
Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 1 
  

       Software and Systems Engineering Process                    
            Improvement at Oerlikon Aerospace 

   
                     Claude Y. Laporte, Nicola R. Papiccio 
                                      Oerlikon Aerospace 
 

 
Abstract 
 
 In order to reduce cycle time, increase customer satisfaction and lower costs, Oerlikon Aerospace has  
initiated, three years ago, a project to define and implement software and systems engineering processes. The 
initiative started by performing a formal assessment of current software engineering practices. An action plan 
was developed and multi-functional working groups were tasked to define and facilitate the implementation of 
software processes. A second initiative was started a year ago with the objective of defining and implementing 
a systems engineering process and, integrating to the systems engineering process the software engineering 
process already in use.  
 

Background 
  
 Oerlikon Aerospace is a systems integrator of a complex laser-guided missile air defense system. The 
system consists of five technology/product families: processing and display, platform system, sensors and 
effectors, command, control, communication and intelligence, and readiness system (e.g. training, simulators 
and test). Over 60 software and systems engineers are involved in the development and maintenance of the 
system. The software is divided in four domains: weapon software, command, control and communication 
software, simulation software, and instrumentation software. The softwares were written in a variety of 
languages ranging from assembler to Ada. The softwares have been documented using military standards such 
as 1679, 2167A and 498. Over 20 software engineers maintain the software assets. 
 
 

Development of a Software Engineering Process 
 
 At Oerlikon Aerospace, the approach, to process engineering was fourfold: first define a process and 
bring it under management control; secondly, support the process with methods; thirdly, support the process 
and methods with appropriate tools; and fourth, train all personnel in the utilization of processes, methods and 
tools. 

 
 Essentially, the software process improvement initiative followed the five phases of the IDEAL model 
(McFeeley 1996). The five phases of the model are: Initiating the improvement program, Diagnosing the current 
state of practice, Establishing the plans for the improvement, Acting on the plans and recommended 
improvements and, Leveraging the lessons learned and the business results of the improvement effort. 
 
  During the Initiating phase (fall of 1992), a business case was prepared and presented to the 
president. Recognizing that software engineering was a core competence of Oerlikon Aerospace, the president 
approved the establishment of a Software Engineering Process Group (SEPG)(Fowler 1990). A budget was also 
approved for the conduct of a Software Process Assessment (SPA) and the development of an action plan. 
Briefing sessions were held to inform the organization about the software process improvement effort. 
 
 During the Diagnosing phase (spring 1993), a SPA was performed jointly by the SEPG and by 
independent assessors certified by the Software Engineering Institute (SEI). Strengths and weaknesses were 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 2 
  

identified and priorities for improvements were recommended. An action plan skeleton was presented, to the 
president, identifying the resources required for its implementation.  
 
 During the Establishment phase (summer-fall 1993) a detailed action plan was prepared by the SEPG. 
During a three-day workshop, assessment findings and recommendations were reviewed and a strategy was 
developed. It was decided that working groups would be established to define individual processes under the 
close coordination of the SEPG. For each process, a process owner, i.e. a person responsible for the 
implementation and improvement of a process, was identified.  Working groups of four to six members would be 
staffed with representatives of software engineering, systems and sub-systems engineering, quality assurance 
and configuration management. Each member of the working groups would spend up to 8 hours per week on 
process related activities. In each working group, a member of the SEPG would act as a facilitator. At regular 
intervals, SEPG members would meet to resolve issues raised within their groups and pass along lessons 
learned within their own working groups. For each working group, a mini action plan was prepared by the SEPG 
(see figure 1). The action plan listed the following elements: goals of the working group, identification of the 
owner of the process, identification of the part-time participants, implementation steps, risk issues, timetable, 
level of effort planned and reference documents. Because of its simplicity, the ETVX (Radice 1985) notation was 
selected for the description of the processes. To help define the processes, the working groups also used 
extensively a document produced by the SEI (Olson 1994), that describes each Key Process Area (KPA) of the 
Capability Maturity Model for Software (CMM) (Paulk 1993) using the ETVX notation. 
 

