
 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

Successes and challenges experienced in implementing
a measurement program in small software organizations

Sylvie Trudel, Pascale Tardif
Centre de Recherche Informatique de Montréal (CRIM), Montréal, Canada

Sylvie.Trudel@crim.ca, Pascale.Tardif@crim.ca

Abstract:
In recent years, the authors have implemented measurement programs in several
organizations of different sizes. Two of them were small software companies of
approximately 12 employees, which were mostly developers. Although these two
organizations were similar in size and technology, the differences in the issues they
were facing led to completely different approaches for their measurement program.
This paper is about the steps taken to implement these measurement programs,
both including functional size measurement with COSMIC, effort, schedule, and
defects. It also describes what was done to ensure the success of each program
and, most importantly, the challenges that were faced during their implementation
and maintenance, as well as some of the solutions proposed to answer these
challenges.

Keywords
Measurement program, metrics program, small organizations, functional size
measurement, COSMIC

1 Introduction

Whether a software company is large or small, their managers need specific
information in order to make sound decisions about their projects. This
information usually includes data about effort, schedule, quality, and size. While
large organizations count on dedicated personnel to define, collect, analyze, and
report information, many small organizations must rely on their sole manager and
owner, or on one of their team members, to define and manage their measurement
program and its results, among many other tasks. This situation can jeopardize the
success of implementing a measurement program, especially when delivering
within aggressive schedules, getting new business contracts, and managing the
company’s growth.
The following sections present the cases of two similar software organizations of
12 employees that have put in place measurement programs supporting project
decisions.

Sylvie Trudel, Pascale Tardif

 Software Measurement Conference

1.1 Characteristics of the two small software organizations

The first small organization develops and maintains manufacturing management
modules integrated as add-ons to a commercial off-the-shelf accounting system,
built on client-server architecture. Nine out of their 12 employees are software
developers with an attrition rate of approximately 2 developers per year. The
company was started 19 years ago by its president, who was writing code up until
4 years ago but who now acts as the project manager most of time. Their modules
are installed in 65 manufacturing industries which have 1 to 30 users for their
system, the average being 4 users per customer site. Their biggest issue was
quality, having to deal with an increasing number of defects and the effort
required fixing them. Before implementation of the measurement program, the
defect issue was only known through management’s perception since no data was
available to analyze the situation. They had little success in implementing a
measurement program themselves and were seeking help on that matter.
The second small organization mainly develops and maintains a sophisticated
financial package for a large organization that manages loans for assets
acquisition. Their system is utilized by approximately 300 users throughout
Canada, also built on client-server architecture. The company was started 20 years
ago by its president who is now acting as project manager. All of their 12
employees are developers, of which two are analysts dealing with requirements
development. They were missing deadlines on several features given their short
bi-weekly release cycle. Quality was not an issue since they usually have less than
two defects per release found once the release is into production and fixed within
half a day. Nevertheless, some of their potential projects were lost to major
outsourcing organizations in India from 2001-2002 and they needed to be more
competitive. They had learned about the existence of the CMMI [1, 2] and were
concerned about applying its best practices to increase their efficiency and
productivity.

1.2 Characteristics of their projects

Similarities other than team size and software architecture can be observed in both
cases. They define a project as being a set of one or more related features laid out
to develop or modify a part of existing modules or new modules. The average
project effort is approximately 150 hours; some bigger projects are more than 800
hours. They experience cost overruns in half of their projects. They both use
spreadsheets to document requirements, including interface mock-ups, planning
data, design decisions, and test cases. They mostly have projects roughly defined
and planned to keep the whole team busy for six upcoming months.

 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

1.3 Characteristics of the managers’ working schedule

The managers are not employees paid 40 hours per week to perform tasks laid out
in their job description. They are the company owner and work between 60 and 90
hours per week. On top of ensuring daily operations and delivering quality
software to their customers, they have to handle all other company aspects such as
marketing, sales, communication, financing, accounting, human resources,
training, and growth, simply because they cannot afford extra personnel to take
care of these aspects.
Some twenty years ago, they started their companies themselves and were able to
sustain growth at their pace, welcoming a new employee every 18 months on
average. Their working schedule is quite full. As a result, these managers have
needs for information that can be obtained through an efficient measurement
program.

