SOFTWARE AND SYSTEMS ENGINEERING PROCESS
DEVELOPMENT AND INTEGRATION AT OERLIKON
AEROSPACE

Claude Y. Laporte, Nicola R. Papiccio

QOerlikon Aerospace

This paper describes the approach used by Oerlikon
Aerospace since 1993 to define and implement software and
systems engineering processes:

* First, the steps taken to assess and define a software
process are described using the Software Engineering
Institute’s Capability Maturity Model (SEI CMM) framework.

* The steps to develop the systems engineering process
using the SEI CMM framework and two processes from the
Software Productivity Consortium are then described.

* Process integration is discussed.

» Since the human dimension of the implementation of new
technologies is critical to the success of our effort, a few
human issues are discussed.

+ Finally, lessons learned and the next steps are described.
Background

Oerlikon Aerospace is an integrator of a complex laser-guided
missile air defence system. The system consists of five
technology/product families:

1. processing and display

platform system

sensors and effectors

command, control, communication and intelligence

o~ DN

readiness system (for example, training, simulators, and
test).

Learning

Revise
Organizational
Approach

Over 80 software and systems engineers are involved in the
development and maintenance of the system. The software is
divided into five domains:

* weapon software

« command, control, communication, and intelligence
software

 simulation software
« instrumentation software
« training and test software.

The different software domains were written in a variety of
languages, ranging from assembler to Ada. All software has
been documented using military standards such as 1679, 2167,
and 498. Over 40 software engineers maintain the software
assets.

Development of a Software Engineering Process

At Oerlikon Aerospace, the approach to process engineering
was fourfold:

1. Define a process and bring it under management control.
Support the process with methods.

2.
3. Support the process and methods with appropriate tools.
4. Train all personnel in the utilisation of processes,
methods, and tools.

Essentially, the software process improvement initiative
followed the five phases of the IDEAL model [11]. Each of the
five phases of the IDEAL model (see Figure 1) is described in
more detail in the following paragraphs:

1. Initiating the improvement program

During the Initiating phase (Fall 1992), a business case was
prepared and presented to the President. Recognising that
software engineering is a core competence of Oerlikon
Aerospace, the President approved the establishment of a
Software Engineering Process Group (SEPG) [8]. A budget
was also approved for the conduct of a Software Process
Assessment (SPA) and the development of an action plan.
Briefing sessions were held to inform the organisation about the
software process improvement effort.

2. Diagnosing the current state of practice

During the Diagnosing phase (Spring 1993), an SPA was
performed jointly by the SEPG and independent assessors

Document
& Analyze
Lessons

Define
Processes
& Measures

Acting

Plan &

sumaustor | geicepien [Esmien
stablis
Improvement Sponsorship Infrastructure
In|t|at|ng Appraise &

haracterize
Current
Practice

Develop

Recommendationy

Execute
Pilots

Plan, Execute,

rack
Installation

stablish Process
Action Teams

Plan Actions

Set Strategy
& Priorities

Figure 1: The IDEAL Improvement Cycle

Software Process Newsletter: SPN - 10

trained by the Software Engineering Institute (SEI). Strengths
and weaknesses were identified, and priorities for
improvements were recommended. An action plan skeleton
was presented to the president identifying the resources
required for its implementation.

3. Establishing the plans for the improvement

During the Establishment phase (Summer-Fall 1993), a
detailed action plan was prepared by the SEPG. During a
three-day workshop, assessment findings and
recommendations were reviewed and a strategy was
developed. It was decided that working groups would be
established to define individual processes under the close
coordination of the SEPG. For each process, a process
owner—a person responsible for the implementation and
improvement of a process—was identified.

Working groups of four to six members would be staffed with
representatives of software engineering, systems and
subsystems engineering, quality assurance, and configuration
management. Each member of the various working groups
would spend up to eight hours per week on process-related
activities. In each working group, a member of the SEPG
would act as a facilitator. At regular intervals, SEPG members
would meet to resolve issues raised within their groups and
pass along lessons learned within their own working groups.
For each working group, a mini action plan was prepared by the
SEPG.