• Review the findings of the assessment 
• Introduction to the capability maturity model (cmm) 
• Preparation of a plan by the working group 
• Brainstorm on strenghts and weaknesses of current process 
• Understand the current process 
• Compare the current process with the cmm 
• Describe first level (i.e. overall view) process steps 
• Describe second level of the process using the selected notation 
• Describe/update, if necessary, third level components: 

• Procedures  
• Users’ guides  
• Checklists  

• Review process steps  
• Select a pilot project 
• Brief participants  
• Monitor the pilot 
• Institutionalize the process: 

• Modify, if necessary, policies and procedures  
• Develop the training material 
• Train all users (technical and non-technical) of the 

                                            process 
• Monitor the utilization of the process 
• Measure the process and products  
• Improve the process 

 

         Figure 1: Process Definition Steps 
 

 

 During the Acting phase, initiated in winter 1994, working groups started their activities. Working 
groups were kicked of in one to two months intervals. This way, problems inherent to the dynamics of teams 
were solved, and lessons learned were captured before starting another group. Once the processes were 
defined, pilot projects were identified for a trial period. Each process is described at three level of details: the 
top-level view is a black box approach describing the major steps required to satisfy the goals of the KPAs. A 
second level of details describes each black-box with the following information: the objective of the activities to 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 3 
  

be performed; inputs required to perform the activities; a list of activities; outputs produced; entry and exit 
criteria controlling the initiation and completion of each process step, measurements (e.g. size, effort, quality), 
and persons responsible for performing and supporting each process step. At the third level of details, methods 
are described in process guides (e.g. size estimation, risk assessment). Each person who has to use the 
processes receives his own copy of the software engineering guidebook which contains: processes, methods 
and guides. Each person is also trained on the utilization of the processes, methods and guides. 

 
 The following processes were developed, tested in pilot projects and implemented: software 
development, software maintenance, software project planning and tracking, software quality assurance, 
software configuration management, software subcontractor management, documentation management and 
document inspection (Gilb 1993). 
 
  To illustrate the work performed, the planning and tracking process is described. At the higher level of 
details, there are three phases (see figure 2): the planning activities during a proposal phase, the project 
planning phase after contract award, and the project tracking phase. The proposal phase either takes the 
original vision of a potential product and transforms it into a business case or, for a contractual development, 
the requirements of the request for proposal are analyzed: size, cost and schedule estimates are performed, and 
a risk analysis is done. For both cases the main outcome of this phase is a go no-go decision. Since, during the 
contract negotiation phase, it is possible that some requirements (i.e. schedule, software requirements) have 
been modified, the planning phase after contract award is a requirred to finalize the plans prepared during the 
proposal phase. During the third phase, project data are collected, analyzed and adjustments to the initial plans 
are made. 
 

Software Project
Planning

Process for Proposal
(Including Negotiation

Phase)

Software Project
Planning

Process (after Contract
Award)

Software Project
Tracking Process

  
Figure 2: Three Phases of the Project Planning and Tracking Process 

 
 The second level of details of the planning and tracking activities during the proposal phase is 
illustrated in figure 3. As shown, each step of the process is numbered; also, each step is defined with a verb 
and a noun. The steps could be used as building blocks and could be linked together according to the needs of 
the project. It is the responsibility of the project manager to tailor the building blocks. Even though the steps 
are illustrated as a linear set of steps, feedback to previous steps are allowed. Feedback loops have not been 
illustrated in order not to clutter the diagrams. 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 4 
  