1.4 Requirements for a measurement program in small organizations

To have success in implementing a measurement program, the program must, of
course, fulfil the managers’ information needs. But it also requires the effort
needed to sustain it kept as low as possible. In fact, the effort saved by managers
for performing their decision-making process in all aspects covered by the
measurement program should outweigh the program cost.

2 Case no. 1: dealing with quality issues

A half-day mini assessment of their software development process revealed that it
was fuzzy and poor in quality control activities. The software team had grown
significantly over the last three years. Several hundred defects were identified in
each release. The manager had few insights into these defects and could hardly
make sound decisions for prioritizing them.
Their objectives were first to reduce the number of defects, and then to increase
team’s productivity, but they did not know what were their defect density and their
productivity at that point in time.

2.1 The solution approach

The approach used is based on the Personal Software Process (PSP) [3], along
with other process improvement methods known by the authors, such as the
IDEALSM model [4].

Step 1: Stabilize the software process

The first step taken was to document and stabilize the software development
process. The process phases were clearly defined along with expected work

Sylvie Trudel, Pascale Tardif

 Software Measurement Conference

products, activities, and responsibilities. Half a day every other week was
dedicated to process improvement where team members gathered to communicate
and share their improvement experiences. Due to small projects at the time, the
process was stabilized within three months. Project management measures were
adapted to answer “how much effort is spent at each phase” and “how much effort
is spent correcting defects”.
Table 1 provides the 15 phases that were documented as part of the software
process. Each of these phases is systematically applied on every project. When a
new project is created in the timesheet system, all these steps are also created as
tasks. Tasks 1 to 14 may be performed consecutively (waterfall cycle) or
iteratively but effort is always measured per project, not per iteration, because it
was not relevant for the organization to oversee the effort of a single iteration.

No. Process

phases
Description

1 PAEX Analysis of customer requirements (Phase Analyse des EXigences)
2 PAFO Functional analysis (Phase Analyse FOnctionnelle)
3 PATE Technical analysis (Phase Analyse TEchnique)
4 PRAN Analysis review (Phase Revue de l’ANalyse)
5 PDES Design (Phase DESign)
6 PRDE Design review (Phase Revue de DEsign)
7 PEST Estimation (Phase d’ESTimation)
8 PRES Estimation review (Phase Revue de l’EStimation)
9 PCTU Construction and unit testing (Phase Code et Tests Unitaires)
10 PRCO Code review (Phase Revue de COde)
11 PTBB White-box testing (Phase Test Boîte Blanche)
12 PTBN Black-box testing (Phase Test Boîte Noire)
13 PVTE Tests verification (Phase Vérification des Tests)
14 PDUS User documentation (Phase Documentation USager)
15 PFIN Project finalized (Phase de FINalisation)

Table 1: Process phases and their description

Defects can be identified in any of these phases. The last phase (PFIN) accounts
for defects found by developers and users once the software is in production. The
manager needed to know in which phase every defect was injected in the process
in order to focus process improvement activities on phases which require them the
most. Defects could be injected in one of the analysis phases (PAEX, PAFO,
PATE), the design phase (PDES), the estimation phase (PEST), or the code and

 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

unit test phase (PCTU). Defects in the user documentation (PDUS) are not
recorded as software defects and are handled separately by a technical writer.
There was already a spreadsheet database to record defects that contained the
following information: unique defect number, project number, affected customer,
software version where it was found, date the defect was identified, severity,
defect description, date the defect was fixed, and software version where it was
fixed. A decision was made to improve the defect database by adding columns to
record the following data, among other improvements:

o Defect categories (see Table 2 below).
o Phase in which the defect was identified.
o Phase in which the defect was injected (determined through investigation).
o Effort to fix the defect.

Thus, effort spent fixing defects is recorded twice: in the defect database for every
defect and in the timesheet system as part of the phase where the defect was
identified (e.g., PTBB or PTBN). By doing so, the defects database readily
answers “how much effort is spent fixing defects”, “in which phase defects are
mostly injected”, and “what categories of defects are mostly found”.

