
Pattern-Oriented Design Composition and Mapping for
Cross-Platform Web Applications

M. Taleb1, H. Javahery2, A. Seffah3
1Human-Centered Software Engineering Group, Concordia University

Montreal, Quebec, Canada
Telephone: +1 514 848 2424 ext. 7165

mtaleb@encs.concordia.ca
2Human-Centered Software Engineering Group, Concordia University

Montreal, Quebec, Canada
Telephone: +1 514 848 2424 ext. 7165

h_javahe@encs.concordia.ca
3Human-Centered Software Engineering Group, Concordia University

Montreal, Quebec, Canada
Telephone: +1 514 848 2424 ext. 3024

seffah@encs.concordia.ca

ABSTRACT

In the context of cross-platform Web applications, Pattern-Oriented Design (POD) proposes that
developers use proven solutions emerging from best design practices in order to solve common
design problems. In addition, it requires composing patterns to create a platform-independent design
and then mapping these pattern-oriented designs to specific platforms. This prevents the designer
from reinventing the wheel and can have positive implications on system performance, scalability
and usability. In this paper, we introduce different types of Web design patterns, as well as different
composition and mapping rules to design a multi-platform Web application. We discuss why
patterns are a suitable means for creating and mapping a Web design to new platforms while
maintaining usability.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User Interfaces. D.2.11 [Software Architecture]
Patterns

General Terms
Design, Usability, Human Factors, Standardization, Languages, Web Engineering

Keywords
Design Patterns, Usability, Pattern-Oriented Design, Web Applications, Mapping, Pattern
Composition

Number of pages: 14

Copyright is held by the authors/owners.
DSVIS2006, July 26-28, 2006, Trinity College Dublin, Ireland.
The XIII International Workshop

1. Introduction
In recent years, the Web has matured from offering simple static-page functionality to
providing intricate processes such as end-to-end financial transactions. Users have been
given more sophisticated techniques to interact with available services and information
using different types of computers. Different kinds of computers and devices (including,
but not limited to, traditional office desktops, laptops, palmtops, PDAs with and without
keyboards, mobile telephones, interactive televisions) are used for interacting with such
applications. One of the major characteristics of such cross-platform Web applications is
that they allow a user to interact with the server-side services and contents in various
ways. Web applications for small and mobile devices are resource constrained and
cannot support the full range of Web application features and interactivity because of the
lack of screen space or low bandwidth.

The mosaic of Web applications and platforms has led to the emergence of Web
engineering as a sub-discipline of software engineering with some specific challenges.
One important question is how to develop and deploy the same application for different
platforms – without “architecturing” and specifically writing code for each platform, or
learning different languages, not to mention the many Web design guidelines that are
available for each platform.

Even if other definitions are possible; we will use the following terminology. A pattern is
a proven design solution to a common problem which occurs in different contexts of use.
An instance of a pattern is defined in the POD approach as a specific implementation of
pattern in a certain context. An example is the two implementations of the “Convenient
Toolbar pattern” for a PDA and Desktop. Within this paper, we are considering only
Web Sites even if the approach may apply to other forms of sites. Example of another
platform, at least when we define the relationships. Consider some patterns from the GUI,
Web and mobile patterns catalog and Welie patterns [4]. We are adapting and refining
Web patterns and our pattern-oriented design approach to address some of the challenges
of designing cross-platform Web applications. Some of the reasons are listed here.

First, POD can help with decoupling the different aspects of Web application
architectures and isolate platform specifics from remaining concerns that are common to
all platforms. As with other multi-tiered schemes such as client-server architectures, POD
proposes a common information repository, which is at the core of multi-layer
architectures. Services should be accessed strictly through an adaptable presentation
layer, which provides decoupling of the data from the device-specific interfaces. In this
way, developers need only worry about the standardized middleware interface rather than
having to concern themselves with the multitude of toolkits put forth by database
repository manufacturers. Segmenting the architecture and reducing coupling to stringent
specifications allows designers to quickly understand how changes made to a particular
component affect the remaining system.