The action plan listed the following elements:
» goals of the working group

« identification of the owner of the process

« identification of the part-time participants

* implementation steps

* risk issues

* timetable

* level of effort planned

+ reference documents.

We decided to use a modified version of the ETVX [16]
notation for the description of the processes. The notation
describes, for each step of the process, the inputs required to
perform the activities, the outputs produced, the entry criteria
that allow activities to be performed, the exit criteria that allow
artifacts to exit the current step, and the measures that would
be captured when executing the activities. To help define the
processes, the working groups also extensively used a
document produced by the SEI [12] that describes each Key
Process Area (KPA) of the CMM [13] using the ETVX notation.

4. Acting on the plans and recommended improvements

During the Acting phase (Winter 1994), working groups started
their activities, each being kicked off in one to two month
intervals. In this way, problems inherent to the dynamics of the
teams were solved, and lessons learned were captured before
starting another group. Once the processes were defined, pilot
projects were identified for a trial period.

Each process was described in three levels of detail:

a. The top-level view is a black-box approach, describing the
required major steps satisfying the goals of the KPAs.

b. A second level of detail describes each black-box with the
following information:
« the objective of the activities to be performed
« the inputs required to perform the activities
* a list of activities
« the outputs produced

« the entry and exit criteria controlling the initiation and
completion of each process step

 the measurements (such as size, effort, quality)

* the persons responsible for performing and supporting
each process step.

c. At the third level of detail, methods are described in
process guides (for example, size estimation, risk
assessment). Each person who had to use the processes
received and was trained in the utilisation of his/her own
copy of the software engineering guidebook containing the
processes, methods, and guides.

The following processes were developed, tested in pilot
projects, and implemented:

* software development

« software maintenance

« software project planning and tracking
« software quality assurance

« software configuration management

+ software subcontractor management
» documentation management

» document inspection [9].

A reverse engineering process is being defined presently. It
will draw upon the experiences of the process developed under
the STARS program (Software Technology for Adaptable,
Reliable Systems) [22]. The reverse engineering process will
have the following three major steps:

a. a define project step which will include these activities:
+ define objectives
* identify baseline
« define reengineering project plan.

b. a major step to reverse engineer the software system
c. amajor step to "forward" engineer the software.

To illustrate the work performed, the planning and tracking
process was described. At the higher level of detail, there were
three phases (see Figure 2):

a. the planning activities during a proposal phase
b. the project planning phase after contract award
c. the software project tracking phase.

The proposal phase either takes the original vision of a
potential product and transforms it into a business case or, for a
contractual development, analyses the requirements of the
request for proposal: size, cost, and schedule estimates are
performed as well as a risk analysis. In both cases, the main
outcome of this phase is a go/no-go decision. Since during the
contract negotiation phase some requirements (such as
schedule or software requirements) may have been modified,
the planning phase is required after the contract award to
finalise the plans prepared during the proposal phase. During

Sﬁ;z;;ﬂgeet Software Project
Processfr Proposel ——» Hani Sofvare Prjet
(g eataion Process (after Contract Tracking Process
Ph&SC) AW&I'd)

Figure 2: Three Phases of the Product Planning and
Tracking Process

Software Process Newsletter: SPN - 11

SPP-100 SPP-110

Plan de Proposal Generate Project

\4

SPP-120 SPP-130

Prepare Project Perform risk

\4

Estimates and > Assessment/

Activities
WBS/0S Schedule Abatement
SPP-140 SPP-150
SPP-160
Review Proposal,
Prepare Proposal » Risk Analysis,

Estimates and I Conduct Proposal
Schedule Lessons Fearned

Review

TO SPP 200

Figure 3: Software Planning Process for Proposal

WBS= Work Breakdown Structure

OBS= Organisation Breakdown Structure

the third phase, project data are collected and analysed, and
adjustments to the initial plans are made.