Cat. Description Example
1 Missing Missing items in a phase (e.g., PAEX, etc.)
2 Irrelevant Irrelevant items in a phase
3 Incorrect Incorrect or imprecise items in a phase
10 Documentation Comments, messages, manual, etc.
20 Security Locking errors, user management, access permission
30 Packaging Configuration management, build. etc.
40 Assignment Declaration statements, duplicates, objects or variables

initialization, freeing memory, range (array), boundaries
(variables), scope, etc.

50 Interface Procedure call, references (parameters), files, display, printing,
communication, formats, contents, etc.

60 Checking Error messages, inadequate conditions, exceptions not
handled, etc.

70 Data Structures, contents, etc.
80 Function Pointers, loops (off-by-one, increments, recursivity),

algorithms, calculations, etc.
90 System Performance (speed), memory usage, etc.

Table 2: Defect categories, inspired by those found in the PSP

Sylvie Trudel, Pascale Tardif

 Software Measurement Conference

 %

0.
6%

2.
8%

2.
1%

17
.8

%

0.
2%

76
.4

%

10
0%

 %

1%

1%

28
%

70
%

10
0%

 A
ll 16

71

52

44
6 5

19
15

25

05

10
0%

 A
ll 35

41

10
31

25

45

36
52

10
0%

90

0 1 4 0 0 27

32

1.
3%

90

0.
00

2.

00

29
.0

0
64

.0
0

95
.0

0

2.
6%

80

0 6 2 5 0 27
5

28
8

11
.5

%

80

1.
50

1.

00

13
6.

00

64
0.

50

77
9.

00

21
.3

%

70

1 1 5 12

0 11
0

12
9

5.
1%

70

2.
50

2.

25

50
.5

0
17

8.
50

23

3.
75

6.
4%

60

0 3 1 10

0 32
1

33
5

13
.4

%

60

3.
75

0.

00

13
8.

49

37
8.

00

52
0.

24

14
.2

%

50

1 2 4 29
1 0 60
0

89
8

35
.8

%

50

0.
50

10

.7
5

37
5.

60

39
5.

00

78
1.

85

21
.4

%

40

0 1 2 23

0 19
8

22
4

8.
9%

40

12
.2

5
3.

75

62
.5

0
23

2.
00

31

0.
50

8.
5%

30

2 1 2 3 0 5 13

0.
5%

30

0.
00

0.

00

8.
00

35

.5
0

43
.5

0

1.
2%

20

0 1 2 2 0 45

50

2.
0%

20

0.
00

0.

00

59
.7

5
10

8.
50

16

8.
25

4.
6%

10

0 0 0 0 0 26

26

1.
0%

10

0.
00

0.

00

3.
50

18

.2
5

21
.7

5

0.
6%

3 4 19

3 4 0 8 3 8

1.
5%

3 0.
50

0.

25

0.
00

10

0.
00

10

0.
75

2.
8%

2 1 1 0 8 0 10

20

0.
8%

2 2.
25

0.

00

0.
25

7.

50

10
.0

0

0.
3%

1 6 29

9 74

5 60

18
3

7.
3%

1
10

.2
5

7.
75

19

.5
0

22
1.

75

25
9.

25

7.
1%

bl
an

k
0 0 0 1 0 14

15

0.

6%

bl
an

k
0.

00

0.
00

14

.6
5

40
.5

0
55

.1
5

1.
5%

D
ef

ec
t c

at
eg

or
ie

s

ni
l 1 6 18

13

0 21
6

25
4

10
.1

%

D
ef

ec
t c

at
eg

or
ie

s

ni
l

1.
25

13

.0
0

13
3.

00

12
5.

50

27
2.