Second, the diversity of platforms exhibits drastically different capabilities that designers
need to take into account. For example, PDAs use a pen-based input mechanism and have
average screen sizes in the range of 3 inches. On the other hand, the typical PC uses a full
size keyboard, a mouse and has an average screen size of 17 inches. Coping with such

drastic variations implies much more than mere layout changes at the presentation level.
Pen-based input mechanisms are slower than traditional keyboards and thus are
inappropriate for applications such as word processing that require intensive user input.
Similarly, the small screens available on many PDAs only provide coarse graphic
capabilities and would be ill-suited for photo editing applications. We will show how the
mapping rules can be applied to adapt a design to the capabilities of a platform while
providing replacement and alternative navigation and interaction patterns.

Third, many system manufacturers and researchers have issued design guidelines to Web
application designers [1]. Recently, Palm Inc. has put forth design guidelines to address
navigation issues, widget selection, and the use of specialized input mechanisms such as
handwriting recognition. Microsoft, IBM and Sun Microsystems have also published their
own guidelines to assist developers with programming applications targeted at the Pocket
PC/Windows CE platform. However, these guidelines are different from one platform or
device to another. When designing a multi-device Web application, this can be a source
of many inconsistencies. The Java “look-and-feel” developed by Sun has been introduced
as a set of cross-platform guidelines that can solve some of these inconsistencies.
However, these guidelines do not take into account the particularities of a specific device,
such as the platform constraints and capabilities. This can be problematic for a user
interacting with different kinds of devices to access server-side services and information
of a Web application. Furthermore, for novice designers, it is hard to remember this
mosaic of design guidelines let alone use them effectively. Like many others who have
been experimenting with POD and patterns, we are proposing to use patterns as an
alternative design tool to guidelines. Patterns are considered as a generic building block
that can be instantiated for each platform.

The proposed POD-Web approach consists of composing different architectural,
navigational and interaction patterns to create high level and platform independent
designs. A sub-objective of our research is to define rules to compose and map these
designs. The foundation of our approach is a multi-layered and pattern-oriented design
architecture.

2. Background Work
Introduced by the architect Christopher Alexander in 1977 [8], design patterns can be
viewed as building blocks that can be composed to create designs. A single pattern
describes a problem that appears constantly in our environment, with a corresponding
solution to this problem, and in a way which allows designers to reuse this solution for
different platforms [8]. For cross-platform Web applications, patterns are interesting for
three reasons. See [9] for a more general discussion on patterns and their benefits:

• They come from experiments on good know-how and were not created artificially;
• They are a means of documenting architectures;
• In the case of cross-platform development, they make it possible for the team to

have a common vision.
Every pattern has three essential elements, which are: A context, a problem, and a
solution. The context describes a recurring set of situations in which the pattern can be

applied. The problem refers to a set of forces, i.e., goals and constraints, which occur in
the context. Generally, the problem describes when to apply the pattern. The solution
refers to a design form or a design rule that can be applied to resolve the forces. The
solution describes the elements that constitute a pattern, relationships among these
elements, as well as responsibilities and collaboration.

Similar to the entire Software Engineering community, Web engineers and the user
interface design community has been a forum for vigorous discussion on pattern
languages for user interface design and usability. The goals of HCI patterns are to share
successful user interface design solutions among HCI professionals, and to provide a
common ground for anyone involved in the design, development, usability testing, or the
use of highly interactive systems including the Web. A number of pattern languages have
been suggested. For example, Van Duyne’s “The Design of Sites” [6], Welie’s Interaction
Design Patterns [4], and Tidwell’s UI Patterns and Techniques [3] play an important role.
In addition, specific languages such as Laakso’s User Interface Design Patterns and the
UPADE Web Language [8, 18] have been proposed as well. Different pattern collections
have been published including patterns for Web page layout design [3, 4, 5], for
navigation in large information architectures, as well as for visualizing and presenting
information.

In our work, we investigate how these collections of proven Web design patterns are
"composed" into reliable, robust and large-scale Web interactive systems. However, the
development of web applications using design patterns as design components requires a
careful look at composition techniques. Several methods have been proposed for
composition, within approaches such as Pattern-Oriented Design (POD). For example,
Yacoub and Ammar [7] proposed two composition techniques:

• Behavioral composition techniques that are based on object interaction
specifications to show how instantiations of patterns can be composed.

