
Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 1

Development and Integration of Engineering Processes
at Oerlikon Aerospace

Claude Y. Laporte, Nicola R. Papiccio

Oerlikon Aerospace
225, boul. du Séminaire Sud

Saint-Jean-sur-Richelieu
(Québec) Canada J3B 8E9

Abstract

In order to reduce cycle time, increase customer
satisfaction and lower costs, Oerlikon Aerospace has
initiated, in 1992, a project to define and implement
software and systems engineering processes. The
initiative started by performing a formal assessment of
current software engineering practices. An action
plan was developed and multi-functional working
groups were tasked to define and facilitate the
implementation of software processes. A second
initiative was started, in 1995, with the objective of
defining and implementing a systems engineering
process, and integrating to the systems engineering
process the software engineering process already in
use.

Background

Oerlikon Aerospace is a systems integrator of a
complex laser-guided missile air defense system. The
system consists of five technology/product families:
processing and display, platform system, sensors and
effectors, command, control, communication and
intelligence, and readiness system (e.g. training,
simulators and test). Over 60 systems and software
engineers are involved in the development and
maintenance of the system.

At Oerlikon Aerospace, the approach, to process
engineering was fourfold: first, define a process and
bring it under management control; secondly, support
the process with methods; thirdly, support the
process and methods with appropriate tools; and
fourth, train all personnel in the utilization of
processes, methods and tools.

Development of a Software Engineering
Process
In fall 1992, recognizing that software engineering was
a core competence of Oerlikon Aerospace, the
president approved the establishment of a Software
Engineering Process Group (SEPG)(Fowler 1990). A
budget was also approved for the conduct of a
Software Process Assessment (SPA), using the
Capability Maturity Model for software (CMM) (Paulk
1993) as a framework, and the development of an
action plan.

In spring 1993, a SPA was performed jointly by the
SEPG and by independent assessors certified by the
Software Engineering Institute (SEI). Strengths and
weaknesses were identified and priorities for
improvements were recommended.

In the summer and fall 1993 a detailed action plan was
prepared by the SEPG. It was decided that working
groups would be established to define individual
processes under the close coordination of the SEPG.
For each process, a process owner, i.e. a person
responsible for the implementation and improvement
of a process, was identified. The following processes
were developed, tested in pilot projects and
implemented: software development, software
maintenance, software project planning and tracking,
software quality assurance, software configuration
management, software subcontractor management,
documentation management and document inspection
(Gilb 1993).

Each process is described at three level of details. To
illustrate the work performed, the planning and
tracking process is described. At the higher level of
details, there are three phases (see figure 1): the

Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 2

planning activities during a proposal phase, the
project planning phase after contract award, and the
project tracking phase. The proposal phase eithetakes
the original vision of a potential product and
transforms it into a business case or, for a contractual
development, the requirements of the request for
proposal are analyzed: size, cost and schedule
estimates are performed, and a risk analysis is done.
For both cases the main outcome of this phase is a go
no-go decision. Since, during the contract negotiation
phase, it is possible that some requirements (i.e.
schedule, software requirements) have been modified,
the planning phase after contract award is required to
finalize the plans prepared during the proposal phase.
During the third phase, project data are collected,

analyzed and adjustments to the initial plans are
made.
The second level of details of the planning and
tracking activities during the proposal phase is
illustrated in figure 2. As shown, each step of the
process is numbered; also, each step is defined with a
verb and a noun. The steps could be used as building
blocks and could be linked together according to the
needs of the project. It is the responsibility of the
project manager to tailor the building blocks. Even
though the steps are illustrated as a linear set of
steps, feedback to previous steps are allowed.
Feedback loops have not been illustrated in order not
to clutter the diagrams.

Software Project
Planning

Process for Proposal
(Including Negotiation

Phase)

Software Project
Planning

Process (after Contract
Award)

Software Project
Tracking Process

Figure 1: Three Phases of the Project Planning and Tracking Process

TO SPP 200

REVIEW PROPOSAL,
RISK ANALYSIS,
ESTIMATES AND

SCHEDULE

SPP-100

PLAN THE PROPOSAL
ACTIVITIES

SPP-110

GENERATE PROJECT
WBS/OBS

SPP-120

PREPARE PROJECT
ESTIMATES AND

SCHEDULE

SPP-130

PERFORM RISK
ASSESSMENT/
ABATEMENT

SPP-140

PREPARE
PROPOSALPLAN THE

PROPOSAL ACTIVITIES

SPP-150

SPP-160

CONDUCT PROPOSAL
LESSONS LEARNED

REVIEW

 WBS = Work Breakdown Structure
 OBS = Organization Breakdown Structure

 Figure 2: Software Planning Process for Proposal

Figure 3 illustrates the third level of details. The figure
shows the ETVX diagram of step SPP-120. Since the

diagram cannot contain all the information for a
particular step, diagrams are complemented by text.

Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 3

SDP Outputs (RTM)

 Cost Data

Proposal leader and functional
Management approval

Outputs

SPP-110

Inputs

RFP/SOW/SOR

Project WBS/OBS

Historical Data

Procedure for Estimates

Assumptions

Resource Availability

Assumptions for Estimates
Updated Historical Database

Estimates

Schedule

List of Alternatives

Entry
Criteria

Measures

Effort

Exit
Criteria

SPP-130Approved project WBS/OBS

 Figure 3: ETVX Diagram of Step SPP-120

A reverse engineering process is presently being
defined. It will draw on the experiences based on the
process developed under the STARS program
(Software Technology for Adaptable, Reliable
Systems) (STARS 1995). The reverse engineering
process will have the following three major steps:
first, define project step which will include 1) define
objectives, 2) identify baseline, 3) define
reengineering project plan; a second major step to
reverse engineer the software system, and a third
major step to “forward” engineer the software.

A second formal software process assessment was
conducted in February 1997. Oerlikon Aerospace has
achieved a strong level 2 rating and already is
satisfying 8 of 17 goals of level 3. Two level 3 key
process area goals were fully satisfied : Software
Product Engineering and Peer review.

Development of a Systems Engineering
Process

Although the organization had in use ISO-9001
compliant procedures describing the work that
systems engineers have to perform, it was decided
that a systems engineering process had to be defined
in order to integrate, seamlessly, disciplines
associated with systems engineering. In 1995, we
conducted an internal assessment of our systems

engineering practices using the Systems Engineering
Capability Maturity Model (SE-CMM) (Bate 1995) and
the SE-CMM Appraisal Method (SAM). The
objective was to help identify priorities for
improvement within the 18 process areas of the SE-
CMM. Three systems engineers and two management
staffs answered the SAM questionnaire. Results from
the questionnaire were compiled and a maturity level
for each process area was computed. After analysis of
the results management decided to put a higher
priority on the engineering process areas as defined
in the SE-CMM. Managers reviewed the current
literature and a decision was made to use, as
frameworks, the SE-CMM and the Generic Systems
Engineering Process (GSEP) developed by the
Software Productivity Consortium (SPC 1995). The
GSEP has been developed to incorporate most of the
practices of the SE-CMM. A working group,
composed of 11 systems engineers, software
engineers and a representative from quality
assurance, was established to define and facilitate the
implementation of a systems engineering process.
Another objective of the working group is to integrate
the current software engineering processes to the
systems engineering process. This objective is part of
the progress that has to be made to work at SEI level 3
of the CMM for software.

The GSEP document describes, using the IDEF
notation (USAF 1981), management and technical
activities and also the artifacts produced by each

Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 4

activity. The major management activities, as
illustrated in figure 4, are: understand context, analyze
risk, plan increment development, track increment
development and develop system. The major
technical activities, as illustrated in figure 5, are:
analyze needs, define requirements, define functional
architecture, synthesize allocated architecture,
evaluate alternatives, validate and verify solution and
control technical baseline. Each major activity is
broken down in a certain number of smaller activities
which are described, individually using the ETVX
notation. Our strategy is to define a beta version of
the technical activities, then of the management
activities, use the beta version on pilot projects and
make corrections to both management and technical
activities of the process before full deployment.

In addition to defining the process, each member of
the working group has a secondary duty. As each
step of the beta version of the process is defined,
members of the working group were tasked to collect

the following information: updates to process
descriptions, monitor compliance with the SE-CMM,
monitor the interfaces with the software engineering
processes, identify process and product
measurements, identify roles and responsibilities,
define glossary, identify methods, best practices,
artifacts, CASE tools, life cycle representations,
project templates, estimation guidelines, course
material, training resources, lessons-learned, and
establish the systems engineering process asset
library. Finally, since Oerlikon Aerospace has been
certified as an ISO 9001 organization, in 1993, one
representative from the quality assurance department
monitors our progress in order to make sure that the
process being defined is compliant to ISO
requirements. Oerlikon Aerospace is planning to
perform an independent systems engineering
assessment, by the end of 1997, to measure the
progress made and plan a second phase of systems
engineering process improvements.