The second level of detail of the planning and tracking
activities during the proposal phase is illustrated in Figure 3.
As shown, each step of the process is numbered. In addition,
each step is defined with a verb and a noun. The steps could
be used as building blocks and could be linked together
according to the needs of the project. It is the responsibility of
the project manager to tailor the building blocks. Although the
steps are illustrated as a linear set of steps, feedback to
previous steps is allowed. (Feedback loops were not illustrated
so as not to clutter the diagrams.)

Some activities can also be done concurrently. Figure 4
illustrates the third level of detail, showing the ETVX diagram of
step SPP-120. Since they cannot contain all the information for
a particular step, the diagrams are complemented by a textual
representation in which all elements of the steps are listed (for
example, step description, activities, and references). In the
process engineering guidebook, each step is illustrated using
two notations: the ETVX diagram and the textual description.
In the guidebook, the diagrams are on the left side and the
textual information is on the right, facing the ETVX diagrams.
To constantly improve the process, all users were invited to
propose corrections, modifications, or improvements to the

SPP-110

Inputs

process. A process improvement form was distributed to all
users of the process. The process owner collected, analysed,
and implemented the improvements to process. Once the
modification to the process was completed, a new version was
distributed to all users. Self-assessment was also performed
on all projects.

The objective of the self-assessment was not to "fix the
people" but to bring to the surface any barriers to the
institutionalisation of the processes. The focus on process
rather than on people is critical for company-wide acceptance
of the new process. Each project team was interviewed
separately, and composite results of the self-assessment were
presented to management and project teams.

A questionnaire was used to probe projects. It used scoring

guidelines developed by Motorola [6] incorporating a ten-level
scoring scale that allows for a finer evaluation of the
institutionalisation of each KPA. The scoring guidelines
measure the attainment of the following three elements:

a. the approach: criteria that show the organisation's
commitment to and management's support for a practice

b. the deployment: the breadth and consistency of practice
implementation

Outputs

RFP/SOW/SOR
Project WBS/OBS

Yy

Historical Data

SDP Outputs (RTM)

Procedure for Estimates
Cost Data
Assumptions

Yy

e

Resource Avai labilit)z

Asssumptions for Estimates_
Updated Historical Database

Estimates

»

Schedule

.

List of Alternatives

—
-

Entry Measures Exit
Criteria Criteria v
Approved project WBS/OBS Effort SPP-130

Proposal leader and functional
Management approval

Figure 4: ETVX Diagram of Step SPP-120

Software Process Newsletter: SPN - 12

c. the results: the breadth and consistency of positive
results over time.

By using such a scale, it became easier to measure the
progress made by each team from one audit to another. After
the self-assessment, an action plan was developed to address
the findings and implement corrective actions.

Another feature was built into the process to capture the
lessons learned. In our organisation, we defined the software
planning and tracking process such that it is the first process to
be initiated in any project and the last process to be called at
the completion of a project. During the planning phase, the
project has to estimate the effort required to conduct lessons-
learned reviews. During the tracking phase, lessons-learned
reviews are performed in each project. Usually, in a lessons-
learned meeting, the members of the project are present, and
someone from the SEPG facilitates the meeting. To make sure
the lessons really are learned by the organisation, the process
owner analyses each lesson with the SEPG to identify whether
or not a process step could be improved [2]. If an improvement
is identified, modifications to the process, methods, or guides
grEeP%ade under the supervision of the process owner and the

As the processes are being used in current projects, artifacts
are collected and stored in a process asset library (PAL). The
PAL currently contains mostly paper documents. Since the
organisation is moving toward an environment in which each
practitioner will have electronic access to documents, the PAL
will contain electronic copies of documents produced. The PAL
librarian has read/write privileges, while practitioners have read-
only privileges. The librarian will also perform configuration

1 External System System Context

Software Engineering Policy Lessons Learned

Process Descriptions List of Process Owners

Forms and Templates Process Improvement

Suggestions

Examples of Documents Produced Training Material

Business Case Examples Quality Assurance Reports

(e.g. Reports from Audits)

Proposal Examples Quality Data (e.g. Results

of Inspections)

Software Development Plans (SDP) List of Software Tools Under

Configuration

Tailored Processes Historical Data (e.g. Project
Estimates)

Tailoring Guidelines Software Methods
Documentation

Charter of Software
Engineering Process
Group

Process Definition Process

Table 1: Contents of the Software Process Asset Library (PAL)

management functions on the artifacts of the PAL. Table 1 lists
the artifacts stored in the PAL as projects produce their
documents.

