
International Workshop on Software Measurement (IWSM’01) 109
Montréal, Québec, Canada – August 28-29, 2001

Performance Engineering in Agent-based Systems Concepts,
Modelling and Examples

Cornelius Wille, Reiner Dumke, Stanimir Stojanov+

Otto-von-Guericke-Universität Magdeburg,
Fakultät für Informatik, Postfach 4120,

39016 Magdeburg,
Tel.: 0391-67-18664,
Fax: 0391-67-12810

(wille,dumke)@ivs.cs.uni-magdeburg.de

+University of Plovdiv, Dept. of Mathematics and
Informatics,

4000 Plovdiv, 236 Bulgaria blv.,
Bulgaria, csstani@pu.acad.bg

Abstract
This paper presents a kind of application of the
software performance engineering to the area of
agent-based systems.

In a first part we will describe the general aspects and
contents of multi agent systems (MAS) architectures.
Then, a short presentation of the main software
performance principles should motivate the
measurement approaches for the MAS. Software
agents can be intelligent as well as flexible. This
involves the possibility of using traditional methods of
software performance evaluation and controlling
based on some classical approaches like “a
posteriori” or “fix it later” technologies.

Our paper presents new approaches in performance
measurement of agent-based systems relating to

software aglets and MAS based on the new MALINA
concept .

Keywords: Software performance engineering,
multi agent systems, software aglets, agent
performance, MALINA concept

1 Introduction

Software agents combine a lot of facilities and features
such as mobility, intelligence, reactivity, adaptability,
autonomy etc. In order to consider the measurement
points on an agent or agent-based system it is
necessary to analyse the potential architecture of the
software agent. In the most complex case we can
establish the following components of an agent as
shown in figure 1.

 influences

Software agent:

 intentions/ administration/
 co-operation co-ordination

 inputs/ outputs/
 perceptions reactions
 tasks/
 goals action/
 negotiation/ collaboration
 communication
 knowledge/
 experience

 reflections

Fig. 1: Components of a general software agent

110

In the same manner we will characterise the general
architecture of an agent-based system (see also
([Dumke 00c] and [Ferber 99]). This model should
consider both kinds of the object (as passive object
which will be the operation basis, and the active

objects as agents themselves). On the other hand, we
also consider the fact of usability of a MAS as shown
in the figure 2.

Software agent system:

 influences

agenta

 city A agentb
 user customer

 results object2 benefits
 object1
 city B

 city C
 agentc

 reflections
 environment/ network

Fig. 2: General architecture of a MAS

Furthermore, agent-based systems intent also some
essential software engineering aspects which must be
also considered in the case of system evaluation and
measurement. Such aspects are for instance (see
[Dumke 00b], [Hayzelden 99], [Schmietendorf 00a])

• The different stages of an agent and a MAS
during the software specification, design and
implementing process,

• The different kinds and contents of agent or MAS
documentation,

• The different foundations of the MAS
implementation such as Aglets, Telescript etc.
and the different techniques of implementation,
for instance mobile objects,

• The different factors relating to the current basis
systems, platforms or net topologies and
architectures,

• Last but not least, the different role of quality
aspects such as reliability, performance and
security.

2 Software Performance Engineering for
Agent-based Systems

2.1 Performance Engineering during the Software-
Development

The presentation of the performance engineering
methodologies should be reduced to the general
principles which are defined by [Smith 94] (see also
[Dumke 00a] and [Schmietendorf 00]):

P01: Fixing-point Principle: "For responsiveness,
fixing should establish connections at the

111

earliest feasible point in time, such that
retaining the connection is cost-effective."

P02: Locality-design Principle: "Create actions,
functions, and results that are close to physical
computer product."

P03: Processing Versus Frequency Trade-off
Principle: "Minimize the processing times
frequency product."

P04: Shared-resource Principle: "Share resources
when possible. When exclusive access is
required, minimize the sum of the holding time
and the scheduling time."

P05: Parallel Processing Principle: "Execute
processing in parallel (only) when the
processing speedup offsets communication
overhead and resource contention delays."

P06: Centering Principle: "Identify the dominant
workload functions and minimize their
processing."

P07: Instrumenting Principle: "Instrument systems as
you build them to enable measurement and
analysis of workload scenarios, resource
requirements, and performance goal
achievement."

P08: Structuring Principle of Physical Concurrency:
"Introduce concurrency only to model
physically concurrent objects or processes."

P09: Tuning Principle: "Reduce the mean service time
of cyclic functions."

P10: Data Structure Rule: "Augment structures with
extra information or change the structure so
that it can be accessed more easily."

P11: Store Precomputed Results Rule: "Compute the
results of expensive functions once, store the
results, and satisfy subsequent requests with a
table look -up."

P12: Caching Rule: "Store data that are accessed
most often to make the cheapest to access."