TO SPP 200

REVIEW PROPOSAL,
RISK ANALYSIS,
ESTIMATES AND

SCHEDULE

SPP-100

PLAN THE PROPOSAL
ACTIVITIES

SPP-110

GENERATE PROJECT
WBS/OBS

SPP-120

PREPARE PROJECT
ESTIMATES AND

SCHEDULE

SPP-130

PERFORM RISK
ASSESSMENT/
ABATEMENT

SPP-140

PREPARE
PROPOSALPLAN THE

PROPOSAL ACTIVITIES

SPP-150

SPP-160

CONDUCT PROPOSAL
LESSONS LEARNED

REVIEW

     WBS = Work Breakdown Structure 
     OBS =  Organization Breakdown Structure 

 
                                     Figure 3: Software Planning Process for Proposal 
 
 
 Figure 4 illustrates the third level of details. The figure shows  the ETVX diagram of step SPP-120. 
Since the diagram cannot contain all the information for a particular step, diagrams are complemented by a 
textual representation where all elements of the steps are listed. In the process engineering guidebook, each 
step is illustrated using two notations: the ETVX diagram and the textual description. In the guidebook binder, 
the diagrams are on the left side and the textual information are on the right side, i.e. facing the ETVX diagrams. 
 

SDP Outputs (RTM)

                        Cost Data

Proposal leader and functional
Management approval

Outputs

SPP-110

Inputs

RFP/SOW/SOR

Project WBS/OBS

Historical Data

Procedure for Estimates

Assumptions

Resource Availability

Assumptions for Estimates
Updated Historical Database

Estimates

Schedule

List of Alternatives

Entry
Criteria

Measures

Effort

Exit
Criteria

SPP-130Approved project WBS/OBS

 
 
                        Figure 4:  ETVX Diagram of Step SPP-120 
 
  
 A reverse engineering process is presently being defined. It will draw on the experiences based on the 
process developed under the STARS program (Software Technology for Adaptable, Reliable Systems) (STARS 
1995). The reverse engineering process will have the following three major steps: first, a define project step 
which will include 1) define objectives, 2) identify baseline, 3) define reengineering project plan; a second major 
step to reverse engineer the software system, and a third major step to “forward” engineer the software. 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 5 
  

 
 In order to constantly improve the process, all users have been invited to propose corrections, 
modifications or improvements to the process.  A process improvement form has been distributed to all users of 
the process. The SEPG collects, analyzes and proposes improvements to appropriate process owners.  Once the 
modification to the process is completed, a new version is distributed to all users. 
 
 Audits were also performed on all projects. The objective of the audits was not to “fix the people” but 
to bring to the surface barriers to the institutionalization of the processes. The focus on the process rather than 
on the people is critical for company-wide acceptance of the new process. Each project team was interviewed 
separately and composite results of the audits were presented to management and project teams. A 
questionnaire was used to probe projects. The questionnaire used scoring guidelines developed by Motorola 
(Daskalantonakis 1994). Motorola has developed a ten-level scoring scale which allows a finer evaluation of the 
institutionalization of each key process area. The scoring guidelines measure the attainment of the following 
three elements: first the approach, i.e. criteria that show the organization’s commitment to and management’s 
support for a practice; second the deployment, i.e. the breadth and consistency of practice implementation; and 
third the results, i.e the breadth and consistency of positive results over time. With such a scale, it is easier to 
measure the progress made by each team from one audit to another. After each audit, a mini action plan was 
developed to address the findings and implement corrective actions. 
 
 Another feature was built in the process in order to capture the lessons learned. In our organization, 
we have defined the software planning and tracking process such that it is the first process to be initiated in 
any project and also the last process to be called at the completion of a project. During the planning phase, the 
project has to estimate the effort required to conduct lessons learned reviews. During the tracking phase, 
lessons learned reviews are performed in each project. In order to make sure that the lessons are learned by the 
organization, each lesson is analyzed in order to identify if a process step could be improved (Basili 1994). If 
this is the case, modifications to the process, methods or guides are made before the project is allowed to exit 
from the last step of the tracking process. 
 
