey [14], ISO/IEC 9126 [15] 
 Software Product Quality Measurement and Evaluation standards 

o ISO/IEC 9126 [16, 17,18] 
o ISO/IEC 25000 SQuaRE (next generation of ISO 9126) 

[19] 



 Software Product Quality support processes standards 
o ISO/IEC 14598 [20] 
o ISO/IEC 25000 SQuaRE (next generation of ISO/IEC 

14598) [19] 
 Software Measurement standards 

o ISO/IEC 15939 [21] 
o ISO 19761 COSMIC-FFP [22] 

 Software Life Cycle Processes standards 
o ISO 12207 : 1995 (plus amendments 2002) [23] 
o ISO 15288 : 2002 [24] 

 
On the level of tools and methods the possible support is reduced to a 
few proprietary products remaining either in stage of a prototype or 
being under reconstruction.  Despite of their actual status these tools 
demonstrate a vivid interest of academia and industry centers in 
developing non-manual means of evaluating the quality of software. 
 
These tools are briefly presented below: 
 

 Software Quality Assessment Exercise (SQAE) – Robert A. 
Martin and Lawrence H. Shafer from MITRE Corp USA. April 
1996 [25] 

 Based on quality model built on the combination of 
Boehm, McCall and Dromey 

 Evaluates only static quality attributes (4 areas, 7 factors, 
>100 questions) 

 Toolkit that is being considered as requiring some 
modifications [2] 

 Remaining the subject of the research of graduate students 
at ÉTS, verifying the possibility to migrate SQAE to 
ISO/IEC 9126 [3]  

 Multi-layered Customizable Software Quality Model – Elli 
Georgiadou from Middlesex University, UK, 2003 [26] 

 Based on ISO/IEC 9126 
 Innovative techniques as Composite Features Diagram 

and Kiviat Diagram 
 Profiler tool in development, not available publicly 

 



 QEST Evaluation Toolkit – Alain Abran from École de 
Technologie Supérieure, Montréal, Canada and Martin Kunz, Otto-
von-Guericke University Magdeburg, Germany. 2003 [27] 

 Based entirely on ISO/IEC 9126 with very good graphical 
interpretation 

 Non-profit, not for sale 
 For researchers primarily 
 Accessible anytime-anywhere (Web-Internet) 
 Core part only 

   
The theme of the experience support to an SQE teacher leaves a bit of a 
bitter arrière-goût (in French – after taste) on the lips.  The community of 
SQE researchers and teachers makes a huge intellectual power with great 
experience gathered over the years, but: 

 usually unpublished or published only fractionally 
 kept as notes or course materials 
 too often not shared or exchanged in a larger scale 
 unevenly distributed (droplet-type knowledge) 
 not synchronized 

 
In effect of the above walkthrough of the teaching support to SQE a few 
conclusions to this chapter could be proposed:  

 Teaching SQE is still the role for a “hero”, however not without 
some support.  

 Software Quality Engineering may require its own Body of 
Knowledge named for example SQEBOK (the author reserves for 
himself the title of the ownership of this name)  to advance the 
maturation process,  

 As there is no SQEBOK, can we, SQE researchers and teachers 
become a kernel of this project? 

 

5. What and how the Software Quality Engineer 
could be educated 

The response to this question is hidden in the word “engineering”.  A 
Software Quality engineer, as any other engineer is supposed to leave in 
certain moment his alma mater and go to the industry to help it improve and 
evolve. In the light of such a hypothesis an SQ engineer’s education should 
allow him to implement, measure, evaluate and improve the quality of 
software throughout its entire lifecycle. Such a vast knowledge requires a 



structured approach that allows for systematical building the acquired 
experience that remains, if possible, in accord with industrial practices. A 
possible structure could consist of, but not be limited to three major (core) 
components (this proposition focuses only on core areas of knowledge, for 
example: in Quality Requirements component the techniques of 
requirements elicitation are taken as prerequisites): 

 Quality requirements 
 Quality measurement and evaluation instruments 
 In-lifecycle quality implementation   

 
Knowledge acquired in Quality requirements component should primarily 
allow an SQ engineer to extract quality requirements from high-level 
stakeholder’s requirements and then to decompose them into lower level 
categories of quality requirements down to corresponding quality measures 
(Figure 2) [28]. 
 
 

Stakeholders’ 
Requirements 

 
Figure 2. Quality requirements decomposition model (Suryn et al [19]) 
 
The proposed decomposition model is based on quality model from 
ISO/IEC 9126 in conjunction with TL 9000 standard [15, 29, 30] where 

Impact? 