75

7.
5%

PA

E
X

PA

F
O

PA

TE

PD
E

S
PE

ST

PC
TU

A

ll %

PT
B

B

PT
B

N

PV
TE

PF

IN
 Al
l

%

 Phases

Ta
bl

e
3:

N

um
be

r o
f d

ef
ec

ts
in

je
ct

ed
 b

y
ph

as
e,

 p
er

 d
ef

ec
t c

at
eg

or
y

 Phases Ta
bl

e
4:

Ef

fo
rt

to
 fi

x
de

fe
ct

s b
y

ph
as

e,
 p

er
 d

ef
ec

t c
at

eg
or

y
(h

ou
rs

)

 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

From November 2003 on, new defects were added to the improved database.
Table 3 and Table 4 provide defect related data from November 2003 to August
2006. Table 3 clearly shows that most defects were injected during the code and
unit test phase.

Step 2: Introduce functional size measurement

The second step was to introduce functional size measurement. An earlier attempt
with IFPUG [5] led the team to abandon this method they considered too costly to
sustain. The COSMIC-FFP [6] method was thus adopted. Implementing COSMIC
[7] was rather simple for them since it only required adding one worksheet to their
analysis spreadsheet where functional requirements were written in a way to
easily identify functional processes and data movements.
The team was measuring size for estimation purposes and for projects comparison.
The manager wanted the software process to be predictable because most projects
were quoted as firm fixed price. Thus, knowing the average effort spent per size
unit became valuable. Training was provided to the manager and team members
on the COSMIC method.
From that point, new projects were created and performed. Defect, size, schedule,
and effort data was recorded for 25 projects. Size was measured from the
functional requirements early in the process. The manager then compared actual
data of size and effort. He was not fully satisfied with the correlation and standard
deviation since he needed a more precise estimation model. He verified the
functional size measurement of all 25 projects and found the following issues:

o Different individuals were obtaining different sizes of the same project due
to misunderstanding of the method. Developers had a clear tendency to
measure from the developer’s point of view when the user point of view
was required.
To resolve that issue, they decided to limit functional sizing to two
individuals who seemed to have a common understanding of COSMIC and
they mostly obtained similar results (less than 2% difference) when
adopting the user’s point of view.

o Project size was different between the initial analysis phase and the final
phase because requirements are changing during the project execution (e.g.,
data validations requiring extra “read” data movements, data groups being
added).
This issue was resolved by measuring the size twice during the project:

o Initial size: right after the user graphical interface mock-ups are done
(end of analysis phase).

o Final size: at the end of the project, to compensate for the missing
details in the requirements documented during the analysis phase.

Sylvie Trudel, Pascale Tardif

 Software Measurement Conference

o For estimation purposes, it made no sense for them to use one single point
(size unit) for data movements on data groups that had a large number of
attributes because software features handling large data groups require
more effort to develop. This was the main reason for the imprecision of the
correlation between effort and size.
To resolve that issue, they closely examined data groups and data
movement on the 25 projects and developed a local extension to COSMIC,
where data groups are “weighted” as one extra point for every set of 12
attributes for “exit” and “read” data movements (i.e., a “read” or an “exit”
of a data group of 1 to 12 attributes is counted as one, of a data group of 13
to 24 attributes is counted as two, etc.) They recalculated the correlation
factor between final size and effort which was then more than 0.90. They
knew at that point that their productivity model was stable. Table 5 provides
their productivity models in hours per functional size unit for the overall
project effort, the programming effort, and the rework (i.e., effort to fix
defects). However, their local extension to COSMIC does provide a bigger
size than the standard COSMIC method and makes it difficult to compare to
other organizations.

 Projects 1 to 25

Overall productivity 1.94 hours/size unit
Programming productivity 1.12 hours/size unit
Rework effort per size unit 0.33 hours/size unit

Table 5: Performance data for the first 25 projects

Step 3: Do a Pareto analysis of defects found

The third step was to do a Pareto analysis of the defects found using the injected
phase. Table 3 clearly shows that most defects were injected in the code and unit
test phase and, for most of them, they were the result of errors made by
programmers.
Based on actual data obtained from the measurement program, a decision was
taken to introduce peer reviews as a method for identifying defects early in the
process. The team developed checklists to help them recognize specific defect
types as outlined by the Pareto analysis of defects.
Then, considering defect data and productivity data, the manager set the following
business objectives:

o Increase the overall productivity by 10%.
o Decrease the number of defects by 20%.