P13: Lazy Evaluation Rule: "Postpone evaluation
until an item is needed."

P14: Packing Rule: "Use dense storage
representations to decrease storage cost by
increasing the time required to store and
retrieve data."

P15: Interpreter Rule: "Represent common sequences
of operations compactly and interpret as
required."

Obviously, most of these principles are addressed to
the software product and give only some hints to the
software process. Regarding our general MAS
architecture we can point out these principles in the
presentation in figure 3.

 influences

 P09
 P01 P12

agenta

 city A agentb
 user P03 customer

 results object2 benefits
 object1 P14
 P10 city B
 P04 P11
 P05
 P06 P07

 city C
 agentc P08
 P13
 P15

 P02 reflections
 environment/ network

Fig. 3: Principles of performance aspects in an agent-based software system

112

The possibilities of tool support in the software
development and in the object-oriented paradigm lead
to the idea of the process evaluation based on software
performance engineering defined as Performance
Engineering Maturity Model (PEMM) [Schmietendorf
99]. This method of evaluation also implies an
improvement of the general software development
process caused by the earlier consideration of the
performance aspects. The techniques to achieve these
goals are performance-based prototyping, costs
estimation etc. (see [Schmietendorf 01]).

2.2 Fundamental Kinds of Performance for Agent-
based Systems

Now, we will define a whole set of performance
metrics related to the product, process and resources
technologies and components of the software agents
and the MAS. In considering the above remarks, we
should involve all the general aspects of software
agents kinds and their facilities, interactions and
intentions. Note, that the metrics-based analysis of the
agent behaviour is one of the new and extended areas
in software measurement of agent-based systems (see
[Dumke 00]). The performance metrics set is described
in the following Table 1.

Product Performance Metrics

Software Agents Agent-based System

Agent design level:
Ø Software agent size: a large agent size can cause

a low performance and mobility (as implicit
performance)

Ø Software agent component structure: the
structure does affect the coupling effects (as
structure performance)

Ø Software agent complexity: a high computa-
tional complexity leads to a weak performance
(as immanent performance)

Ø Software agent functionality: a high functio-
nality can injure the performance (as action
performance)

System design level:
Ø Agent system size: a small agent system size can

cause an overhead (as potential performance)

Ø Agent system component structure: the system
structure relates to the distributed performance
(as architecture performance)

Ø Agent system complexity: this aspect influences
the system applicability (as entropy
performance)

Ø Agent system functionality: the system
functionality affects their efficiency (as model
performance)

Agent description level:

Ø Software agent development description level:
the description level determines the maintain-
ability of an agent (as change performance)

Ø Software agent application description level:
this evaluation considers the usability of an
software agent (as usability performance)

Ø Software agent publication description level: a
high publication level supports the spreading of
the agent use (as distribution performance)

System description level:

Ø Agent system development description level: the
system description affects of system
maintenance (as maintenance performance)

Ø Agent system application description level: a
good application description is a precondition
for an efficient use of the whole system (as
using performance)

Ø Agent system publication description level: a
good system publication supports the spreading
(as marketing performance)

113

Product Performance Metrics

Software Agents Agent-based System

Agent working level:

Ø Software agent communication level: a high
communication intensity can affect a flexible
application (as communication performance)

Ø Software agent interaction level: this aspects
expresses the activity of an agent (as
interaction performance)

Ø Software agent learning level: this level is based
on the type of an agent and his roles in the
system (as learning performance)

Ø Software agent adaptation level: the facility of
adaptation of the agent implementation (as
adaptation performance)

Ø Software agent negotiation level: this level
determines the success of an agent activity
relating to common tasks (as negotiation
performance)

Ø Software agent collaboration level: a high
collaboration of an agent classify his roles in the
given tasks (as collaboration performance)

Ø Software agent co-ordination level: a high level
determines the role of the agent in an
administration hierarchy (as co-ordination
performance)

Ø Software agent co-operation level: this level
determines the effectiveness of common tasks
realisation (as co-operation performance)

Ø Software agent self-reproduction level: this
level determines the stability of an software
agent itself (as reproduction performance)

Ø Software agent performance level: a high agent
performance is related to all kinds of agent
activities (as operation performance)

Ø Software agent mobility level: this aspect
consider the efficiency relating to the agent
movement (as mobility performance)

Ø Software agent specialisation level: a high
specialisation can lead to a high performance (as
suitability performance)

System working level:

Ø Agent system communication level: this level
characterises the intensity of the conversations
(as advising performance)

 Agent system interaction level: many interactions
are based on a high co-operation (as team
performance)

Ø Agent system knowledge level: this aspect
determines the knowledge-based foundation of
the agent-based system (as knowledge
performance)

Ø Agent system living level: this aspects is based
on the adaptability of the agents and
characterises the system maintenance effort (as
life performance)