• Structural composition techniques, which are based on the static architectural
specifications of composed instantiated patterns using class diagrams.

The Pattern-Supported Approach (PSA) [10] to the user interface design process suggests
a wider scope for the use of patterns by looking at the overall design process. Based on
the fact that the usability of a system emerges as the product of the user, the task and the
context of use, PSA integrates this knowledge in most of its patterns, dividing the forces
in the pattern description correspondingly (i.e., describing Task, User, and Context
forces). PSA provides a double-linked chain of patterns (parts of an emerging pattern
language) that support each step of the design process.

Building on PSA, our proposed approach highlights another important aspect of Pattern-
Oriented Design: Pattern combination. By combining different patterns, developers can
use pattern relationships and combine them in order to produce an effective design
solution. We will consider this principle in section 4. As a result, patterns become a more
effective vehicle that supports design reuse.

3. The Proposed Web Design Patterns
We conducted a survey in 2004, which informed us that there are at least six types of
design patterns that can be used in Web application engineering (Figure 1).

Figure 1: A Pattern-Oriented Architecture of a Web Application

In what follows, we introduce some concrete examples of the patterns that we have been
using. These examples also show the need to combine several types of patterns to provide
solutions to complex problems. The list of patterns is not exhaustive. There is no doubt
that more patterns still need to be documented, and that an endless number have yet to be
discovered.
To organize the content of a Web application, the simplest pattern is the sequence pattern
which organizes a set of interrelated pages in a linear narrative. This pattern applies to
information that naturally flows as a narrative, time line, or in a logical sequential order.
Hierarchical organization schemes, as with the hierarchy pattern, are particularly well
suited to Web application content, because Web sites should always be organized as
offshoots of a single Home Page [1]. Many procedural manuals, lists of university
courses, or medical case descriptions are best organized with the grid pattern. As
illustrated in Figure 2, several patterns need to be combined to organize the entire
information content of a complex Web application.

Navigation patterns implement proven techniques for navigating within
and/or between a set of pages and chunks of information.
Interaction Patterns focus on the interaction mechanisms that can be used
to achieve tasks and the visual effects they have on the scene, as such they
relate primarily to graphical and rendering transforms.
Presentation patterns provide solutions for how the contents or the related
services are visually organized into working surfaces, the effective layout of
multiple information spaces and the relationship between them. These
patterns define the physical and logical layout suitable for specific Web
pages such as home page, lists, tables, and forms.
Visualization Patterns suggest different visual representations/metaphors
for grouping and displaying information in cognitively accessible chunks.
They define mainly the form and content of the visualization i.e. the
graphical scene, and as such relate primarily to data and mapping
transforms.
Interoperability patterns aim to decouple the different layers of a Web
application. In particular, between the content, the dialog and the views or
presentation layers as outlined in Figure 1. These patterns are generally
extensions of the Gamma design patterns such as MVC (Model, View and
Controller) observer, and command action patterns.
Information patterns describe different conceptual models and
architectures for organizing the underlying content across multiple pages,
servers and computers. Such patterns provide solutions to questions such as

Figure 2: A Combination of Information Architecture Patterns

Navigation patterns are fundamental in Web design since they help the user navigate
easily and clearly between information chunks and pages. They can obviously reduce the
user's memory load [1, 7]. See also [3, 5, 8, 9] for an exhaustive list of navigation design
patterns. The following are some of the basic patterns:
Shortcut Pattern. Lists the frequently visited pages or used services. They are generally
embedded in the home page and help experienced users find their favorite information
and services with one mouse click.
Dynamic Path Pattern (or Bread Crumb) is a very useful pattern that indicates the entire
path taken by the user since accessing the Web application.
Index Browsing Pattern allows a user to navigate directly from one item to the next and
back. The ordering can be based on a ranking.

The results of the Search Pattern (described
below), with the complicity of the Executive
Summary Pattern (a page layout pattern), provides
users a preview of underlying information before
spending time downloading, browsing and reading
large amounts of information included in
subsequent pages (Figure 3).