Understand
Context

Analyse
Risk

Plan
Increment

Development

Track
Implement

Development

Develop
System

Plan

I9

System Context

Estimate of the Situation (Approved)

I1 External System
Definition

I3 User
Req.

I4
Tech.
Base

I6 Increment
Status

I7
Tech.

Baseline

I8 Tech.
Risk

I2
Subsystem/
Components

Status

I5
System

Implementation
Status

System Status O2

O5

Risk Management
Plan (Approved)

Increment
Plan

(Approved)

Increment
Plan

(Updated)

Increment Plan
(Approved / Updated) O3

System Definition
(Approved)

O4

Incr.
Plan

(Enacted)
Increment

Status Report System Plan
(Approved) O1

Figure 4: Management Activities of the Systems Engineering Process

Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 5

Analyse
Needs

Define
Requirement

Define
Functional

Architecture

Synthetize
Allocated

Architectures

Evaluate
Alternatives

Verify and
Vadate
Solution

Control
Tech.

Baseline

I1

Estimate of
the Situation

I3

User
Requi.

I4

Techno.
Base

I2

External
System

Definition

I5

System
Definition /

Process
Requi.

Technical Baseline O2

Increment Status O1

Technical Risk O3

System Context O4

Informal
functional
Hierarchy

User
Specification

(Identified
Environments,

Problems and Needs)

Sys. Requi.

Derived
Req.

Alternative
Functional

Architectures

Performance
Requirements

Alternative
Allocated

Architecture

System
Solution

(Prefered)

Evaluation
Results

Allocated
Req &
Perf.

Estimates

Evaluation
Documentation

(Baselined)

V & V Test
Procedures

Verification &
Validation

Results
System

Definition
(Interim)

System
Definition
(Interim

Updated)

Configuration
Control /

Constraints

Decision
Data Base

 Figure 5: Technical Activities of the Systems Engineering Process

Integration of the Software Engineering
Process to the Systems Engineering
Process.

The next step is to integrate the software engineering
process to the systems engineering process. We have
used, as a framework, a document produced by the
SPC entitled: Integrated Systems and Software
Engineering Process (ISSEP)(SPC 1996). ISSEP
defines a set of management and technical activities
and the following interfaces: (1) interfaces between
the management and technical activities, (2) interfaces
among management activities, (3) interfaces among
technical activities and (4) interfaces between the
systems and software development processes.
Similarly to the GSEP, ISSEP is adaptable and
tailorable to a range of applications and project
environments. ISSEP describes activities at three
different levels: the system level, the Configuration
Item(CI) level and the component level. The system
level activities are: manage system development,
design and verify system, and integrate and test
system. At the CI level the activities are: manage CI
development, design and verify CI, develop

component, and integrate and test CI. The CIs may be
decomposed into one or many components. The
activities at the component level are: implement
component, develop unit test cases, and perform unit
testing & analysis. It is at the component level that
software is coded or hardware is manufactured.

The systems engineering process will serve as the
background common process framework of all
engineering activities e.g. the software engineering
activities, the design engineering activities and the
logistical engineering activities. For each new project,
the project manager, in collaboration with systems
and software engineering, will tailor a life cycle and
map the management and technical activities adapted
to the customer’s selected life cycle. Also, links
between the systems engineering process and the
software engineering process will be identified. Links
are typically customer-supplier relationships. As an
example, during the development of the Systems
Engineering Master Plan (SEMP) estimation data from
the Software Development Plan (SDP) will be
requested. In this case the customer process is

Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 6

systems engineering and the supplier process is
software engineering.

Another feature was built in the systems and software
processes in order to capture lessons learned. We
have defined the software planning and tracking
processes such that it is the first process to be
initiated in any project and also the last process to be
called at the completion of a project. During the
planning phase, the project has to estimate the effort
required to conduct lessons learned reviews. During
the tracking phase, lessons learned reviews are
performed in each project. In order to make sure that
the lessons are learned by the organization, each
lesson is analyzed in order to identify if a process
step could be improved (Basili 1994). If this is the
case, modifications to the process, methods or guides
are made before the project is allowed to exit from the
last step of the tracking process.