Ø Agent system conflict management level: a high
conflict management causes this aspect (as
conflict solution performance)

Ø Agent system community level: a high
community level is caused on collaboration (as
community performance)

Ø Agent system management level: a efficient
management determines the agent organisation
level (as management performance)

Ø Agent system application level: this aspect is
based on an effective task-oriented agent co-
operation (as application performance)

Ø Agent system stability level: a high stability
level includes the agent self-reproduction and
other system error handling facilities (as
stability performance)

Ø Agent system performance level: this level
includes the agent performance and the
performance of the environment (as processing
performance)

Ø Agent system flexibility level. the mobility
behaviour of all agents is considered here (as
flexibility performance)

Ø Agent system organisation level: this level leads
to an efficient distribution of the agent roles and
their administration (as organisation
performance)

Tab. 1: Performance metrics for the product evaluation of MAS

In the next table we define performance metrics for the
process evaluation of software agents and agent-based
systems. We will define three aspects per agent

characteristics. This leads us to the performance
metrics set shown in the Table 2.

114

Process Performance Metrics

Software Agents Agent-based System

Agent development life cycle:

Ø Software agent phases level: a high phase level
also expresses a good efficiency (as
development performance)

Ø Software agent milestones level: this level
expresses the correct timing of the agent
development (as cycle time performance)

Ø Agent requirements workflow level: this level is
caused by the timely realisation of the
requirements for the agent implementation (as
ensuring performance)

System development life cycle:

Ø Agent system phases level: this level is caused
for an efficient system realisation (as forming
performance)

Ø Agent system milestones level: this level is
related to the aspects in the planning time of
their realisation (as realisation performance)

Ø System requirements workflow level: a high
workflow level evaluates the appropriateness of
the realised system requirements (as
requirements performance)

Agent development method level:
Ø Software agent methodology level: this level

means that the development method should be
efficient to the kind of agent implementation (as
methodology performance)

Ø Software agent paradigm level: a high paradigm
level is caused by an efficiency of the
implementation (as paradigm performance)

Ø Software agent CASE level: this level expresses
the tool-support during the agent development
(as tool performance)

System development method level:
Ø Agent system methodology level: a high

methodology level expresses the use of
appropriate development techniques (as
conception performance)

Ø Agent system paradigm level: this level
determines the appropriateness of the chosen
techniques (as technology performance)

Ø Agent system CASE level: this level includes the
set of different tools in order to support the
system development (as CASE performance)

Agent development management level:

Ø Agent project management level: a high
management level is involved in the system
project management (as administration
performance)

Ø Agent configuration management level: this
level expressed the efficiency of version control
for the agent (as version performance)

Ø Agent quality management level: this level
expresses the used quality assurance techniques
related to the agent development (as quality
assurance performance)

System development management level:

Ø System project management level: this level
describes the timing and the appropriate use of
resources (as process performance)

Ø System configuration management level: this
level is caused by a version control for all parts
of the agent-based system (as configuration
performance)

Ø System quality management level: this level
includes the different quality assurance
techniques (as system maturity performance)

Tab. 2: Performance metrics for the process evaluation of MAS

In the same manner, we will define a set of
performance metrics usable for the different kinds and

aspects of the resources in the agent-based system
development (see Table 3).

115

Resources Performance Metrics

Software Agents Agent-based System

Agent developer level:

Ø Agent developer skill level: a high skill level
causes an efficient developer specialisation for
agent implementation (as skill performance)

Ø Agent developer communication level: the
communication is an indicator for an efficient
resolving of any questions (as team level
performance)

Ø Agent developer productivity level: a high
productivity includes the functionality and the
quality of the software agent (as developer
performance)

System developer level:

Ø System developer skill level: this level includes
different kinds of knowledge (as experience
performance)

Ø System developer communication level: a high
communication level is based on the successful
participation design techniques (as team
performance)

Ø System developer productivity level: this level is
related to the development of the different
system components (as staff performance)

Agent software resources level:

Ø Agent software paradigm level: this level keeps
the efficiency of the chosen paradigm (as
component performance)

Ø Agent software performance level: this level is a
precondition for the agent performance itself
and is related to the used system software (as
agent basis performance)

Ø Agent software replacement level: a high
replacement level keeps a good level of agent
maintenance and migration (as replacement
performance)

System software resources level:

Ø System software paradigm level: this level is
divided for the different system components (as
COTS performance)

Ø System software performance level: a high
performance level of the used COTS determines
the system performance (as MAS basis
perfor mance)

Ø System software replacement level: this level is
divided in the evaluation of the different
components of the agent-based system (as
migration performance)

Agent hardware resources level:

Ø Agent hardware reliability level: this level
includes the different platforms which will be
used by a mobile agent (as reliability
performance)

