
 1

New Directions in Measurement for Software
Quality Control

Paul Krause, Bernd Freimut and Witold Suryn

Abstract—Assessing and controlling software quality is still an

immature discipline. One of the reasons for this is that many of
the concepts and terms that are used in discussing and describing
quality are overloaded with a history from manufacturing
quality. We argue in this paper that a quite distinct approach is
needed to software quality control as compared with
manufacturing quality control. In particular, the emphasis in
software quality control is in design to fulfil business needs,
rather than replication to agreed standards. We will describe
how quality goals can be derived from business needs. Following
that, we will introduce an approach to quality control that uses
rich causal models, which can take into, account human as well
as technological influences. A significant concern of developing
such models is the limited sample sizes that are available for
eliciting their parameters. In the final section of the paper we will
show how expert judgement can be reliably used to elicit
parameters in the absence of statistical data. In total this
provides a framework for quality control in software engineering
that is freed from the shackles of an inappropriate legacy.

Index Terms—System Reliability, Quality Control, Failure
Analysis, Process Control

I. INTRODUCTION
SSESSING and controlling software quality is hard. You
cannot hold it or touch it, yet its behaviour has an impact

on all of our lives. We all are stakeholders in the drive to
improve the quality of the software that we work with, yet few
of us are able to explicate precisely how we define measures
to discriminate between “poor” quality and “high” quality
products.

This may seem strange, as quality control is a precise
science in most other industries, and an important product
discriminator. There are, however, a number of reasons for
this. Consider three main aspects of quality control in

traditional manufacturing:

Manuscript received February 14, 2003. This work was supported in part

by the European Community funded RTD Project MODIST [IST-2000-
28749]

Paul Krause is with Surrey University, Guildford, Surrey, KT21 2TY UK,
and Philips Electronics, Crossoak Lane, Redhill RH1 5HA, UK (phone+44
(0)1483 689861; fax: +44 (0)1483 686051; e-mail: p.krause@ surrey.ac.uk).

Bernd Freimut is with the Fraunhofer Institute for Experimental Software
Engineering Sauerwiesen 6 D-67661 Kaiserslautern, Germany
(freimut@iese.fhg.de)

Witold Suryn is with the Department of Electrical Engineering, École de
Technologie Supérieure (ÉTS) 1100 Notre Dame St. West, Montréal, Québec,
Canada, H3C 1K3 (wsuryn@ele.etsmtl.ca)

• The control of manufacturing defects
• The assessment of mean time to failure of a product

through wear or ageing
• The use of statistical sampling to provide quality

predictions with well-defined uncertainties
In general, these have limited applicability in software

engineering. The main reason for this is that in software
engineering we are concerned with controlling the design
process and not the manufacturing process. We want to:
• Know how to control the design and development process

so that design faults and weaknesses are minimized
• Assess the likelihood that failures to meet the quality

requirements of users (through design and development
faults) will be manifest in a specific context of use – and,
ideally, how that likelihood might vary as the context of
use (inevitably) changes over time

• Develop quality measurement and assessment techniques
that can be applied in cases where a specific design and
development process may only be applied to a small
number of projects – perhaps even just an individual
project.

In this paper we will discuss methods of addressing each of
these problems. The key mindset is to remember that a
software product is developed to provide a range of services
for a user group, in order to help them achieve certain needs
or goals. Thus, we should be clear at the outset of any
software project as to precisely what those needs or goals are.
These are the key drivers behind the identification of not just
the functional requirements, but also the quality requirements.
So, for example, if a user has a business goal of providing
24x7 service, then any software system that is built to support
them must satisfy stringent availability requirements. We will
present an approach that takes business or user goals as the
primary driver, and then maps these onto quality goals. This
will make specific reference to the ISO9126 standard, which
provides a set of definitions of quality characteristics and sub-
characteristics for specifying quality in use of a software
product.

Having identified a set of quality in use goals, we next need
to know how we can best control the software development
life-cycle in order to be able to maximise the likelihood of
achieving those goals. The basic problem here is the sparsity
of empirical data that is available in general. We will present
an approach using Bayesian probabilistic models that enables

A

 2

any statistical data that is available to be combined with expert
judgement to produce predictive “causal” models that show
significant potential as general-purpose models.

The use of expert judgement in measurement and predictive
modelling is somewhat contentious. However, there is
evidence that in certain contexts, experts are well calibrated
[ref, Ayton, and Pascoe]. Surprisingly accurate measurements
can be achieved by taking an average over a group of experts.
A simple experiment here is to ask a group of people in a
room to judge the height of a third party standing in the room.
The resulting mean value will be very close to the person’s
actual height. We will describe how well designed interviews
can be used to provide meaningful and useful measures of the
cost effectiveness of reviews and inspections in an
organisation where detailed process data was not available.

Finally we will bring these three threads together to show
how together they provide a rich framework for quality
control in software engineering.

II. REQUIRING SOFTWARE PRODUCT QUALITY
The following part of this paper presents a high-level view of
the process of defining the required quality of a user-centered
software product. The process is based on the combination of
quality requirements that exist or can be identified applying
the TL9000 Handbook and ISO/IEC 9126 series of standards.