 As the processes are being used in current projects , artifacts are collected and stored in a process 
asset library (PAL). Presently, the PAL contains mostly paper documents. As the organization is moving 
toward an environment where each practioner will have access electronically to documents, the PAL will 
contain electronic copies of documents produced. The PAL librarian has read and write privileges while 
practioners have only read privileges. The librarian will also perform configuration management functions on 
the artifacts of the PAL. Table 1 lists the artifacts that are stored in the PAL as projects are producing 
documents.                       
 

• Software Engineering Policy • Software Version History  
• Process Descriptions • List of Process Owners  
• Forms and Templates  • Process Improvement Suggestions 
• Examples of Documents Produced • Training Material 
• Business Case Examples  • Quality Assurance Reports (e.g. reports from 

audits) 
• Proposal examples  • Quality Data (e.g. results from inspections) 
• Software Development Plans (SDP) • List of Software Tools under configuration 
• Tailored Processes  • Historical Data (e.g. project estimates) 
• Tailoring Guidelines  • Software Methods Documentation 
• Process Definition Process • Charter of Software Engineering Process Group  
• Lessons Learned  

 
          Table 1: Content of the Process Asset Library 
 
 
 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 6 
  

 
 Finally during the Leveraging phase, lessons learned from projects and processes are collected, 
analyzed and implemented. These lessons will be used to prepare the next improvement cycle which is planned 
to start in the fall of 1996 by a re-assessment of the software engineering process (i.e. a CMM-Based Appraisal 
for Internal Process Improvement, CBA IPI) (Dunaway 1996) by  certified SEI assessor from the Applied 
Software Engineering Centre (ASEC). 
 
 

Development of a Systems Engineering Process 
 
 Although the organization had in use ISO-9001 compliant procedures describing the work that 
systems engineers have to perform, it was decided that a systems engineering process had to be defined in 
order to integrate, seamlessly, disciplines associated with systems engineering. In  1995, we conducted an 
internal assessment of our systems engineering practices using the Systems Engineering Capability Maturity 
Model (SE-CMM) (Bate 1995) and the SE-CMM Appraisal Method (SAM). The objective was to help identify 
priorities for improvement within the 18 process areas of the SE-CMM. Three systems engineers and two 
management staffs answered the SAM questionnaire. Results from the questionnaire were compiled and a 
maturity level for each process area was computed. After analysis of the results management decided to put a 
higher priority on the engineering process areas as defined in the SE-CMM. Managers reviewed the current 
literature and a decision was made to use, as frameworks, the SE-CMM and the Generic Systems Engineering 
Process (GSEP) developed by the Software Productivity Consortium (SPC 1995). The GSEP has been developed 
to incorporate most of the practices of the SE-CMM.  A working group, composed of 11 systems engineers, 
software engineers and a representative from quality assurance, was established to define and facilitate the 
implementation of a systems engineering process. Another objective of the working group is to integrate the 
current software engineering processes to the systems engineering process. This objective is part of the 
progress that has to be made to work at SEI level 3 of the CMM for software. 
 
 The GSEP document describes, using the IDEF notation (USAF 1981), management and technical 
activities and also the artifacts produced by each activity. The major management activities, as illustrated in 
figure 5, are: understand context, analyze risk, plan increment development, track increment development and 
develop system. The major technical activities, as illustrated in figure 6, are: analyze needs, define requirements, 
define functional architecture, synthesize allocated architecture, evaluate alternatives, validate and verify 
solution and control technical baseline. Each major activity is broken down in a certain number of smaller 
activities which are described, individually using the ETVX notation. Our strategy is to define a beta version of 
the technical activities, then of the management activities, use the beta version on pilot projects and make 
corrections to both management and technical activities of the process before full deployment.  
 