Ø Agent hardware performance level: this level
considers also the potential types of platforms
(as hardware performance)

Ø Agent hardware availability level: a high
availability level is a precondition for the
mobility of an agent (as availability
performance)

System hardware resources level:

Ø System hardware reliability level: this level
includes all platforms of the implemented
environment of the agent-based system (as
system reliability performance)

Ø System hardware performance level: this level
is a basis for the efficiency of the agent-based
system (as platform performance)

Ø System hardware availability level: this level
expresses the stability of the system use (as
guarantee performance)

Tab. 3: Performance metrics for the resources evaluation of MAS

This formal listing of performance metrics in the tables
above implies the investigation of relations and
causalities between these metrics. But, we will not
consider these aspects here. Our new approach for
agent-based systems evaluation is addressed to the
behaviour of the software agents in a MAS. Further
investigations can be found in [Dikaiakos 01] [Koblick
99] and [Monasce 98].

2.3 Special Aspects of the Performance Controlling
for Software Agents

Now, we concentrate our investigation to the
performance evaluation and improvement addressing
product aspects. In Figure 1, we have presented the
different kinds of components of an agent relating to
his autonomous actions. This as pect includes an
assumed intelligence of an agent as well as the
possibility to control his performance kinds and levels.

116

Hence, the classical a posteriori techniques of
performance controlling and tuning are appropriate in
this case. These facilities are shown in Figure 4.

 Co-operation performance
 Collaboration performance
 Co-ordination performance

 Adaptation performance influences

Interaction performance
 intentions/ administration/
 co-operation co-ordination

 inputs/ outputs/
 perceptions reactions
 tasks/
 goals actions/
 negotiation/ collaboration
 communication
Negotiation- knowledge/ Mobility performance
performance experience

reflections Operation performance
Communication performance
 Reproduction performance
 Suitability performance Learning performance

Fig. 4: Performance metrics of agent’s run time

In the following, we will define these performance
aspects and metrics in an explicit manner in order to
execute their characteristics in some cases of their
application. The descriptions are given in an
alphabetical order.

• Adaptation performance: The adaptation
performance quantifies the time effort for the
migration of the software agent in order to keep
further tasks in the agent-based system.

• Collaboration performance: The collaboration
performance will be executed through the average
time effort for task realisation of an agent relating
to the other agents which participate at the task.

• Communication performance: The
communication performance will be expressed by
the average time of message sending and
receiving in order to work on a common task.

• Co-operation performance: The co-operation
performance includes the summary of the
collaboration performance, co-ordination
performance, and negotiation performance.

• Co-ordination performance: The co-ordination
performance is caused by the average time effort
of the co-ordination between the agents in order
to work on a common task.

• Interaction performance: The interaction
performance characterises the time to reply
during the interaction of the software agent.

• Learning performance: The learning
performance executes the effort for extension and
adaptation of the knowledge of a software agent.

• Mobility performance: The mobility performance
determines the average dwell time of an agent in
the visited cities.

• Negotiation performance: The negotiation
performance determines the average time effort
for the preparation and co-ordination of a task
solution between software agents.

• Operation performance: The operation
performance executes the average time effort for
the realisation of the agent tasks/operations.

• Reproduction performance: The reproduction
performance is addressed to the effort of the

117

regeneration and/or reproduction of the
fundamental operations of a software agent.

• Suitability performance: The suitability
performance evaluates the loss of efficiency
caused by the redundancy in the functionality of a
software agent addressed to the problem solution.

Based on theses definitions, we can execute in a first
approximation the appropriate kinds of performance of
an agent-based software system. The following table
shows a simplified execution of the different types of
the MAS operation performance. This approximation
excludes the special characteristics and influences of
the agent environment and the MAS resources and
intends the average execution.

MAS operation
performance

An approximate
execution

Advising performance: average communication
performance

Application
performance:

average co-operation
performance

Community
performance:

average collaboration
performance

Conflict solution
performance:

average negotiation
performance

Flexibility
performance:

average mobility
performance

Knowledge
performance:

average learning
performance

Living performance: average adaptation
performance

Management
performance:

average co-ordination
performance

Organisation
performance:

average suitability
performance

Processing
performance:

average operation
performance

Stability performance: average reproduction
performance

Team performance: average interaction
performance

Tab. 4: Determination of the different kinds of the
MAS operation performance

On the other hand, the performance metrics of the run
time of an agent are structured considering the whole
tasks of the MAS. For instance, we can establish the
following groupes of performance characteristics:

• Realisation of o task:
Co-operation = {communication, negotiation,
interaction, collaboration, operation},

• Pre activities for task realisation:
Preparation = { suitability, mobility },

• Post activities after task realisation:
Improvement = { learning },

• Background of the agent activities:
Living facilities = {adaptability,
reproduction}.