Functional & non-
Functional 

Requirements 

Quality Requirements 

Internal Quality 

Operational 
Quality Quality in Use 

External Quality



“the requirements of Quality in Use contribute to specifying External 
Quality requirements, which in turn contribute to specifying Internal 
Quality requirements” [28].  The model is well documented so relatively 
easy to learn and use, but static.  For a proficient SQ engineer it is important 
to know not only what but also how. This approach is addressed by the 
model for practical process of defining and controlling quality requirements 
from Fig.3.   

Stakeholders’ 
Requirements 

 
Figure 3. Practical process of defining and controlling quality requirements 
(Suryn et al. [19]) 
 
In this model solid arrows indicate the path of questions “how” that have to 
be asked when executing requirements decomposition, boxes ask questions 
“(into) what” to help define requirements that result from decomposition 
process and dashed arrows indicate the path of the subject of traceability of 
requirements.  

External Quality 
Requirements 

Internal Quality 
Requirements 

Quality 
in Use 

Requirements 

 

Quality 
Requirements 

Operational 
Quality 

Requirements 

Legend: 

Solid arrows ask the question HOW 

Boxes ask the question WHAT (choices) 

Dashed arrows ask about TRACING 



The theoretical and practical knowledge of responses to the above questions 
should allow the SQ engineer to professionally manage the process of 
quality requirements analysis and definition.  
The Quality measurement and evaluation instruments component has as the 
objective to educate the SQ engineer in existing quality models and  
measures that allow measuring chosen quality attributes of software, and in 
processes that support this activity. Again, these two elements are well 
documented and can be easily taught, but also are static. The engineering 
part of the knowledge, which is mapping of these instruments into software 
lifecycle phases (Fig.4), is much less documented and requires further 
research. Such a situation may however turn more promising from 
educational process point of view, as usually the knowledge acquired 
actively stays longer than this acquired through lectures. 

Stakeholder 
Requirements 

Definition 

 
 
Figure 4. Mapping software quality measurement and evaluation to phases 

of software lifecycle (Suryn et al. [19]) 
 

Requirements 
Analysis 

Architectural 
Design 

Implementation 

Integration 

Verification 

Transition 

Validation 

 

Operation &  
Maintenance 

 

 
Mapping 

 

 

Quality 
Instruments 

Evaluation 
Process 

 



he last component, In-lifecycle quality implementation results from two T
previous components where the basic knowledge has been acquired. The 
implementation now requires the practical application of this knowledge in 
course of developing the software (Fig.5). 
 

process software product effect of software 
product

 
Figure 5. Quality implementation challenge model (Suryn et al. [19]) 

process 
quality

external 
measures

external 
quality 

attributes

process 
measures

quality in 
use  

attributes contexts 
of use

quality in use 
measures

internal 
measures

internal 
quality 

attributes

influences influences

depends on

influences

depends ondepends on

Product Development  
and Maintenance 

SW Product Quality 
Requirements 

Product 
in  

Use 



The education process in this component should allow the SQ engineer to 

equires more data coming from industry 

. Conclusion 
ineering enters now its very active phase of the 

eferences 
M., “Consumer groups target software”. Reuters, June 14, 

re 

, 

er 

st Draft.  

Draft.  IEEE Computer Society and ACM. December 6, 2002 

accept the responsibility in the industrial environment not only to identify 
the correspondence between software lifecycle and quality lifecycle or to 
define and control quality requirements but first of all to know how to 
implement, measure, evaluate and improve the quality in all phases of 
software lifecycle. This role requires and interactive co-operation with 
development teams and engineers. 
But this part is still emerging and r
and more research affected by the academia. 
 

6
Software Quality Eng
research, creating best practices and industry application. The academic 
teachers posses enormous knowledge, experience and will to discover new 
areas and pass it all to students who will convey the new science and best 
practices to the industry.  There are new projects in the domain of Software 
Engineering body of knowledge and education together with works of 
International Organization for Standards (ISO) that offer a considerable 
support to teachers.  All that indicates a very promising future for Software 
Quality Engineering, but to achieve the maturity of this domain both the 
academia and industry have to invest more in research in many incoming 
years. 
 