Information overload is another fundamental problem in Web engineering. Web
applications, especially large Web portals, provide access to millions of documents. The
designer must consider how best to map the contents into a graphical representation that

Grid Pattern

Sequence
Pattern

Hierarchy Pattern

Figure 3: Example of structural patterns

conveys information to the user while facilitating the exploration of content from a large
Website. In addition, the designer must provide dynamic actions that limit the amount of
information the user receives while at the same time keeping the user informed about the
content as a whole.

Favorites Collection, Bookmark, Frequently Visited Pages,
Preferences and Navigable Spaces Map patterns are some of
the information visualization patterns for solving another
complex design problem. As presented in Figure 4, these
patterns are generally composed to provide a comprehensive
map to a large amount of content, which cannot be reasonably
presented in a single view. The underlying content can be
organized using the combination of patterns presented in
Figure 2; into distinct conceptual spaces or working surfaces
that are semantically linked to each other.

Figure 4: The Navigation Spaces Map Patterns

Communication and interoperability design patterns are useful patterns to facilitate the
mapping of design between platforms. Examples of patterns that can be considered to
ensure the interoperability of Web applications include Adapter, Bridge, Builder,
Decorator, Facade, Factory Method, Mediator, Memento, Prototype, Proxy, Singleton,
State, Strategy, and Visitor [2].

4. Pattern Composition Rules
A platform-independent pattern-oriented design exploits several relationships between
patterns. Gamma et al. emphasize in their book “Design Patterns” that defining, as part of
the description of a pattern, the list of related patterns is a key notion in the composition
of patterns and their usages. Zimmer [11] implements this idea by dividing the relations
between the patterns of the Gamma catalog itself in 3 types: “X is similar to Y”, “X uses
Y”, and “Variants of X uses Y”. They are in fact relationships between patterns in a
certain context; in other terms they are relationships between instances of patterns. Based
on Zimmer’s work, we define five types of relationships between patterns.

1. Similar (X, Y) if and only if X and Y can be replaced by each other in a
certain composition. This means that X and Y are patterns of the same category
and they provide different solutions to the same problem in the same context.
As illustrated in Figure 5, Index Browsing and Menu Bar patterns are similar.
They both provide navigational support in the context of a medium size Web
site.

Figure 5: Similar Pattern extracted from OMG site

2. Competitor (X, Y) if X and Y cannot be used at the same time for designing
the same artifact relationship that applies to two patterns of the same pattern
category. Two patterns are competitors if and only if they are similar and
interchangeable. For example, the Web convenient toolbar and Index Browsing
patterns are competitors. The Index Browsing pattern can be used as a shortcut
toolbar that allows a user to directly access a set of common services from any
Web page. The Convenient Toolbar that provides the same solution is
generally considered more appropriate.

3. Super-ordinate (X, Y) is the basic relationship to compose several patterns of
different categories. A pattern X is a super-ordinate of pattern Y means that
pattern Y is used as a building block to create pattern X. An example is the
Home Page pattern which is generally composed of several other patterns (see
Figure 6)

4. Sub-ordinate (X, Y) if and only if X is embeddable in Y. Y is also called
super-ordinate of X. This relationship is important in the mapping process of
pattern-oriented design from one platform to another. For example, the
Convenient Toolbar pattern is a sub-ordinate of the Home Page pattern for
either a PDA or Desktop Web application. Implementations of this pattern are
different for different devices, as will be discussed in the next section.

5. Neighboring (X, Y) if X and Y belong to the same pattern category (family).
For example, neighboring patterns may include the set of patterns to design a
specific page such as a home page.

5. An illustrative Example
To illustrate the use of the relationships described in the previous section, we discuss the
redesign of the home page of a popular Web site for biomedical experts, the National
Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov). This Web site is
“extra-large” in size [5], providing information and a large set of services. The home page
is the starting point for most user visits, and is similar to a portal. Improving the home
page multiplies the entire Web site's usability and increases the accessibility and visibility
to the 10, 000 pages included in this site.

Based on an empirical study we conducted [5] and recommendations [9, 10], a usable and
easy to maintain home page for this large Web site can be developed by combining the
following patterns (Figure 6):

1. Tangline Pattern. The home page must explain what the site does and what
makes it unique among competitors.

2. Web Convenient Toolbar Pattern. This navigation design pattern provides
access to the most common services such as help, feedback, etc.