In the following we will discuss some examples of
performance measurement based on concrete software
agent systems.

4 First Applications for Aglets-based
Systems

4.1 Performance Measurement of Software Aglets
Software aglets are a special kind of a MAS
implemented in the Java programming language
[Lange 98]. The notion aglet is build from the special
kind of small Java applications as applet and the word
agent.

Software aglets can be implemented with help of the
Aglets Software Development Kit (ASDK) from IBM
which defines the MAS environment as Tahiti server.
The basic operation of software aglets are:

• Creation: The definition of a mobile agent in a
special context.

• Cloning: The implementation of a same type of a
software agent at a special run time.

• Dispatching: The transformation of a aglets from
one city to another.

• Retraction: The transformation of the software
agent back to his origin.

• Activation respectively Deactivation: The
possibility of stopping/ starting a software aglets.

• Disposal :The destruction of a software agent in
the MAS.

The following Figure 5 shows these basic operations of
software aglets in the predefined environment.

118

 city A: city B:
 dispose
 clone dispatch

 Aglet Aglet

 retract

 create

 storage
 CLASS

Abb. 5: The aglet life cycle model

In order to demonstrate some aspects of performance
analyses, we will present a simple measurement agent
as aglet, that measures the size (as lines of code
(LOC)) of objects (as Java classes and/or further

aglets) in a special place in the MAS respectively in a
city.

Figure 6 shows the general definition of our
measurement aglet working in the aglets environment
on a special place.

Fig. 6: Creation of a measurement aglet

119

Figure 7 demonstrates the application of our measurement agent in a local area network.

Fig. 7: Application of the measurement aglet for LOC counting

The next figure shows the determination of the
operation performance of a software agent based on
the aglets functionality above.

Fig. 8: Protocol of the operation performance of a software agent

120

Furthermore, we can extend this performance analysis
by defining performance constraints such as limits of
the operation time of the agent. This leads us to an
example of an evaluation of the collaboration

performance. The following Figure 9 presents such an
example of time constraints for our LOC counter aglet
above

Fig. 9: In tention of the collaboration performance of an aglet

In the next example we will consider the mobility of
software agents. Figure 10 shows the dispatching of an
aglet from one place to another in a local area network.

This aglet produces the city information on every place
he has switched.

Fig. 10: Protocol of the mobile aglet producing city information

121

This aglet can be use in order to demonstrate an
example for analysis of the mobility performance.

Figure 11 presents an example of a city hopper aglet
and prints the dwell time in the special network place.

Fig. 11: Protocol of the execution of the mobility performance of an aglet

The analysis of the mobility performance can be
extended by the use of constraints for the different
work places (as cities) and the use of intelligent
algorithms to optimise the aglet operation in special
networks.

4.2 Performance Measurement in MAS based on
the MALINA Concept

MALINA (Multi-Agent Local Integrated Network
Associations) is an environment for the development
of multi-agent applications and it is a more precise
extension of the concepts given in [Stojanov 96],
[Stojanov 98], [Stojanov 00]. This is a more common
approach to intelligent agents and multi-agent systems,
an approach that does not focus just on the agents’
ability to “think” or to make the agent very clever, but
also embraces all constitutive parts of one multi-agent
system in a vast technology for the development of
distributed applications in a very short time.

The technology supports a bottom-up approach for
developing multi-agents applications. In MALINA the
questions about how to overcome the bounds of
intelligence and how to make agents capable to obtain
all advantages of the multi-agent society, how they
could be able to use other agents’ knowledge and to act
more “successfully” while trying to solve complex task
on behalf of the user are solved with applying three
main steps – operational agents’ configuration (using
an abstract agent architecture), determining of the
static infrastructure of the application in terms of
“agent cities” and specification of the agent
associations. MALINA is specified in following three
levels :

• Abstract level – at this level a hypothetical
infrastructure which provides the theoretical
framework of the technology is defined.

• Conceptual level – conceptions are
decomposition and detailisation of the
hypothetical infrastructure in order to prepare the
development of supporting programming tools
and an appropriate developing environment The
following four conceptions which are a basis for
the developing environment of the technology are
founded.
ü Abstract Agent Architecture – specifies the

architecture of an abstract generic agent by
help of which the agents of different
applications can be configurated

ü AgentCities – specify a static infrastructure
for multi-agent applications

ü AgentAssociations – provides various
possibilities for building agents associations

ü MobileServices – give different ways for
automatic generation of mobile agents.

• Development level – this level includes the
development tool for the technology.

In the MALINA technology the abstract agent is a
genetic structure with the following main parts: agent
machine including the agent interface, agent local
control, functionality (specialization) of the agent and
agent mentality.