A. The process for quality requirements identification
For the users, a software product more and more often
corresponds to a black box that must effectively support their
business processes. In consequence of this natural approach
business needs become a driving force of quality software
product development. This in turn requires that operational
quality and satisfaction of using a software product set the
framework for software product development effort: at the
beginning of the development process to elicit business-
related software product quality requirements, while at the end
- to allow a rigorous evaluation. This business view of quality
is illustrated in Fig.1

Fig. 1 Business View of software product
 quality

Identifying quality requirements that can be elicited,
formalized and further evaluated in each phase of the full

software product lifecycle thus becomes a crucial task in the
process of building a high quality software product.
The QUEST Forum’s TL 9000 Handbooks are designed
specifically for the telecommunications industry to document
the industry’s quality system requirements and measures. The
TL 9000 Quality System Requirements Handbook [1]
establishes a common set of quality system requirements for
suppliers of telecommunications products: hardware, software
or services. The requirements are built upon existing industry
standards, including ISO 9001. The TL 9000 Quality System
Measures Handbook [2] defines a minimum set of
performance measures, cost and quality indicators to measure
progress and evaluate results of quality system
implementation.
The applicability of TL 9000 in the software product lifecycle
is illustrated in Fig.2.

Fig.2 Applicability of TL9000 standards in the
 software product lifecycle

In parallel, the ISO/IEC Subcommittee 7 (SC7) on system and
software engineering has developed a set of quality standards
for the full development process. These standards take the
initial quality requirements into account during each of the
development phases, allowing the quality planning, its design,
monitoring and control.
Software product quality can be evaluated by measuring
internal attributes (typically static measures of intermediate
products), or by measuring external attributes (typically by
measuring the behaviour of the code when executed), or by
measuring quality in use attributes. The objective is for the
product to have the required effect in a particular context of
use. To produce these effects, the measurement and evaluation
of the quality of a software product has to be present
throughout its lifecycle (Fig. 3).

process
quality

external
measures

external
quality

attributes

process
measures

quality in
use

attributes contexts
of use

quality in use
measures

internal
measures

internal
quality

attributes

influences influences

depends on

influences

depends ondepends on

process software product effect of software
product

Fig.3 ISO/IEC 9126 Quality in lifecycle

Moreover, the proper quality measurement and evaluation
methodologies have to be present and applied. The ISO/IEC
9126 series of standards [3, 4, 5, 6] offers both broadly
recognized quality models and appropriate measurements
together with scales and measurement methods. The ISO/IEC

TL 9000
Operational

Quality
Requirements

TL 9000
Operational

Quality
Measurements

Product
Development

Product in
Use

Product
Definition

Product
Definition

Product
Development

REQUIRED
Operational
Quality

And
Satisfaction

OBTAINED
Operational

Quality
And

Satisfaction

Product in
Use

 3

14598 series of standards [7, 8, 9, 10, 11, 12] is a
complementary set offering the support for the software
quality evaluation processes.

Figure 4 presents how these ISO/IEC standards integrate to
the TL9000.
The practical use of these two combined sets of standards
requires however a much more detailed view. Furthermore, in
order to define, plan and implement the quality, the precise
identification of applicable standards and their particular
documents for each phase of software development process is
also required.

Fig 4. Integration between TL9000 a
 ISO/IEC SC7 standards

The ISO/IEC standard being further
9126 - Software and System Enginee
Quality Metrics. 1999-2002 [3, 4, 5, 6

B. Definition of quality requiremen
For the simplicity of the following dis
software life cycle phases proposed in
be kept.

The crucial effort of defining q
undertaken in the Discovery Phase. In
requirements have to be identified and

• Functional and non-functio
product (out of the scope o

• Operational quality require
• Quality in Use requirement

It is important to note here, that acc
quality in the software life cycle defi
[3] the requirements of Quality in Use

External Quality requirements, which in turn contribute to
specifying Internal Quality requirements. This indicates that
the attributes of Quality in Use have a direct impact on
technical and technological decisions that (will) have to be
taken when the development process starts. This requires that
Quality in Use characteristics be analyzed, applicable
measures identified and target values for each of them
assigned. The ISO standard to be applied to complete this task
is ISO/IEC 9126 – Part 4: Quality in Use Metrics [6]. The
characteristics to be analyzed are:

• effectiveness
• productivity
• safety, and
• satisfaction

Quality in Use requirements help define success criteria of the
new software product. However alone they will not assure the

ISO/IEC SC7
Standards

for
Software
Product
Quality

SW Product
Quality

Requirements

transition of requirements

applicability of standards

Product
Definition

Product
Development

TL 9000
Operational

Quality
Requirements M
TL 9000
Operational

Quality
easurements

nd

 considered is ISO/IEC
ring – Software Product
]

ts
cussion the reference to
 ISO/IEC 15288 [7] will

uality requirements is
 this phase three sets of
 defined:
nal requirements of the
f this paper)
ments, and
s

ording to the model of
ned in ISO/IEC 9126-1
 contribute to specifying

product’s long term success in the market. Such a success is
achieved when Quality in Use comes together with, among the
others, fulfilled operational quality requirements.
Again, this requires that operational quality requirements be
analyzed, applicable measures identified and target values for
each of them assigned.