 In addition to defining the process, each member of the working group has a secondary duty, as each 
step of the beta version of the process is defined, members of the working group were tasked to collect the 
following information: updates to process descriptions, monitor compliance with the SE-CMM, monitor the 
interfaces with the software engineering processes, identify process and product measurements, identify roles 
and responsibilities, define glossary, identify methods, best practices, artifacts, CASE tools, lifecycle 
representations, project templates, estimation guidelines, course material, training resources, lessons-learned, 
and establish the systems engineering process asset library. Finally, since Oerlikon Aerospace has been 
certified as an ISO 9001 organization, in 1993, one representative from the quality assurance department 
monitors our progress in order to make sure that the process being defined is compliant to ISO requirements. 
Oerlikon Aerospace is planning to perform an independent systems engineering assessment, by the end of 
1997, to measure the progress made and plan a second phase of systems engineering process improvements.  



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 7 
  

Understand
Context

                         

Analyse
Risk

Plan
Increment

Development

Track
Implement

Development

Develop
System

Plan

I9

System Context

Estimate of the Situation ( Approved )

I1 External System
Definition

I3 User
Req.

I4
Tech.
Base

I6 Increment
Status

I7
Tech.

Baseline

I8 Tech.
Risk

I2
Subsystem/
Components

Status

I5
System

Implementation
Status

System Status O2

O5

Risk Management
Plan ( Approved )

Increment
Plan

( Approved )

Increment
Plan

( Updated )

Increment Plan
( Approved / Updated ) O3

System Definition
( Approved )

O4

Incr.
Plan

(Enacted)
Increment

Status Report System Plan
( Approved ) O1

 
 
 
          Figure 5: Management Activities of the Systems Engineering Process 
 
 

Analyse
Needs

Define
Requirement

Define
Functional

Architecture

Synthetize
Allocated

Architectures

Evaluate
Alternatives

Verify and
Vadate
Solution

Control
Tech.

Baseline

I1

Estimate of
the Situation

I3

User
Requi.

I4

Techno.
Base

I2

External
System

Definition

I5

System
Definition /

Process
Requi.

Technical Baseline O2

Increment Status O1

Technical Risk O3

System Context O4

Informal
functional
Hierarchy

User
Specification

( Identified
Environments,

Problems and Needs )

Sys. Requi.

Derived
Req.

Alternative
Functional

Architectures

Performance
Requirements

Alternative
Allocated

Architecture

System
Solution

(Prefered)

Evaluation
Results

Allocated
Req &
Perf.

Estimates

Evaluation
Documentation

(Baselined)

V & V Test
Procedures

Verification &
Validation

Results
System

Definition
( Interim )

System
Definition
(Interim

Updated)

Configuration
Control /

Constraints

Decision
Data Base

 
 
        Figure 6: Technical Activities of the Systems Engineering Process 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 8 
  

The Management of Change 
 
 Since the management of change is a key element of a successful process improvement program, a 
series of actions were planned in order to facilitate the development, the implementation and the adoption of the 
processes, methods and tools (Laporte, 1993). As an example, to build the sponsorship level, the president 
attended a one-day executive seminar on process improvement at the SEI, two directors attended a three-day 
seminar discussing the CMM, process, process assessment and improvement. Also, one member of the SEPG 
attended two courses at the SEI: managing technological change and consulting skills. Briefing sessions were 
held and articles were written in each company’s newsletter to explain the why, what and how of process 
assessment and improvement and describing the progress made. Finally, surveys were conducted in order to 
assess the organization’s readiness to such a change in practices. The surveys identified strengths of the 
organization and potential barriers to the planned improvement program.   
 
 Also, in order to get support and commitment for the future implementation of processes, working 
groups were staffed with representatives from many departments: software engineering, systems engineering, 
sub-systems engineering, quality assurance, contract management, and configuration management. Each 
working group was managed like a project. It had a charter, a budget and a schedule. A process owner, i.e. a 
manager responsible for the definition, implementation and improvement of each process was part of a working 
group. A member of the SEPG acted as a facilitator in each working group. Therefore, the process owner would 
focus on  the content of a specific software process while the facilitator would focus on the process  of  
developing a specific software engineering process. 
 