 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

The team continued recording measures and indicators for 11 more projects before
looking at the results six months later.

2.2 The results

Within six months, they achieved a productivity increase of more than 11% and a
drop of the effort required to fix a defect by 61%, as shown in Table 6. They were
also able to reduce the number of defects by 33%.

 Subset of projects Improvement
 A: 1 to 25 B: 26 to 36 C: 1 to 36 between A and B

Overall productivity 1.94 1.73 1.82 11%
Programming productivity 1.12 0.91 1.04 19%
Rework density 0.33 0.13 0.26 61%
Table 6: Performance data for the first 36 projects

The six following project indicators from the PSP approach were identified and
are used in every project for decision making:

1. Defect density = number of defects / final size
Usage: monitor project quality and take necessary actions when it deviates
from internal range of values.

2. Rework density = total effort for fixing defects / final size
Usage: monitor waste of effort induced by fixing defects and improve peer
review process when required.

3. Overall productivity = total effort / final size
Usage: monitor that project performance is within internal range of values.

4. Schedule delivery = number of calendar days / final size
Usage: predict and communicate project delivery date to customers.

5. Completeness of requirements = final size / initial size
Usage: adjust estimation model based on average completeness of
requirements.

6. Accuracy of estimates = actual effort / estimated effort
Usage: adjust estimation models when required.

The project manager and the analyst are able to count functional size of an
average project in less than an hour, which they consider as a low measurement
cost. Functional size is very useful for them since it is part of the majority of their
project indicators.

Sylvie Trudel, Pascale Tardif

 Software Measurement Conference

Measurements have been collected on all organizational projects. Improvements
were made on estimation contingency factors through feedback from actual
measures of their projects. Hence, for estimation purposes, they have to increase
their initial functional size measure by 20% (average difference between initial
size and final size), apply their productivity model, and then add effort
contingency for customer and management issues. Now, they rarely have cost
overruns on their projects.

2.3 The challenges

As the manager decided to implement a measurement program, the first challenge
was resistance to change from employees. It was alleviated through
communication and process insights. It took time for some employees to
understand the concept of “quality is free” and the measures were enlightening to
them. Nobody likes to be measured, specifically on productivity. But the
productivity indicator is really of a project, not an individual.
The second challenge was the rigour required to sustain the measurement program
which still is an every day challenge. But whenever they lack rigour, project
results drive away from their standard project performances. They understood that
project control comes with measures.
The third challenge they faced was to be able to compare their productivity with
other organizations, such as projects found in the ISBSG database [8]. Because
they need their local extension to COSMIC, they intend to divide their functional
size measure in two: the first part being measured as the standard COSMIC
method, and the second part being what they add to account for data groups
containing a large number of attributes.

3 Case no. 2: concerned with applying best practices

This small organization had a stable but undocumented process. They did not face
any big issue related to software development but small irritants were observed,
namely in software development estimation and customer communication. They
wanted to learn about the CMMI, assess their practices for project management,
engineering, and support process area categories, and start improving their process
on a continuous basis. Their process improvement motivation and objectives were
to:

1. Improve quality in general: reduce the number of defects, deliver on time,
deliver or exceed customer expectations, while including innovation.

2. Improve quality of life while working: from fire-fighting and day-and-night
shifts to smoother 8 to 10 hours per day of work, 5 days per week.

3. Manage growth through a normalized process: reduce rework, have all team
members apply the same consistent and repeatable process.

 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

4. Be able to delegate some tasks from management to team members within
the process framework.

They already had a measurement program that included effort and schedule
measures, and its main purpose was for billing the customers at the end of every
project. Their biggest customer’s demand for features was growing, so was the
team size. They wanted to continue to be result oriented, i.e. always seeking
customer satisfaction through project progress meetings also used to obtain new
projects. They also have specific meetings to obtain a clear understanding of
customer needs.
Their largest software product was written in Visual Fox Pro (VFP). They have
undertaken a system technology re-engineering from VFP to C#, done in small
steps at a time, starting with the business logic layer while the graphical user
interface (GUI) is still in VFP. New modules are generally developed in C#. The
actual plan is to migrate the whole application to C# in the next 3 years.