3. Search Pattern is important for any big Web site. When users want to
search, they typically scan the home page looking for "the little box where I
can type," so your search should be a box.

4. Frequently visited pages Pattern. Users will often remember good articles,
products, or promotions.

5. Site Map Pattern. This information visualization design pattern summarizes
the structure of the underlying content architecture.

6. About Pattern. Looking for specific information is rarely a user’s first task,
but sometimes people do need details about who you are. An "About
<company-name>" pattern is the best way to link users to more in-depth
information than can be presented on the home page.

7. Executive Summary Pattern. Don't just provide a link to some pages behind
the home page. Show some of your best or most recent content. This can be
achieved via the use of different instances of the executive summary pattern.

8. Index Browsing Pattern. Your home page should offer users a clear starting
point for the main pages that users can undertake when visiting your site.

9. Disclaimer Pattern.
10. Maintainer Info Pattern. Sometimes pages are wrong; even the best

proofreaders make mistakes. Therefore, a home page provides a link to the
page's maintainer.

11. Go Safe Place Pattern. This pattern allows the user to go back to the home
page from any page. To familiarize the user with it, this pattern should be
visible on the home page.

6. Pattern-Oriented Design Mapping
Using a pattern-oriented design as a starting point, it is possible to redesign a Web
application for other platforms, by using what we call pattern mapping. The original set
of patterns used in the Web application are transformed or replaced in order to redesign
and re-implement the application, and in particular the user interface, for mobile or PDA
applications. Since patterns hold information about design solutions and context of use,
platform capabilities and constraints are implicitly addressed in the transformed patterns.

Figure 6: A Home Page Design using Patterns

To illustrate the mapping-based design approach, in what follows, we describe the effect
of screen size on the usage and selection of patterns. Different platforms use different
screen sizes, and these different screen sizes afford different types and variants of
patterns. The question when mapping a POD is how the change in screen size between
two platforms affects redesign at the pattern level. The amount of information that can be
displayed on a given platform screen is determined by a combination of area and number
of pixels. The total difference in information capacity between platforms will be
somewhere between these two measures of 20 times the area and 10 times the pixels. We
can conclude that to map the desktop display architecture to a PDA display architecture,
the options are as follows:

1. To reduce architecture size, it is necessary to significantly reduce both the
number of pages and the quantity of information per page.

2. To hold constant the architecture size (i.e. topics or pages), it is necessary to
significantly reduce the quantity of information per page (by a factor of about
10 to 20).

3. To retain the full amount of information in the desktop architecture, it is
necessary to significantly increase the size of the architecture, since the PDA
can hold less information per page.

The choice of mapping strategy will depend on the size of the larger architecture and the
value of the information:

- For small desktop architectures, the strategy can be weighted either towards
reducing information if the information is not important, or towards increasing
the number of pages if the information is important.

- For medium or large desktop architectures, it is necessary to weigh the design
strategy heavily towards reducing the quantity of information, since otherwise
the architecture size and number of levels would rapidly explode out of control.

Finally, we can consider mapping of patterns and graphical user objects in the context of
the amount of change that must be applied to the desktop design or architecture to fit it
into a PDA format. The following is the list of mapping rules we suggest:

1. Identical. For example, drop-down menu patterns can usually be copied
without transformation from a desktop to a PDA.

2. Scalable changes to the size of the original design or to the number of items in

Figure 7: The Web Convenient Toolbar Pattern Implementations
and Look & Feels for Different Platforms

Figure 7 illustrates different mappings of the
Quick Access pattern for three different
platforms. For a web browser on a desktop, it
is implemented as an index browsing toolbar.
For a PDA, the Quick Access pattern can be
implemented as a combo box. For a mobile
phone, the Quick Access pattern is
implemented as a selection [4]. Pattern
descriptions should provide advice to pattern
users for selecting the most suitable
implementation for a given platform.

the original design. For example, a long horizontal menu pattern can be
adapted to a PDA by reducing the number of menu elements.