 In order to facilitate the conduct of working group activities, a certain number of meeting guidelines 
(Siddall 1996) were proposed, by the facilitators, to the members of working groups during the kick-of meeting 
of their group. The proposed guidelines are listed in table 2. It was decided that consensus decision making 
was the preferred decision-making option. We defined consensus, according with the definition found in the 
Team Handbook (Scholtes 1988): consensus is not unanimity, consensus is based on the assumption that 
solutions are more likely to succeed if all of the key participants are “comfortable enough” with the outcome to 
move forward. During meetings we use “thumb voting” procedure (Popick 1996) to make decision by 
consensus. Thumb voting allows the following three alternatives: first, if the proposition is favored, the thumb 
is up; second, if someone can live with the decision, the thumb is to the side; third, if someone cannot live with 
the decision the thumb is down. In the later case, the members of the working group have to take time to 
understand the issues at stake and propose an alternative that everyone can live with. 
 

 
Table 2: Proposed meeting guidelines  

 
 Finally, on a periodic basis, members of the working groups have to evaluate the effectiveness of their 
group. A survey (Alexander 1991) is distributed at the end of a meeting, members are asked to complete the 

• One conversation at a time. 
• In the meeting or out, but not both (i.e. participants should make a commitment to participate to the meeting 

for the full duration). 
• 100-mile rule (i.e. no interruptions, e.g. telephone messages, allowed unless urgent) 
• How decision will be made (e.g. by consensus, majority or minority rule, autocracy, unanimity). 
• Once a decision is made, participants support it inside and outside the meeting. 
• Be as open as possible. 
• We listen, with respect, to others and do not interrupt them. 
• Silence is consent. 
• Few recreational stories. 
• Differences are respected. 
• Avoid blaming individuals. 
• We come prepared to meetings. 
• We publish minutes and action items at each meeting. 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 9 
  

survey and to send it to the facilitator of their group. The survey addresses the following issues: goals and 
objectives, utilization of resources, trust and conflict resolution, leadership, control and procedures, 
interpersonal communications, problem solving, experimentation and creativity. At the following meeting, 
issues that were surfaced by members are discussed in order to generate suggestions for improvement.  
 

Lessons Learned 
 
 It was observed that software and systems engineering process improvement really picked-up 
momentum when a common focal point was created between management, engineers and customers. 
Understanding that the real benefit of process improvement lies in improving product quality, reducing time-to-
market and cost. Consequently, improving the ability of the organization to better compete. Additionally, a 
multi-year Process Improvement Plan (PIP) is a very important tool to illustrate the links between project 
requirements and process development. Essentially the PIP illustrates that the engineering of processes is not a 
paper exercise but an important infrastructure for the successful accomplishment of projects. Being a multi-year 
plan, the PIP also shows to practioners the long-term commitment of management to process improvement 
activities. 
 
 It is also very important to carefully select pilot projects and participants to the pilots since these 
projects will foster adoption of new practices throughout the organization. Also, first time users of a new 
process will make mistakes. It is therefore mandatory to properly coach the participants and provide them with a 
“safety net”. If participants sense that mistakes will be used to learn and make improvements to the process 
instead of “pointing fingers”, the level of anxiety will be reduced and they will bring forward suggestions 
instead of “hiding” mistakes. 
 
 Managing the human dimension of the process engineering initiative is the component which not only 
fosters the adoption of change but creates an environment where changes could be introduced at an 
increasingly greater rate. Members of the engineering organization now realize that managing the “soft stuff” is 
as important as managing the “hard stuff”. 
 
 The utilization of models such as the CMM for software and systems  engineering is slowly changing 
the culture of the organization from the “Not Invented Here” (NIH) to the “Not Reinvented Here” (NRH) 
mindset. Practioners see the benefits of reusing someone else’s work. They also see that the organization 
encourage them to look for solutions instead of constantly reinventing the wheel. Engineers are now 
intensively using the Internet to look for practices developed by other organizations and adapting these 
practices to the environment of the organization. Practioners attend conferences sponsored by organizations 
such as the SEI and INCOSE to identify best practices for their utilization in day-to-day activities. 
  