3.1 The solution approach

The approach used is based on the CMMI. The continuous representation was
adopted since the organization was not seeking any acknowledged “maturity
level”.

Step 1: Document and start improving the process

Initial discussions highlighted that the process was known from team members but
it was undocumented. As team size was growing, it became important to
document the process for communication purposes. The manager required the
process documentation to be as light as possible. The team was able to graphically
document the whole process on only five pages, supported by a few templates for
expected work products.
The naming for process steps was partly inspired from steps described in the
Guide to the Project Management Body of Knowledge (PMBOK) [9]:

1. Initiate project: gather customer needs, reach common understanding of
requirements, and develop requirements documentation.

2. Plan project: establish estimates and schedule, and obtain “go ahead” from
customer.

3. Execute project:
a. Develop software: as per requirements, perform unit testing.
b. Test software on internal test environment.
c. Package software and install on customer’s test environment.

Sylvie Trudel, Pascale Tardif

 Software Measurement Conference

d. Supervise acceptance testing on customer’s site and obtain “go live”
from customer.

e. Promote software into production environment.
4. Control project: fill timesheets (actual effort data) and monitor progress,

issues, and action items.
5. Close project: archive project data, bill customer, and receive payment.

With a documented process, it was easier to identify where improvements could
be made because the team now had a clear view of their process. Improvements
were made, namely on customer communications and supervision of acceptance
testing, in order to alleviate or remove identified irritants.

Step 2: Provide training on best practices

Small half-day workshops on CMMI were held every other week with the focus
on one CMMI process area per session. The scope was established and agreed
upon to the following CMMI process areas:

Project management category Engineering category
Project planning
Project monitoring and control
Risk management
Integrated project management for IPPD

Requirements management
Requirements development
Technical solution
Product integration
Verification
Validation

Support category
Configuration management
Process and product quality assurance
Measurement and analysis

Actual practices were looked at in detail, starting with project planning and project
monitoring and control process areas. Gap assessments were performed for each
process area within scope, and notes were taken on every practice on strengths and
weaknesses. Improvement suggestions were noted and made prior to the next
workshop.
The two-week delay between workshops allowed enough time for the team to
implement improvements. Feedback was provided at the beginning of the next
workshop and improvement adjustments were recommended and made.

 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

Step 3: Improve existing measurement program

Actual effort is measured by project phase using a home grown timesheet system
that integrates other project attributes such as start and end dates, project type, and
estimated effort. Effort estimates are based on core software tasks defined in the
project spreadsheet. Analysis effort, part of the initiate project phase, is always
recorded as performed, prior to planning and estimating. Percentages are added
for system testing, acceptance testing, and project management. The total effort
estimate becomes a “not to exceed” quotation for the customer. The manager’s
motivation for an accurate productivity model was that he did not want to ever
exceed that amount because it could not be billed to the customer. But he also
wanted the estimate to be kept as low as possible because he gets the project only
if the cost of developing it is outweighed by the return on investment the customer
will get.
As project management training sessions were held, it became clear that effort and
schedule measures were insufficient to fulfil the manager’s information needs, and
that a size measure was required to improve their estimation efficiency. The
COSMIC-FFP method was chosen and training was provided to the analyst and
project manager. The analyst was responsible to measure the size of current and
new projects. A productivity model was established based on functional size and
effort. It was mostly used to validate estimates made on a task-effort basis.
Important productivity differences were observed among projects, ranging from 3
to 5 hours per size unit. Investigation was made to explain this variation to find
out that differences come from the technology used where VFP project
productivity averages 2.5 hours per size unit (i.e. Cfsu), and C# project
productivity averages 4.5 hours per size unit, once the learning curve was over.
One of the difficulties was when they have to integrate both technologies (i.e.,
VFP for GUI and C# for business logic) because it is more complicated and
requires more effort. Also, a lot of effort must be spent on creating stored
procedures for new database tables. Many projects developing new features were
actually using existing tables along with their stored procedures. In these cases,
the required effort per size unit was lower than the productivity model for projects
where most tables were new. The productivity model was adjusted not only based
on functional size but also on the number of new tables and stored procedures that
need to be created. Calculating expected project effort based on these attributes
was automated with macros into the spreadsheet template.
The team productivity model behaves as if new development occurs only for the
first functional process (i.e., creating GUI, business logic, and persistence layers,
plus stored procedures) and as if it switches to maintenance mode thereafter (i.e.,
stored procedures are already created and used as in an evolutive or adaptative
software maintenance).