Definition
N
—> Understand
User Context Estimate of the Situation (Approved) 05 >
43—
eq. Step 110
J |
Tech.
-14 Base
A 67Increment7
Status ™\ Analyse
Risk
Step 120
47— Tech.
Baseline Risk Management
Plan (Approved)
Subsystem/ Plan
~12—Comp Elncremem Increment Plan 03—
Status pment (Approved / Updated)
Step 130
Increment Increment
Plan Plan
System (Approved) (Updated)
Status -
Track
Increment System Definition
Development (Approved) 04—
Step 140
Incr.
1 87Tech.J Pl
Risk o
| . (Enacted)
ncrement
Status Report Develop | System Plan 01—
System (Approved)
Plan

Step 150

WSystem Status —Q2»

Figure 5: Management Activities of the Systems Engineering Process.

Software Process Newsletter: SPN - 13

5. Learning the lessons learned and the business results of
the improvement effort

Finally during the Learning phase, lessons learned from
projects and processes are collected, analysed, and
implemented. These lessons are used to prepare the next
improvement cycle, by performing a reassessment of the
software engineering process.

The second formal assessment (a CMM-Based Appraisal for
Internal Process Improvement, CBA IPI) [7] performed by an
SE| assessor from the Applied Software Engineering Centre
(ASEC) was conducted in February 1997. Oerlikon Aerospace
achieved a strong Level 2 rating since it also satisfied eight of
the 17 goals for Level 3 certification. Two Level 3 KPAs were
fully satisfied: Software Product Engineering and Peer Review
(for the document inspection process).

Development of a Systems Engineering Process

Although the organisation had been registered to ISO 9001, it
was decided that the systems engineering process had to be
defined to integrate seamlessly the disciplines associated with
systems engineering. In 1995, we conducted a self-
assessment of our systems engineering practices using the
Systems Engineering Capability Maturity Model (SE-CMM) [3]
and the SE-CMM Appraisal Method (SAM).

Informal
functional P

Estimate of . Hierarchy -

The objective of the self-assessment was to help identify
priorities for improvement within the 18 process areas of the
SE-CMM. Three systems engineers and two management staff
members answered the SAM questionnaire. Results from the
questionnaire were compiled and a maturity level for each
process area was computed. After completing the analysis of
the results, management decided to put a higher priority on the
engineering process areas as defined in the SE-CMM.
Literature was reviewed and a decision was made to use the
SE-CMM and the Generic Systems Engineering Process
(GSEP) developed by the Software Productivity Consortium
[19] as frameworks. The GSEP has been developed to
incorporate most of the practices of the SE-CMM. A working
group, comprised of 11 systems engineers, software engineers,
and a representative from quality assurance was established to
define and facilitate the implementation of a systems
engineering process. Another objective of the working group
was to integrate the software engineering process into the
systems engineering process.

The GSEP document describes, using the IDEF notation [24],
management and technical activities and the artifacts produced
by each activity. The major management activities, as
illustrated in Figure 5 (page 13), are to:

» understand the context
* analyse risk

-
the Situation ﬂ 7 (With Tech. -~
/ Meas.) ~
B — / e
Analyse ystem Context 04—
2 Needs * id
(> Step210 ud
™
Sys Re‘\”" Alternative Pert Technical
User Functional eriormance Performance
Requi | Architectures
_ Define / \ | |
Requi | & | \ /
J | \ /
220
Derived /7 Step | \\ \ S
Req.
e I ~3l
N /
N+
Define /
Functional l
S
Step 230 Alternative
1 Allocated
Techno. Architecture
Base \
R L }
Y ¥
Allocated
Eéxte(ma\ A Syst Allocated
ystem — ystem Req &
Definition [Ste240 Solution Perf. Technical Risk 03—
—I2 P (PrEfE’id) Estimates V &V Test
G) Procedures l
> A// | Increment Status 01—
Evaluate / |
3 Alternatives | y / Configuration
/ - — Control /
——>{ Step 250 ‘ , ‘ 7 Constraints
o \ ~—> Verify and Technical Baseline 02—
System I Validate System
Definition / EVQWQUO"_// —> Work / Definition
Process Results Products X (Interim
Requi Updated
a 2 Step 260 [Updated)
RS A R—
Control
\
) Tech. 1~
Evaluation Verification' & Baseline |
-~ Documentation Validation
[(Baselined) Results Step 270 P\
" « System
~~ Definition
(Interim)