Next Steps  
 
 A training program will be defined. For software engineers, we have identified a career development 
program developed by the British Computer Society (BCS) (Taylor 1991). This program is currently used by 
employers, since 1985, mainly in United Kingdom and in other countries. This program is becoming available in 
North America through DPMA (Data Processing Management Association). The key features of the program 
are: cyclic and pre-planned and documented programs of training and experience worked out between employer 
and employee; industry-wide performance standards; evaluation of the completion of these program by 
independent experienced professionals; registration of completed programs in a standardized Log-Book owned 
by the employee. The performance standards are based on the BCS’s Industry Structure Model (ISM). The ISM 
defines over eighty detailed job descriptions and up to 10 competence levels, for each job description,  ranging 
from an unskilled entry level to a senior manager or director. Each competence level describes the recommended 
academic background, the experience and level of skill at entry, tasks and attributes, and training and 
development required. In addition to the BCS program, the practices described in the CMM level 3 training KPA 
(Paulk 1993) and in the People CMM (Curtis 1995) will also be used to define the training program (Carpenter 
1995) for software engineers. A similar approach will be used for the other engineering disciplines. 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 10 
  

 
 Presently most of our process assets are paper documents. As we progress, these documents will be 
made available on the company local area network. Practioners will have read only access privileges. Only 
process owners and the PAL librarian will have all read and write privileges.  
 
 As we are making progress in institutionalizing systems and software engineering processes and 
methods, we will be using more CASE tools. Since CASE tools are quite expensive both in acquisition costs and 
maintenance costs, we cannot afford to make mistakes. But as the organization matures, our requirements for 
CASE tools will be better defined and the tools selected will better support the execution of the systems and 
software engineering processes and methods. 
  
 As the engineering division moves toward concurrent engineering and integrated product 
development, the structure of the organization as well as the performance management process will need some 
adjustments in order to capture the full benefits of these new work practices. 

    
 

Conclusion 
 
 Our organization has made substantial investments toward the definition and implementation of 
engineering processes, methods and tools. Improvements require significant investments but, both the 
technical and management activities will allow complex projects to be developed in a disciplined environment. 
Engineers and managers will be able to perform their activities more effectively and efficiently. The engineering 
division is slowly moving from the “not invented here” to the “not reinvent here” culture. 
 

Biographies. 

 
Claude Y. Laporte obtained in 1973 a  Bachelor in Science from le Collège Militaire Royal de Saint-jean. In 1980, 
he obtained a MS in physics at Université de Montréal, and in 1986, a MS in Applied Sciences from the 
Department of Electrical and Computer Engineering at École Polytechnique de Montréal. He was an officer 
within the Canadian Armed Forces during 25 years and a professor for over 10 years. From 1988 to 1992, he was 
involved in the implementation of the Applied Software Engineering Centre. He left the Canadian Forces in 1992 
at the rank of major. Since then, he has joined Oerlikon Aerospace where  he coordinates the development and 
implementation of software and systems engineering processes, methods and tools. He also chairs the 
Montréal Software Process Improvement Network (Montréal SPIN).  
 
Nick Papiccio graduated with a Bachelor degree in Administration Sciences in 1980 from le Collège Militaire 
Royal de Saint-Jean. He has also completed all the courses for the Master in Project Management with the 
Université du Québec à Montréal. Since 1982, he has been involved in systems and software engineering 
especially with the Canadian Patrol Frigate Program. He retired from the Canadian navy as a lieutenant-
commander specialized in software engineering. During his tenure in the navy, he was trained by Ed Yourdon in 
software design and development (1984). He took many courses in quality engineering, configuration 
management, systems engineering, logistic engineering and instructional system development. Since 1995, he is 
the manager of software engineering at Oerlikon Aerospace. He has introduced the first I-CASE environment in 
Canada, integrating both software and systems engineering in a common process framework. He is currently 
involved with the creation of a Center of Excellence in Software and Systems Engineering for Canada. 
 