The Management of Change

Since the management of change is a key element of a
successful process improvement program, a series of
actions were planned in order to facilitate the
development, the implementation and the adoption of
the processes, methods and tools (Laporte, 1993). As
an example, to build the sponsorship level, the
president attended a one-day executive seminar on
process improvement at the SEI, two directors
attended a three-day seminar discussing the CMM,
process, process assessment and improvement. Also,
one member of the SEPG attended two courses at the
SEI: managing technological change and consulting
skills. Briefing sessions were held and articles were
written in each company’s newsletter to explain the
why, what and how of process assessment and
improvement and describing the progress made.
Finally, surveys were conducted in order to assess
the organization’s readiness to such a change in
practices. The surveys identified strengths of the
organization and potential barriers to the planned
improvement program.

Also, in order to get support and commitment for the
future implementation of processes, working groups
were staffed with representatives from many
departments: software engineering, systems
engineering, sub-systems engineering, quality
assurance, contract management, and configuration
management. Each working group was managed like a
project. It had a charter, a budget and a schedule. A
process owner, i.e. a manager responsible for the

definition, implementation and improvement of each
process was part of a working group. A member of the
SEPG acted as a facilitator in each working group.
Therefore, the process owner would focus on the
content of a specific software process while the
facilitator would focus on the process of developing
a specific software engineering process.

Lessons Learned

It was observed that software and systems
engineering process improvement really picked-up
momentum when a common focal point was created
between management, engineers and customers.
Understanding that the real benefit of process
improvement lies in improving product quality,
reducing time-to-market and cost. Consequently,
improving the ability of the organization to better
compete. Additionally, a multi-year Process
Improvement Plan (PIP) is a very important tool to
illustrate the links between project requirements and
process development. Essentially the PIP illustrates
that the engineering of processes is not a paper
exercise but an important infrastructure for the
successful accomplishment of projects. Being a multi-
year plan, the PIP also shows to practioners the long-
term commitment of management to process
improvement activities.

It is also very important to carefully select pilot
projects and participants to the pilots since these
projects will foster adoption of new practices
throughout the organization. Also, first time users of
a new process will make mistakes. It is therefore
mandatory to properly coach the participants and
provide them with a “safety net”. If participants sense
that mistakes will be used to learn and make
improvements to the process instead of “pointing
fingers”, the level of anxiety will be reduced and they
will bring forward suggestions instead of “hiding”
mistakes.

Managing the human dimension of the process
engineering initiative is the component which not
only fosters the adoption of change but creates an
environment where changes could be introduced at
an increasingly greater rate. Members of the
engineering organization now realize that managing
the “soft stuff” is as important as managing the “hard
stuff”.

The utilization of models such as the CMM for
software and systems engineering is slowly changing

Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 7

the culture of the organization from the “Not Invented
Here” (NIH) to the “Not Reinvented Here” (NRH)
mindset. Practioners see the benefits of reusing
someone else’s work. They also see that the
organization encourage them to look for solutions
instead of constantly reinventing the wheel.
Engineers are now intensively using the Internet to
look for practices developed by other organizations
and adapting these practices to the environment of
the organization. Practioners attend conferences
sponsored by organizations such as the SEI and
INCOSE to identify best practices for their utilization
in day-to-day activities.

Next Steps

A training program will be defined. For software
engineers, we have identified a career development
program developed by the British Computer Society
(BCS) (Taylor 1991). This program is currently used
by employers, since 1985, mainly in United Kingdom
and in other countries. This program is available in
North America through DPMA (Data Processing
Management Association). The key features of the
program are: cyclic and pre-planned and documented
programs of training and experience worked out
between employer and employee; industry-wide
performance standards; evaluation of the completion
of these program by independent experienced
professionals; registration of completed programs in a
standardized Log-Book owned by the employee. The
performance standards are based on the BCS’s
Industry Structure Model (ISM). The ISM defines
over eighty detailed job descriptions and up to 10
competence levels, for each job description, ranging
from an unskilled entry level to a senior manager or
director. Each competence level describes the
recommended academic background, the experience
and level of skill at entry, tasks and attributes, and
training and development required. In addition to the
BCS program, the practices described in the CMM
level 3 training KPA (Paulk 1993) and in the People
CMM (Curtis 1995) will also be used to define the
training program (Carpenter 1995) for software
engineers. A similar approach will be used for the
other engineering disciplines.

Presently most of our process assets are paper
documents. As we progress, these documents will be
made available on the company local area network.
Practioners will have read only access privileges.
Only process owners and the process asset librarian
will have all read and write privileges.