Figure 6: Technical Activities of the Systems Engineering Process.

Software Process Newsletter: SPN - 14

* plan incremental development
» track incremental development
* develop the system.

The major technical activities, as illustrated in Figure 6
(previous page), are to:

* analyse needs

+ define requirements

« define functional architecture

+ synthesise allocated architecture
+ evaluate the alternatives

« validate and verify the solution

« control the technical baseline.

Each major activity is broken down into a number of smaller
activities that are described individually using the ETVX
notation. Our strategy was to define a beta version of the
technical and management activities, use the beta version on
pilot projects, and make corrections to both management and
technical activities of the process before full deployment.

In addition to defining the process, each member of the
working group had a secondary duty. As each step of the beta
version of the process was defined, members of the working
group were tasked to collect the following information:

* update process descriptions

monitor compliance with the SE-CMM

monitor the interfaces with the software engineering
process

identify process and product measurements

identify roles and responsibilities
define a glossary

identify methods, best practices, artifacts, CASE tools, life
cycle representations, project templates, estimation
guidelines, course material, training resources, and lessons
learned

« establish the systems engineering process asset library.

Finally, since Oerlikon Aerospace had been registered as an
ISO 9001 organisation in 1993, one representative from the
quality assurance department monitors our progress to make
sure that the process being defined is compliant to ISO 9001
requirements. Oerlikon Aerospace is planning to perform an

Configuration Item

CI Baseline / Plan /Status

independent systems engineering assessment in 1998 to
measure the progress made and to plan a second phase of
systems engineering process improvements.

Integration of Processes

As mentioned earlier, throughout the development of the
systems engineering process, the working group kept the
integration between this process and the software process on
its agenda. It decided to adopt a document produced by the
SPC [20] entitled Integrated Systems and Software Engineering
Process (ISSEP) as a framework for the integration. Since
many problems are discovered at integration time when
developing complex computer-based systems, the solution is to
develop a process that will decompose the systems into parts
that can be developed independently and that can be
integrated together easily at the system level.

The ISSEP model defines a decomposition strategy for system
development as well as a set of management and technical
activities and interfaces between processes. ISSEP describes
activities at three levels: the system level, the configuration
item (CI) level, and the component level. It is at the component
level that software and hardware are developed. Figure 7
illustrates the integration between processes. Figures 5 and 6
illustrate the activities in the boxes Manage Development Effort
and Define System Increment. The Develop SW Configuration
Item box is essentially the software engineering process, while
the Develop HW Configuration Item box—the design
engineering process—represents a process presently being
documented.

As we integrated the processes, two types of issues surfaced.

First, some activities had been documented in all processes.
As an example, risk management activities had been defined in
the software engineering process because it was felt that risk
management was important. Since risk management is
mandated in the SE-CMM, it was also documented in the
systems engineering process. Also, a project management
process was being developed with some risk management
activities. To prevent duplication of these activities, the issue
was resolved by assigning the primary responsibility for risk
management to the project management process and leaving
the dedicated risk checklists in the engineering processes.

Another type of issue surfaced because all the frameworks
mandated some of the activities used. For example, the
management of subcontractors is mandated by the SW-CMM,
the SE-CMM, and the project management process of the
Project Management Institute [15]. Since this process had
already been defined during the software initiative, the scope of
this process was broadened to include hardware acquisitions.