3. Multiple of the original design, either simultaneously or sequentially in time.
For example, a single long menu can be transformed into a series of shorter
menus.

4. Fundamental change to the nature of the original design pattern while
replacing it generally by another one. For example, permanent left-hand
vertical menu patterns are useful on desktop displays but are not practical on
most PDAs. In the transformation to a PDA, left-hand menus normally need to
be replaced with an alternative solution such as drop-down menu patterns.

These mapping rules can be used by designers in the selection of patterns especially when
different patterns apply for a platform and not another one, when the cost of adapting or
purchasing a pattern is high, or when validity of a pattern is questionable.

This taxonomy of mapping types is especially relevant to the automation of cross-
platform designs using patterns since the designs that are easiest to transform are those
that require the least transformation. The taxonomy therefore identifies where human
intervention will be needed for design decisions in the transformation process. In
addition, when building a desktop design for which a PDA version is also planned, the
taxonomy indicates which patterns to use in the desktop design to allow easy
transformation to the PDA design.

Figure 8 illustrates some of the
navigation design patterns as used in the
home page of a desktop-based Web
application. Once these patterns are
identified in the desktop-based Web
application, they can be transformed or
replaced by others in a PDA version.

Figure 9 demonstrates the redesigned interface
of the CBC (Canadian Brodcasting
Corporation, www.cbc.com) site for migrating
to a PDA platform. The permanent horizontal
menu pattern at the top (P5) in the original
desktop UI was replaced with a shorter
horizontal menu pattern (P5s). In order to
accommodate this change on the small PDA
screen, the three different horizontal menus had
to be shortened, and only important navigation
item was used. The keyword search pattern
(P13) remains as a keyword search. The
permanent vertical menu at the left (P6) is
redesigned to a drop-down menu (P15). The
drop-down menu in the PDA design also
includes the menu headings, “What’s on
today?” and “Online features” from the
temporary vertical menu (P3) in the original
desktop design. Finally, the information portal
(P4), which is the first thing that captures the
user’s attention, is redesigned to a smaller
information portal (P4s).

Figure 9: Migration of the CBC site to a PDA
Platform using Pattern Mapping

Figure 8: Patterns Extracted from the CBC News

A platform
independant
pattern-
oriented design
composed of a
set of patterns
from different
patterns
categories

MAPPING

A platform
dependant
pattern-
oriented design
for Mobile
Phone

A platform
dependant
pattern-
oriented design
for PDA

A platform
dependant
pattern-
oriented design
for Interactive
TV

Figure 10: Pattern-Oriented Design Mapping Architecture

7. Discussion
Table 1 describes the types of cross-platform mappings that are recommended for some
of the most popular Web patterns, and which can be used to redesign a Web site for the
PDA display. These mappings offer the closest and simplest equivalent platform-
dependent designs for the corresponding platform. In the third column, the suffix “s”
after a pattern indicates, “scaled (down)”, and the suffix “m” indicates “multiple
(sequence)”. In this paper, we have introduced a pattern-oriented design method that
essentially exploits pattern composition mappings. This approach is a significant
improvement over non-structured migration methods currently in use, for the following
reasons:

• The method provides a standardized table

of pattern mappings, thereby reducing the
redesign effort and ensuring consistency in
redesign.

• The standardized rules for composition and
mapping formalize best practices in design,
thereby ensuring optimal quality of the
migrated user interface.

• The method helps designers in design
choices associated with (1) the size of the
source architecture and target architecture
and (2) the amount of information to
maintain in migrating from the source
platform to the target platform.

• The method is simple enough to be used
easily by novice designers, as compared to
reengineering which currently requires a
considerable degree of expertise and
abstract reasoning ability.

In short, what we have just illustrated in
this section and the examples of Figures 7,
8 and 9 can be characterized in the form of
architecture of composed pattern-oriented
design mappings (see Figure 10).