As we are making progress in institutionalizing
systems and software engineering processes and
methods, we will be using more CASE tools. Since
CASE tools are quite expensive both in acquisition
costs and maintenance costs, we cannot afford to
make mistakes. But as the organization matures, our
requirements for CASE tools will be better defined
and the tools selected will better support the
execution of the systems and software engineering
processes and methods.

As the engineering division moves toward concurrent
engineering and integrated product development
(IPD), the structure of the organization as well as the
performance management process and the reward
system will need some adjustments in order to capture
the full benefits of these new work practices.

Conclusion

Our organization has made substantial investments
toward the definition implementation and integration
of engineering processes, methods and tools.
Improvements require significant investments but,
both the technical and management activities will
allow complex projects to be developed in a
disciplined environment. Engineers and managers will
be able to perform their activities more effectively and
efficiently. The engineering division is slowly moving
from the “not invented here” to the “not reinvent
here” culture.

References

Basili, V., Green, S., “ Software Process Evolution at
the SEL”, IEEE Software, July 1994.

Bate, R., “ A Systems Engineering Capability Maturity
Model”, version 1.1, Software Engineering Institute,
CMU/SEI-95-01, November 1995.

Carpenter, M.B., Hallman, H.,K., “Training Guidelines:
Creating a Training Plan for a Software Organization”,
Software Engineering Institute, CMU/SEI-95-TR-007,
September 1995.

Curtis, B., et al, “ People Capability Maturity Model”,
Software Engineering Institute, CMU/SEI-95-MM-02,
September 1995.

Symposium of the International Council on Systems Engineering, Los Angeles, August 1997. 8

Fowler, P. Rifkin, S., “Software Engineering Process
Group Guide”, Software Engineering Institute, Report
CMU-SEI-TR-24, September 1990.

Gilb,T., Graham, D., “Software Inspection”, Addison
Wesley, 1993.
Laporte, C.Y., “Process Improvement and the
Management of Change”, Proceedings: 4th IEEE
Computer Society Workshop on Software
Engineering Technology Transfer, Dallas, April 28-29
1993.

Paulk, M. et al, “Capability Maturity Model for
Software”, Software Engineering Institute, SEI/CMU-
93-TR-24, 1993.

SPC, “A Tailorable Process for Systems Engineering”,
Software Productivity Consortium, SPC-94095-CMC,
January 1995.

SPC, “ Integrated Systems and Software Engineering
Process”, Software Productivity Consortium, SPC-
96001-CMC, May 1996.

SEI, “Relationships Between the Systems Engineering
Maturity Model and Other Products, Version 1.0”,
Software Engineering Institute, CMU/SEI-94-TR-26,
Nov. 1995.

STARS, “Army STARS Demonstration Project
Experience Report”, United States Air Force, Air
Force Material Command, Feb. 1995.

Taylor, J.A., “ Training, Career Development and
Registration for Safety Critical Software Systems
Specialists”, IEEE AES Systems Magazine, September
1991.

USAF, “Integrated Computer-Aided Manufacturing
Architecture”, Function Modeling Manual (IDEF0),
United States Air Force, AFWAL-TR-81-4023, 1981.

Biographies.

Claude Y. Laporte obtained in 1973 a Bachelor in
Science from le Collège Militaire Royal de Saint-jean.
In 1980, he obtained a MS in physics at Université de
Montréal, and in 1986, a MS in Applied Sciences from
the Department of Electrical and Computer
Engineering at École Polytechnique de Montréal. He
was an officer within the Canadian Armed Forces
during 25 years and a professor for over 10 years.
From 1988 to 1992, he was involved in the

implementation of the Applied Software Engineering
Centre. He left the Canadian Forces in 1992 at the rank
of major. Since then, he has joined Oerlikon
Aerospace where he coordinates the development
and implementation of software and systems
engineering processes, methods and tools. He is the
president of the Montréal Software Process
Improvement Network (Montréal SPIN). He is also
involved in the establishment of a chapter of INCOSE
in Montréal.

Nick Papiccio graduated with a Bachelor degree in
Administration Sciences in 1980 from le Collège
Militaire Royal de Saint-Jean. He has also completed
all the courses for the Master in Project Management
with the Université du Québec à Montréal. Since 1982,
he has been involved in systems and software
engineering especially with the Canadian Patrol
Frigate Program. He retired from the Canadian navy as
a lieutenant-commander specialized in software
engineering. Since 1995, he is the manager of software
engineering at Oerlikon Aerospace. He is currently
involved with the creation of a Center of Excellence in
Software and Systems Engineering for Canada.