Manage System Development Plan / Status
Ha— Development
» System
Effort Definition
. Develop SW
- . L
System Increment Configuration \ 4
Definition Plan Item Develop -
— .
Estimate _— Configuration
of the Item
Situation
Define
System
Increment

System Context

Tecl}:nicai Risk1

Technical Baseline

System Status Implement

L (Produce) System —jm—
System

Figure 7: Integration of Processes

Software Process Newsletter: SPN - 15

It was decided that the process ownership would remain with
the department responsible for acquisitions. The relationship
between the project management process and the
subcontractor management process is viewed as a client-
server relationship, in which a project manager issues his
requirements for a particular acquisition, the requirements are
then transferred to the subcontractor process, and once the
goods are delivered to the satisfaction of the project, the
subcontractor process is stopped.

The Management of Change

Since the management of change is a key element of a
successful process improvement program, a series of actions
were planned to facilitate the development, implementation,
and adoption of the processes, methods, and tools [10]. For
example, to build the sponsorship level, the President of
Oerlikon attended a one-day executive seminar on process
improvement at the SEI. Two directors attended a three-day
seminar discussing the CMM, process, process assessment,
and improvement. Also, one member of the SEPG attended
two courses at the SEI on managing technological change and
consulting skills. Briefing sessions were held and articles were
written in each company's newsletter to explain the why, what,
and how of process assessment and improvement and to
describe the progress made. Finally, surveys were conducted
to assess the organisation's readiness to such a change in
practices. The surveys identified strengths of the organisation
and the potential barriers to the planned improvement program.

To obtain support and commitment for the future
implementation of processes, working groups were staffed with
representatives from many departments, including software
engineering, systems engineering, subsystems engineering,
quality assurance, contract management, and configuration
management. Each working group was managed like a project.
It had a charter, a budget, and a schedule. A process owner—
a manager responsible for the definition, implementation, and
improvement of each process—was part of a working group. A
member of the SEPG acted as a facilitator in each working
group. The process owner, therefore, would focus on the
content of a specific software process, while the facilitator
would focus on the process of developing a specific software
engineering process.

To facilitate the conduct of working group activities, a number
of meeting guidelines [18] were proposed by the facilitators to
the members of working groups during the kick-off meeting of
their group. The proposed guidelines are listed in Table 2.

« Allow only one conversation at a time.

» Participate in the meeting or out, but not both (i.e.
participants should make a commitment to participate to
the meeting for the full duration).

* Apply the 100-mile rule (i.e. no interruptions:
telephone messages are not allowed unless urgent).

e.g.
« Establish how decisions will be made (e.g. by consensus,
majority or minority rule, autocracy, unanimity).

» Once a decision is made, participants support it inside and
outside the meeting.

» Be as open as possible.

* Listen with respect to others and do not interrupt them.
« Silence is consent.

+ Share few recreational stories.

» Respect differences.

+ Avoid blaming individuals.

» Come to meetings prepared.

» Publish minutes and action items at each meeting.

Table 2: Proposed Meeting Guidelines

Consensus decision making was the preferred decision-making
option. We defined consensus according to the definition found
in [17]:

Consensus is not unanimity, consensus is based on the
assumption that solutions are more likely to succeed if
all of the key participants are "comfortable enough" with
the outcome to move forward.

During meetings we use a "thumb voting" procedure [14] to
make decisions by consensus. Thumb voting allows the
following three alternatives:

1. If the proposition is favoured, the thumb is up.

2. If someone can live with the decision, the thumb is to the
side.

3. If someone cannot live with the decision, the thumb is
down.

In the latter case, the members of the working group have to
take time to understand the issues at stake and propose an
alternative with which everyone can live. Finally, members of
the working groups have to evaluate the effectiveness of their
group.

A survey [1] was distributed at the end of a meeting, and
members were asked to complete the survey and send it to the
facilitator of their group. The survey addressed the following
issues:

« goals and objectives

« utilisation of resources

« trust and conflict resolution

* leadership, control, and procedures
* interpersonal communications

* problem solving

* experimentation

* creativity.

At the meeting that followed, issues that were surfaced by
members were discussed to generate suggestions for
improvement.