Table 1: Examples of Patterns Mapping

Pattern-Oriented Design offers the very useful ability of easily extracting multiple
platform-specific designs from a single generic (platform-independent) UI model.
However, the current state of the art in patterns and cross-platform research is not yet
mature enough to handle all the requirements of pattern-assisted design techniques.
Before generic UI pattern-based models can be defined, more research must be addressed
to define the multiple levels of abstraction of patterns and to create a clear, well-
structured taxonomy of patterns. The simplified taxonomy presented in section 3 is a
starting point. Thus, within a pattern-based framework, the simplified “redesign and
design” method proposed here is currently the most practical approach for migration of a
Web application between platforms.

8. A Concluding Remark
In this paper, our discussion focused on a way to combine and map several types of
patterns to create a pattern-oriented design for cross-platform web applications. The
proposed POD approach aims to demonstrate when a pattern is applicable or required in a
design process, how it can be used, as well as how and why it can or cannot be combined
with other related patterns. In POD, cross-platform Web application developers can
exploit the composition and mapping relationships and the underlying best practices to
derive a concrete design from a pattern-oriented design.
Our investigations are based on several years of Web application development,
ethnographic interviews with Web developers, as well as expert recommendations. Such
recommendations include reported best practices for using patterns as a bridge over the
gaps between design practices and software tools [11, 7]. Our experiences have also
highlighted that in order to map patterns, especially by novice designers and software
engineers who are unfamiliar with Web engineering, patterns should be presented to
developers using a flexible structure to represent patterns, to make it easy for both the
pattern authors, reviewers and users.
One of the major problems we found is that mastering and applying large collections and
different types of patterns requires in-depth knowledge of both the problems and forces at
play. As such, it is inconceivable that pattern hierarchies, composition and mapping rules
will evolve strictly from theoretical considerations. Practical research and industry
feedback are crucial in determining how successful a pattern-oriented design framework
is at solving the cross-platform design problems listed in section 1. It is therefore essential
to build an “academia-industry bridge” by establishing formal communication channels
between industrial specialists on Web patterns, software design patterns, information
architecture patterns as well as software pattern researchers. It is hoped that such
collaboration will lead to a common POD framework that is essential in making the large
diversity of patterns accessible to common Web engineering designers.
At this time the POD approach, including the list of patterns and relationships, has been
defined and illustrated for Web Sites. We can explore other forms of Web applications
such as transactional applications, e-commerce, etc. Further work needs to be done for
exploring: (1) the scalability of the approach to given multiple patterns, platforms and
platform design guidelines, and (2) the strategies for automating the POD approach as
well as the reuse of patterns.

9. References

[1] Lynch, P.J, and Horton, S. Web Style Guide: Basic Design Principles for
Creating Web Sites. New Haven and London: Yale University Press. 1999.

[2] Gamma, E., Helm R., Johnson R., and Vlissides J. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[3] Tidwell, J. Common Ground: A Pattern Language for Human-Computer
Interface Design, 1997. http://www.mit.edu/~jtidwell/common_ground.html

[4] Welie, M.V. The Amsterdam Collection of Patterns in User Interface Design
1999- http://www.cs.vu.nl/~martijn/patterns/index.html

[5] Engelberg, D., and Seffah, A. Design Patterns for the Navigation of Large
Information Architectures. 11th Annual Usability Professional Association
Conference Orlando, Florida, July 8-12, 2002.

[6] Duyne D. K. van, Landay, J. A, and Hong J. I. The Design of Sites: Patterns,
Principles, and Processes for Crafting a Customer-Centered Web Experience.
Addison-Wesley, 2003.

[7] Sherif Yacoub, Hany Ammar, 2003, Composition of Design Patterns,
Addison Wesley Professional, ISBN 0-201-77640-5, 416 pages, Hardcover,
Germany.

[8] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiskdahl-King, S.
Angel. A Pattern Language, Oxford University Press, New York, 1977.

 [9] F. Buschmann, What is a pattern? Object Expert vol. 1(3), pp17-18,
Mars/April 1996.

[10] Åsa Granlund, Daniel Lafrenière, David A. Carr, ‘A Pattern-Supported
Approach to the User Interface Design Process’, Proceedings of HCI
International 2001 9th International Conference on Human-Computer
Interaction, August 5-10, 2001, New Orleans, US.

[11] Walter Zimmer. Relationships between design patterns. New York, NY,
USA, 1995. ACM Press / Addison-Wesley Publishing, pp 345–364.