Agent interfaces consist of perceptive and influence
mechanisms. Using its sensors the agent receives
information from other agents and from the multi-
agent environment. In our technology that is the city in
which the agent lives. Each agent sends information to
the other agents through its effectors, and using the

122

effectors it is capable to change the environment or to
operate into the city employing its functionality and
specialization or its social role. It is not enough just to
send and receive information through sensors and
effectors. Mechanisms for processing and
understanding these information are needed. In the
abstract agent architecture we have separated this
process over two phases:

• Agent training – during the configuration of the
operational agent the designer has to “teach” the
agent what it should do according to received
performative (influencing the adaptation
performance and the learning performance).

• Run time processing – this is a practical
mechanism for reasoning that enables the agent to
use all knowledge obtained during the training

(influencing the co-operation performance and
the suitability performance).

The local control of the abstract agent is designed in
two levels – a meta-level fo r communication and co-
ordination and a planning level including aspects of the
communication performance, co-ordination
performance, and of the collaboration performance.
In MALINA technology the agents can communicate
with each other through KQML (see [Finin 94],
[Labrou 97]). The agent meta-level is the part from the
abstract agent that deals with the processing of the
received requests (in form of KQML performatives)
and with the construction of the answers (also KQML
performatives). It is the mediator between the rough
KQML performative and it’s processing from the agent
corresponding to the internal rules given by the
designer. A internal rule looks like following:

 performative

(performative_name
:parameter1 <word>
: parameter2 <word>

…
: parameterN <word>)

ResultFromActions → ComposeAnswer(parameter1, …, parameterM)

action1, action2, …, actionN : condition1, condition2, …, conditionN ::

Such rules are interpreted from the meta-level applying
rules from the common sense reasoning and default
logic. If a performative with name performative_name
has been received (with the corresponding parameters),
then:

1) Check consistency with the conditions given in the
list: condition1, …, conditionN.
ü If there is no contradiction with agent’s

mental states (intentions and commitments)
⇒ go to step 2.

ü Else ⇒ ask for the next received
performative.

2) Perform the partial plan from list: action1, action2,
…, actionN;

3) According to the result from plan execution ⇒
compose an answer to the corresponding agent.

Depending on agent’s social role in the city or multi-
agent society it inhabits different performatives are
included into the agent’s meta-level.

Agents are computational systems that inhabit and
interact with dynamic, and not entirely predictable
environments (relating to the interaction
performance). They decide for themselves, on the
basis of their individual beliefs, goals, etc., how to
respond to the environment and other agents (relating
to the negotiation performance). In the MALINA
technology we have separated the different mental

states that give to the agent all the knowledge it has
about the world to make conclusions and the
processing mechanism of these mental states. This
mechanisms referring to the agent’s mentality are part
of the abstract agent’s local control. In the case of a
minimal agent’s capability we need beliefs, intentions
and commitments as agent’s mental states. An agent’s
beliefs include beliefs concerning the world, beliefs
concerning the other agents in the MAS, and beliefs
concerning the agent itself. The beliefs of the agent
may be incomplete and insufficient and if classical
representations are used the agent will not be able to
solve a lot of problems if it always needs all the
information to be present in its beliefs. To cope with
this problem we use principals of default logic in the
presentation and interpretation of agent beliefs. So the
local control of agents needs a mechanism to process
complex default rules, and to make conclusions, to ask
questions using common sense reasoning and default
logic principals. An agent may update its beliefs by
observing the world and by receiving messages from
other agents using its sensors and effectors.

The Agent Cities concept specifies one open
infrastructure for modelling multi-agent systems in
distributed environment. An application could be
considered as a set of different “cities”. Each city
includes logically related agents. A city can be
constructed in three steps: specification and

123

identification of the city, definition of the agent
locations and distribution of the agents over the city.
Each operational agent after its configuration is put
into a given city and as an inhabitant of this city the
agent participates in the social life of the city. But to
perform any social activities agents need mechanisms
to communicate with one another and with the
institutions of the city. That is why, when the cities are
created, they have to be put into operation by means of
defining some communication mechanisms. The city
consists of three main parts (see Fig. 12).

The Kernel manages the communication among the
agents. It supports two address spaces (logical and
physical) and the transformation between them.

 In the MALINA technology we propose a
measurement and evaluation module which
implements some ideas of the approach proposed in
this paper. By means of appropriate metrics we try to
gather quantity data for the evaluation of the agent
behaviour (the local aspect) and of the features of the
multi-agents application as a whole (the global aspect).
By the local aspect we intend to improve the operation
of the separated agent and the loading of their local
resources. We distinguish different kinds of resources
– devices, system software, information sources etc.
The main goal of the global aspect is the optimization
of the static infrastructure of multi-agents application
and the effective use of the global resources. The two
aspects tie close together in relation to some metrics.