Lessons Learned

It was observed that software and systems engineering process
improvement really picked up momentum when a common
focal point was created between management, engineers, and
customers. The real benefit of process improvement lies in
improving product quality and reducing time-to-market and
cost. Consequently, it improves the ability of the organisation
to better compete. Additionally, a multi-year Process
Improvement Plan (PIP) is a very important tool to illustrate the
links between business objectives, project requirements, and
process development or improvement. Essentially the PIP
illustrates that the engineering of processes is not a paper
exercise but an important infrastructure for the successful
accomplishment of projects. Being a multi-year plan, the PIP
also shows practitioners the long-term commitment of
management to process improvement activities.

It is also very important to carefully select pilot projects and
participants in the pilots since these projects will foster the
adoption of new practices throughout the organisation. Also,
first-time users of a new process will make mistakes. It is
therefore mandatory to properly coach the participants and
provide them with a "safety net". If participants sense that
mistakes will be used to learn and to make improvements to the
process instead of pointing fingers, their levels of anxiety will be
reduced and they will bring forward suggestions instead of
hiding their mistakes.

Managing the human dimension of the process engineering
initiative is the component that not only fosters the adoption of
change but also creates an environment in which changes

Software Process Newsletter: SPN - 16

could be introduced at an increasingly greater rate. Members
of the engineering organisation now realise that managing the
"soft stuff" is as important as managing the "hard stuff".

The use of models such as the CMM for software and systems
engineering is slowly changing the culture of the organisation
from the "Not Invented Here" (NIH) to the "Not Reinvented
Here" (NRH) mindset. Practitioners see the benefits of reusing
someone else's work. They also see that the organisation
encourages them to look for solutions instead of constantly
reinventing the wheel. Engineers now are using the Internet
extensively to look for practices developed by other
organisations and for adapting these practices to the
organisation's environment. Practitioners attend conferences
sponsored by organisations such as the SEI and INCOSE to
identify best practices for their utilisation in day-to-day activities.

Next Steps

A training program will be defined. For software engineers, we
have identified a career development program developed by
the British Computer Society (BCS) [23]. Employers have used
this program since 1985, mainly in United Kingdom and in other
countries. This program is available in North America through
DPMA (Data Processing Management Association). The key
features of the program are:

» cyclic, preplanned, and documented programs of training
and experience worked out between employer and
employee

* industry-wide performance standards

» evaluation of the completion of these program by
independent experienced professionals

* registration of completed programs in a standardised Log
Book owned by the employee.

The performance standards are based on the BCS's Industry
Structure Model (ISM). The ISM defines over 80 detailed job
descriptions and up to 10 competence levels for each job
description, ranging from an unskilled entry level to a senior
manager or director. Each competence level describes the
recommended academic background, the experience and level
of skill at entry, tasks and attributes, and training and
development required. In addition to the BCS program, the
practices described in the CMM Level 3 training KPA [13] and
in the People CMM [5] also will be used to define the training
program [4] for software engineers. A similar approach will be
used for the other engineering disciplines.

Presently, most process assets are paper documents. As we
progress, these documents will be made available on the
company local area network. Practitioners will have read-only
access privileges. Only process owners and the PAL librarian
will have read/write privileges.

As we are making progress in institutionalising systems and
software engineering processes and methods, we will be using
more CASE tools. Since CASE tools are quite expensive both
in acquisition costs and maintenance costs, we cannot afford to
make mistakes. But as the organisation matures, our
requirements for CASE tools will be better defined and the tools
selected will better support the execution of the systems and
software engineering processes and methods.

As the engineering division moves toward concurrent
engineering and integrated product development, the structure
of the organisation as well as the performance management
process will need some adjustments to capture the full benefits
of these new work practices.

Conclusions

Our organisation has made substantial investments toward the
definition, implementation, and integration of engineering
processes, methods, and tools. Improvements require
significant investments, but both the technical and management
activities will allow complex projects to be developed in a

disciplined environment. Engineers and managers will be able
to perform their activities more effectively and efficiently. The
engineering division is slowly moving from the "Not Invented
Here" to the "Not Reinvented Here" culture in which
practitioners are constantly looking for practices to be pilot
tested and integrated into the process asset library of the
Oerlikon Aerospace.