 

References 
 
Alexander, M., “The Encyclopedia of Team-Development Activities”, edited by J. William Pfeiffer, University 
Associates, San Diego, California, 1991.  
 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 11 
  

Basili, V., Green, S., “ Software Process Evolution at the SEL”, IEEE Software, July 1994. 
 
Bate, R., “ A Systems Engineering Capability Maturity Model”, version 1.1, Software Engineering Institute, 
CMU/SEI-95-01, November 1995. 
 
Carpenter, M.B., Hallman, H.,K., “Training Guidelnes: Creating a Training Plan for a Software Organization”, 
Software Engineering Institute, CMU/SEI-95-TR-007, September 1995. 
 
Curtis, B., et al, “ People Capability Maturity Model”, Software Engineering Institute, CMU/SEI-95-MM-02, 
September 1995. 
 
Daskalantonakis, M.K., “Achieving Higher SEI Levels”, IEEE Software, July 1994. 
 
Dunaway, D., Master, S., “CMM-Based Appraisal for Internal Process Improvement (CBA IPI): Method 
Description”, Software Engineering Institute, CMU/SEI-96-TR-007., April 1996. 
 
Fowler, P. Rifkin, S., “Software Engineering Process Group Guide”, Software Engineering Institute, Report 
CMU-SEI-TR-24, September 1990. 
 
Gilb,T., Graham, D., “Software Inspection”, Addison Wesley, 1993. 
 
Laporte, C.Y., “Process Improvement and the Management of Change”, Proceedings: 4th IEEE Computer 
Society Workshop on Software Engineering Technology Transfer, Dallas, April 28-29 1994. 
 
McFeeley, B., “IDEAL: A User’s Guide for Software Process Improvement”, Software Engineering Institute, 
CMU/SEI-96-HB-001, Feb. 1996. 
 
Olson, T.G. et al., “A Software Process Framework for the Software Engineering Institute’s Capability Maturity 
Model”, Software Engineering Institute, CMU/SEI-94-HB-01, Sep. 1994. 
 
Paulk, M. et al, “Capability Maturity Model for Software”, Software Engineering Institute, SEI/CMU-93-TR-24, 
1993. 
 
Popick, P.R., Shear, S.A., “Ten lessons Learned from Implementing Integrated Product Teams”, Proceedings, 
International Council on Systems Engineering 6th  Annual International Symposium, Boston, July 7-11, 1996. 
 
Radice, R., “A Programming Process Architecture”, IBM Systems Journal, vol. 24, no. 2, 1985.    
 
Scholtes, P. “ The Team Handbook”, Joiner Associates Inc., 1988. 
 
Siddall, Donald, R., “The Team Notebook”, Publication in process, 1996. 
 
SPC, “A Tailorable Process for Systems Engineering”, Software Productivity Consortium, SPC-94095-CMC, 
January 1995. 
 
SEI, “Relationships Between the Systems Engineering Maturity Model and Other Products, Version 1.0”, 
Software Engineering Institute, CMU/SEI-94-TR-26, Nov. 1995. 
 
STARS, “Army STARS Demonstration Project Experience Report”, United States Air Force, Air Force Material 
Command,  Feb. 1995. 
 
Taylor, J.A., “ Training, Career Development and Registration for Safety Critical Software Systems Specialists”, 
IEEE AES Systems Magazine, September 1991. 
 



Vision 96- Software and Systems Engineering Process Improvement, Montreal, December 1996.                 12 
  

USAF, “Integrated Computer-Aided Manufacturing Architecture”, Function Modeling Manuel (IDEF0), United 
States Air Force, AFWAL-TR-81-4023, 1981. 