In the technological framework two kinds of
measurements are possible - off-line and on-line
measurements. The off-line measurements will be
accomplished during the “agents’ teaching” phase
which is a part of the testing. The measurement’s data
are visible for the designers of the multi-agents
application. In this way they can improve with help of
development tools the technology of the static
infrastructure of the system. For the support of the off-
line measurements we are going to define a new set of
specialized KQML-performatives. The on-line
measurements and evaluations take place during the
running of the application (run-time measurements).
The gathered data are used mainly for supplying of the
city’s mobility module. This kind of the measurements
are transparent for the application designers and users.

They cause dynamically changes of the system which
can be only booked.

A good software technology must give an account of
its ability to supporting applications with high
performance and effectiveness (especially their
operation performance) . This point of view is very
important for the distributed information systems . A
possible way for increasing the performance is the use
of mobile services. The MALINA technology provides
tools for generating and controlling mobile services in
form of mobile agents. Here an approach is proposed
based on the notion of conditional mobility.

While the static agents are implemented as a separated
process over a computer the mobile agents can be
moved across the entire net. They can refresh its
operation at the new location. From a conceptual point
of view these agents can be interpreted as traveling,
dynamic, wandering, roaming or migrating. The sense
of the mobility is the performance increasing which
can be achieved by better use of the available
resources. For example, a service (agent) will be
moved near to a host, which offers free resources.

In MALINA we understand the mobility as ability to
movement of the agents across the “cities”. According
to the mobile agents conception the mobility is always
conditional, e.g. it can be provoked from different
reasons (motives). There are systems that support
unconditional mobility. In our approach the mobility is
interpreted as a dynamic changeable property. This
property springs up from the satisfaction of proper
conditions. In the mobility conception we assume that
the services provided from a multi-agents application
are a priori static. By the application configuration the
designers and the administrators set the default
location of the agents. If the run-time establishs a
situation which satisfies the mobility conditions then
the mobility status of selected agents can change, i.e.
they become mobile. After the mobility necessity get
over the run-time restores the static infrastructure. The
static infrastructure can be modified only off-line by
help of the development tools of the technology. The
conditional mobility in MALINA is supported with
help of a system for measuring and evaluate the agent
behaviour especially their mobility performance).

124

The mobility manager includes the following
components:

• MCC (Mobility Conditions Check) – this
component checks periodicly if any mobility
condition is arised. The mobility conditions can
be specified during the system’s configuration.
For checking-up conditions the data provided by
the measuring module are used. A set of marked
agents that have to become mobile will be
returned as result.

• MA (Mobility Assignment) – MA assigns to the
selected agents the property mobility. The
property is limited in the time. After the fixed
time point the mobility is not valid. If it is needed
the time interval can be extended.

• AR (Agents Relocation) – in this module are
implemented the following operations:

- Copy – generates a new copy of an agent
which is mobile

- Move – an agent will be moved to a new
“city” without generating a copy

- Clone – generates a new mobile copy with
modified functionality.

• SI (Static Infrastructure) – restores the static
infrastructure of the application.

There are different conditions to arise of mobility. If a
agent wants to get information from some sources
located over different platforms it can send a request to
all platforms through RPC-like (Remote Procedure
Call) methods. However, if the data size is too large
then we have to look for solutions to optimize the
traffic. The agents can process the removed data more
effective when the services, which are necessary, are
offered on the removed site. The relocation of the
agents can increase the performance. Disadvantage of
this type of mobility is the fact that the removed site
has to give CPU cycles to support the mobile process.

In the current version of this conception there are two
scenarios which specify the mobility conditions
considering the agent (system) working performance:

• Mobile assistant – a set agent has to realize too
many requests. In order to accelerate the temp of
work the system generates a mobile copy of the
agent, which will be located in another “city”.
The new “city” offers a free resource in this time.
The set of requests will be separated between two
agents . After the work is done the mobility
condition is not valid yet. The run-time restores
the static infrastructure.

• Accelerate the volume of messages – MCC
establish that between two agents which are in

Measurement and
Evaluation System

AR

SI

Mobility Assistant

MCC

MA

Logical Address Space Management

Transformations

Physical Address Space Management

Kernel

Fig. 12. Architecture of a city

125

different “cities” run intensive exchange of
messages . The system moves one of them in the
“city” of the other. So in this way we accelerate
the exchange between them. When we finish the
condition of mobility isn’t satisfied.

5. Conclusion

The software measurement related to the agent-based
systems – also the general performance aspects - is
rarely considered today. Hence, we define at first the
general measurement aspects and the intentions of
software agents and MAS. Based on a general
definition of a software metrics set addressed to the
aspects of the product, process and resources in MAS
development and application, we have investigated the
special characteristics of the agent work performance.
Two examples are given in order to demonstrate the
general measurement approach: the performance
measurement of software aglets and the discussion of
performance intentions in a new agent-based system
concept of MAS development.
Further investigations are directed to the integration of
special performance evaluation methods in more
complex aglets and for other MAS technologies.