References

[1] M. Alexander, The Encyclopedia of Team-Development Activities,
edited by J. William Pfeiffer, University Associates, San Diego,
California, 1991.

[2] V. Basili, S. Green, " Software Process Evolution at the SEL", IEEE
Software, July 1994.

[3] R. Bate, A Systems Engineering Capability Maturity Model, Version
1.1, Software Engineering Institute, CMU/SEI-95-01, November
1995.

[4] M. B. Carpenter, H. K. Hallman, Training Guidelines: Creating a
Training Plan for a Software Organisation, Software Engineering
Institute, CMU/SEI-95-TR-007, September 1995.

[5] B. Curtis, et al, People Capability Maturity Model, Software
Engineering Institute, CMU/SEI-95-MM-02, September 1995.

[6] M. K. Daskalantonakis, "Achieving Higher SEI Levels", IEEE
Software, July 1994.

[7] D. Dunaway, S. Master, CMM-Based Appraisal for Internal Process
Improvement (CBA IPI): Method Description, Software Engineering
Institute, CMU/SEI-96-TR-007, April 1996.

[8] P. Fowler, S. Rifkin, "Software Engineering Process Group Guide",
Software Engineering Institute, Report CMU-SEI-TR-24,
September 1990.

[9] T.Gilb, D. Graham, Software Inspection, Addison Wesley, 1993.

[10] C. Y. Laporte, "Process Improvement and the Management of
Change", Proceedings: 4th IEEE Computer Society Workshop on
Software Engineering Technology Transfer, Dallas, April 28-29
1994.

[11]1 B. McFeeley, IDEAL: A User's Guide for Software Process
Improvement, Software Engineering Institute, CMU/SEI-96-HB-
001, Feb. 1996.

[12] T. G. Olson, et al., A Software Process Framework for the Software
Engineering Institute's Capability Maturity Model, Software
Engineering Institute, CMU/SEI-94-HB-01, Sept. 1994.

[13] M. Paulk, et al, Capability Maturity Model for Software, Software
Engineering Institute, SEI/CMU-93-TR-24, 1993.

[14]P. R. Popick, S. A. Shear, "Ten lessons Learned from
Implementing Integrated Product Teams", Proceedings,
International Council on Systems Engineering 6th Annual
International Symposium, Boston, July 7-11, 1996.

[15] PMI, A Guide to the Project Management Body of Knowledge,
Project Management Institute, 1996.

[16] R. Radice, "A Programming Process Architecture”, IBM Systems
Journal, vol. 24, no. 2, 1985.

[17] P. Scholtes, " The Team Handbook", Joiner Associates Inc., 1988.

[18] D. R. Siddall, The Team Notebook, Publication in process, 1996.

[19] SPC, A Tailorable Process for Systems Engineering, Software
Productivity Consortium, SPC-94095-CMC, January 1995.

[20] SPC, Integrated Systems and Software Engineering Process,
Software Productivity Consortium, SPC-96001-CMC, May 1996.
[21] SEI, "Relationships Between the Systems Engineering Maturity
Model and Other Products, Version 1.0", Software Engineering

Institute, CMU/SEI-94-TR-26, Nov. 1995.

[22] STARS, "Army STARS Demonstration Project Experience Report",
United States Air Force, Air Force Material Command, Feb. 1995.

[23] J. A. Taylor, "Training, Career Development and Registration for
Safety Critical Software Systems Specialists", IEEE AES Systems
Magazine, September 1991.

[24] USAF, "Integrated Computer-Aided Manufacturing Architecture”,
Function Modeling Manuel (IDEF0), United States Air Force,
AFWAL-TR-81-4023, 1981.

Claude Laporte and Nicola Papiccio: Oerlikon Aerospace Inc., 225 boul. du
Seminaire Sud, Saint-Jean-sur-Richelieu, Quebec, Canada, J3B 8E9. E-
mail:cylaporte@oerlikon.ca.

Software Process Newsletter: SPN - 17