R
1.  Abreu E., 
2002 
2.  Halde M., Martin R., Beauchemin P., “Évaluation de la qualité d'un 
logiciel à l'aide de la méthode SQAE de MITRE”. École de technologie 
supérieure, 2003 
3.  Côté M-A., Ktata O., Azzouz R., “Migration et Adaptation du Softwa
Quality Assessment Exercise de Mitre Corp”. École de technologie 
supérieure, 2003 
4.  Shaw M. “We Can Teach Software Better”. Computing Research News
4, 4 September 1992 (pp. 2, 3, 4, 12) 
5.  Bagert D., J., et al. “Guidelines for Software Engineering Education” 
Version 1.0. Technical report cmu/sei-99-tr-032 esc-tr-99-002. SEI Octob
1999 
6.  Sobel A., E., K., “Computing Curricula - Software Engineering 
Volume”. Software Engineering Education Knowledge (SEEK), Fir
IEEE Computer Society and ACM. August 28, 2002 
7.  Sobel A., E., K., “Computing Curricula - Software Engineering 
Volume”. Software Engineering Education Knowledge (SEEK), Second 



8.  Vliet H. van, Suryn W. et al. “Thoughts on Software Engineering
Knowledge, and how to organize it”. IEEE Computer Society, 2003. 
Prepared for May 2003. 

 

 to the 

lamos, 2001 

any, 

ber 2002 
“ 

ge 
OK Guide (Trial Version 1.0)”. IEEE Computer Society, 

nd 

O/IEC 9126 – Software Engineering – Product Quality - Part 1: 

 Engineering – Product Quality - Part 2: 

oftware Engineering – Product Quality - Part 3: 

eering – Product Quality - Part 4: 

QuaRE. The second generation of 
d 

re Beijing, China, September 

 15939 - Software Engineering - Software Measurement 

ineering – COSMIC FFP: A functional 

 - Information technology - Software Engineering - Software 

 Information Technology - Life Cycle Management - 

S., A., Shafer L., H., “Providing a Framework 

ion, April 1996 

9.  Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L. “Guide
Software Engineering Body of Knowledge – Trial Version”. IEEE 
Computer Society, Los A
10.  Frailey D. et al. “Using SWEBOK for Education Programs in Industry 
and Academia”. Southern Methodist University and Raytheon Comp
2002 
11.  Suryn W. et al. “Amélioration de la structure du programme 
baccalauréat  en Genie Logiciel”. ”. École de technologie supérieure, 
Septem
12.  Suryn W.,, Robert F., Abran A., Bourque P., Champagne R., 
Experimental Support Analysis of the Software Construction Knowled
Area in the SWEB
2003. Prepared for May 2003. 
13.  Palza E. “Analyse du contenu du chapitre « Requirements » dans 
SWEBOK Version 0,95”. École de technologie supérieure, Decemeber 
2001. 
14.  Vliet H. van., Software Engineering, Principles and Practice , Seco
Edition. Wiley & Son,s 2001. 
15.  IS
Quality Model. 2001 
16.  ISO/IEC 9126 – Software
External Metrics. Planned for 2003. 
17.  ISO/IEC 9126 – S
Internal Metrics. Planned for 2003. 
18.  ISO/IEC 9126 – Software Engin
Quality in Use Metrics. Planned for 2003. 
19.  Suryn W., Abran A., “ISO/IEC S
standards for software product quality”. Submitted to QSIC 2003 – Thir
International Conference on Quality Softwa
25-26, 2003 
20.  ISO/IEC 14598 Information Technology - Software Product 
Evaluation, Parts 1-6. 1999-2001 
21.  ISO/IEC
Process. 2002 
22.  ISO/IEC 19761 Software Eng
sizing method, 2003 
23.  ISO 12207
Life-Cycle Processes, 1995 
24.  ISO/IEC 15288 -
System Life Cycle Processes. 2002 
25.  Martin R., A., Morrison 
for Effective Software Quality Assessment: First Step in Automating 
Assessments”. The MITRE Corporat



26.  Georgiadou E. et al. “Towards a Multi-layered Customizable Software 
Quality Model”. Proceedings of SQM2003 
27.  Kunz M. “The prototypical web-based implementation of the QEST 

ity Practices Quality 

, 

ements Handbook, 

model”. Otto-von-Guericke University Magdeburg, Germany. 2003 
28.  Suryn W. et al. “Software Product Qual
Measurement and Evaluation using TL9000 and ISO/IEC 9126”. IEEE 
Computer Society, 2003. Prepared for May 2003. 
29.  TL9000 Quality Management System Requirements Handbook
Release 3.0, QuEST Forum 2001 
30.  TL9000 Quality Management System Measur
Release 3.0, QuEST Forum 2001 
 