Sylvie Trudel, Pascale Tardif

 Software Measurement Conference

3.2 The results

Functional size is now part of their project definition template as a worksheet and
macros were developed to raise a flag when a significant difference occurs
between their traditional estimate and the productivity model estimate based on
functional size. The list of current and upcoming projects now contains functional
size along with estimates for comparison between projects and reporting purposes.

3.3 The challenges

The ever growing demand for features from their customer led the analyst to
abandon functional size measurement on several projects due to lack of time.
Their first challenge was to continue functional size measurement even under time
constraints. They intend to experience different ways to measure functional size
and expect to gain speed.
Their second challenge was to keep-up with the required rigour. They intend to
put in place more project resources to ensure that analysts will have the necessary
time to perform measurement. A second analyst was hired but has not been trained
yet on the COSMIC-FFP method.
Their third challenge was to improve measurement usage to manage and take
decisions. Their decision process is still performed through perception and not
enough based on measurement. For example, they used to wait a long time for a
customer’s decision on change requests priority, and they have recently added an
“expected benefit” attribute on every change request based on number of impacted
users, effort per year expected to be saved per user, and effort to develop the
change request. Now, change requests priority is automatically calculated and
sorted descending on this expected benefit.

4 Conclusion and future work

Even if both organizations had similarities, they were facing different issues. It
was clear that one measurement program could not be designed to suit any small
organization that intends to use it to fulfil their information needs in order to
support their software management decisions. However, similar measures were
defined and used including functional size with the COSMIC-FFP method, effort
per project phase, and schedule delivery.
Training and resources are key issues to sustain a measurement program.
Management support is mandatory for success and managers should be trained as
well on what a measurement program can do for them, such as gaining control and
confidence over project results.
Implementing a measurement program was done through half-day workshops
every other week, in both cases. This pace allowed teams to implement

 Implementing a measurement program in small software organizations

IWSM/MetriKon 2006

improvements with few disturbances of their normal working schedule of
software development. As process improvement experts, it is important to be
ready to work within a flexible schedule when helping small organizations in their
quest to develop software more efficiently.

Acknowledgement

The authors wish to thank Daniel Murray, president of SIGM Inc.
(dmurray@sigm.ca) and Michel Martel, president of Analystik inc.
(michel.martel@analystik.ca), for their precious collaboration and information
sharing.

References

1. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI(R)-Guidelines for Process Integration
and Product Improvement, Addison-Wesley Professional, Boston, MA, 24 February
2003

2. Basque, R.: CMMI-Un Intineraire Fléché Vers Le Capability Maturity Model
Integration, Dunod, 2004

3. Humphrey, W.: A Discipline for Software Engineering, Addison-Wesley Professional,
Boston, MA, 31 December 1994

4. McFeeley, R.: IDEAL: A User's Guide for Software Process Improvement,
Handbook CMU/SEI-96-HB-001, Software Engineering Institute, 1996. [Accessible
on line at http://www.sei.cmu.edu/publications/documents/96.reports/96.hb.001.html
]

5. ISO/IEC 20926: Software engineering -- IFPUG 4.1 Unadjusted functional size
measurement method -- Counting practices manual, Geneva, Switzerland, 2003

6. ISO/IEC 19761: Software engineering -- COSMIC-FFP -- A functional size
measurement method, Geneva, Switzerland, 2003

7. Abran, A. et al : Measurement Manual, The COSMIC Implementation Guide for
ISO/IEC 19761:2003, version 2.2, January 2003

8. International Software Bechmarking Standards Group (ISBSG), http://www.isbsg.org
9. Project Management Institute, A Guide to the Project Management Body of

Knowledge (PMBOK® Guide) - Third Edition, The Project Management Institute,
2004