6. References

[Dikaiakos 01] Dikaiakos, M.D.; Samaras, G.:
Performance Evaluation of Mobile Agents: Issues
and Approaches. In: Dumke et al.: Performance
Engineering, Lecture Notes in Computer Science
2047, pp. 148-166

[Dumke 00] Dumke, R.: Anwendungserfahrungen
eines objektorientierten Measurement
Framework. In: Dumke/Lehner (Hrsg.):
Software -Metriken, DUV, 2000, S. 71-93

[Dumke 00a] Dumke, R.; Koeppe, R.: Konzeption
einer Web-basierten SPE-
Entwicklungsinfrastruktur. Tagungsband des 1.
Workshop Performance Engineering in der
Software -Entwicklung (PE2000), Mai 2000,
Darmstadt, S. 1-16

[Dumke 00b] Dumke, R.; Koeppe, R.; Wille, C.:
Software Agent Measurement and Self-Measuring
Agent-Based Systems. Preprint Nr. 11, Fakultät
für Informatik, Otto-von-Guericke -Universität
Magdeburg, 2000

[Dumke 01] Dumke, R.; Rautenstrauch, C.;
Schmietendorf, A.; Scholz, A.: Performance
Engineering – State of the Art and Current

Trends. Lecture Notes in Computer Science 2047,
Springer Publ., 2001

[Dumke 00c] Dumke, R.; Schmietendorf, A.; Stojanov,
S.: Komponentenorientierte Entwicklung
verteilter Multiagenten-Applikationen.
Tagungsband des 2. Workshop
komponentenorientierte betriebliche
Anwendungssysteme (WKBA 2), Februar 2000,
Wien, S. 69-79

[Ferber 99] Ferber, J.: Multi-Agent Systems – An
Introduction to Distributed Artificial Intelligence.
Addison Wesley Publ., 1999

[Finin 94] Finin, T.; Weber, J.; Wiederhold, G.;
Genesereth, M.: Specification of the KQML
Agent-Communication Language. The DARPA
Knowledge Sharing Initiative External Interfaces
Working Group, University of Toronto, 1994

[Hayzelden 99] Hayzelden, A.L.G.; Bigham, J.:
Software Agents for Future Communication
Systems. Springer-Verlag, 1999

[Koblick 99] Kobilck, R.: Concordia. Comm. Of the
ACM, 42(1999)3, pp. 96-99

[Lange 98] Lange, D.B.; Oshima, M.: Programming
and Developing Java Mobile Agents with Aglets.
Addison-Wesley Verlag, 1998

[Labrou 97] Labrou, Y.; Finin, T.: A Proposal for a
new KQML Specification. University of Maryland
Baltimore County, 1997.

[Monasce 98] Monasce, D.A.; Almeida, A.F.:
Capacity Planning for Web Performance.
Prentice Hall 1998

[Schmietendorf 00] Schmietendorf, A.:
Modellbezogene Notationen, Methoden und Tools
für ein Software Performance Engineering.
Preprint Nr. 15, Fakultät für Informatik, Otto-
von-Guericke -Universität Magdeburg, 2000

[Schmietendorf 00a] Schmietendorf, A.; Dimitrov, E.;
Dumke, R.: An Overview about UML-based
Performance Engineering. Preprint Nr. 14,
Fakultät für Informatik, Otto-von-Guericke-
Universität Magdeburg, 2000

[Schmietendorf 01] Schmietendorf, A.; Dumke, R.;
Foltin, E.: Risk-driven effort-estimation of task
within the software performance engineering.
Proceedings of the ESCOM 2001, April 2001,
London, pp. 49-57

126

[Schmietendorf 99] Schmietendorf, A.; Scholz, A.: The
Performance Engineering Maturity Model.
Metrics News 4(1999)2, S. 41-51

[Smith 94] Smith, C.: Performance Engineering. In:
Marciniak: Encyclopedia of Software
Engineering, Vol. 2, John-Wiley Verlag, 1994, S.
794-810

[Stojanov 96] Stojanov, S.: A Multi-Agent System for
the Solution of Statistical Problems. Workshop
“Concurrency, Specification and Programming”,
25-27.09.1996, Berlin, 181-189.

[Stojanov 98] Stojanov, S.; Kumurdjieva, M.: MASTT-
Technology and Its Application in Electronic
Commerce Systems . Workshop “Concurrency,
Specification & Programming”, September 28-30
1998, Berlin

[Stojanov 00] Stojanov, S.; Kumurdjieva,M.;
Dimitrov, E.; Schmietendorf, A.: Technologicak
Framework for Development of Agent-based
Applications, Workshop "Concurrency,
Specification & Programming", October 9-11
2000, Berlin, 299-311