TL 9000 – The Quality Management System Measurement
Handbook [2] identifies four (4) categories of requirements
and/or measurements applicable to software products:

• common measurements – referring to the number
of problems reported, response time, overdue
problem responsiveness and on-time delivery

• hardware and software measurements – referring to
system outage

• software measurements – referring to software
installation and maintenance

• service measurement – referring to service quality

The final set of quality requirements and their targeted values,
comprising of both operational quality and Quality in Use
requirements will then become the major milestone. This will
contribute to the definition of functional and non-functional
requirements of the future software product with the user
perception of the software product quality already “sewn” into
the overall definition.

The process of definition of quality requirements does not
however stop on the level of Quality in Use and operational
quality as the two sets are then further refined in a
Requirements Analysis Phase. In this phase the applicable
quality requirements define the external and internal quality
attributes of the software product to be developed, which
usually completes the identification of quality requirements
being attributed to a software product.

The ISO standards applied in this phase are:

• ISO/IEC 9126 – Part 2: External Quality Metrics
[4], and

• ISO/IEC 9126 – Part 3: Internal Quality Metrics [5]

Product in
Use

 4

It has to be stressed here, that the attributes of both external
and internal quality being defined in this phase make direct
descendants of quality requirements previously set up in the
Discovery phase, so the critic rule of traceability in software
engineering is being conserved.

At this moment, with the process of the definition of software
product quality properly done, the project of developing new
software is, or at least should be, well equipped with
identified and precise quality requirements and ready for
execution. However, we now have the challenge of directing
the product in a way that offers good guarantees that its
quality goals will be achieved. In the next section we will
argue that a different approach to quality control is needed in
software development compared with traditional
manufacturing.

III. OBTAINING AND CONTROLLING SOFTWARE PRODUCT
QUALITY

Building software products is a profoundly intellectual
activity. This provides a fundamental distinction between the
activity of creating software products, and the activity of
manufacturing goods. In the former, we are primarily
concerned with controlling human creativity and directing a
collaborative endeavor towards achieving some agreed goal (a
software product that fulfils a specified need). In the latter we
are interested in replicating an already agreed product,
multiple times to within prescribed tolerances.

In both cases we have historically used a common
vocabulary to express concepts that pertain to the “quality” of
the respective products. Perhaps even more unjustifiably,
many have endeavored to apply similar techniques of process
control to attempt to achieve quality software products as are
used to achieve quality hardware products. And yet, as we
have argued, the two activities are fundamentally different.

In this section, we will argue that the application of process
control methods using simple regression models has limited
applicability to the development of software products, and
introduce the requirements for a quality control method that is
informed by rich causal models.

Fenton and Neil [1999] provide a detailed critique of
software defect prediction models. The essential problem is
the oversimplification that is generally associated with the use

of simple regression models. Typically, the search is for a
simple relationship between some predictor and the number of
defects delivered. Size or complexity measures are often used
as such predictors. The result is a naïve model that could be
represented by the graph of Figure 5.

The difficulty is that whilst such a model can be used to
explain a data set obtained in a specific context, none has so
far been subject to the form of controlled statistical
experimentation needed to establish a causal relationship.
Indeed, the analysis of Fenton and Neil suggests that these
models fail to include all the causal or explanatory variables
needed in order to make the models generalisable. Further
strong empirical support for these arguments is demonstrated
in [Fenton and Ohlsson, 2000].

As an example, in investigating the relationship between
two variables such as S and D in Figure 5, one would at least
wish to differentiate between a direct causal relationship and
the influence of some common cause as a “hidden variable”.
For example, we might hypothesise “Problem Complexity”
(PC) as a common cause for our two variables S and D, Figure
6.

The model of Figure 5 can simulate the model of Figure 6
under certain circumstances. However, the latter has greater
explanatory power, and can lead to quite a different
interpretation of a set of data. One could take “Smoking” and
“Higher Grades” at high school as an analogy. Just looking at
the covariance between the two variables, we might see a
correlation between smoking and achieving higher grades.
However, if "Age" is then included in the model, we could

have a very different interpretation of the same data. As a
student's age increases, so does the likelihood of their
smoking. As they mature, their grades also typically improve.
The covariance is explained. However, for any fixed age
group, smokers may achieve lower grades than non-smokers.

We believe that the relationships between product and
process attributes and numbers of defects are too complex to
admit straightforward curve fitting models. In predicting
defects discovered in a particular project, we would certainly

PC

S D

Figure 6: The influence of S on D is now mediated
through a common cause PS. This model can behave in
the same way as that of Figure 5, but only in certain
specific circumstances.

S D

Figure 5: Graphical representation of a naïve regression
model between some predictor S (typically a size
measure), and the number of software defects D.

 5

want to add additional variables to the model of Figure 6. For
example, the number of defects discovered will depend on the
effectiveness with which the software is tested. It may also
depend on the level of detail of the specifications from which
the test cases are derived, the care with which requirements
have been managed during product development, and so on.
We believe that graphical probabilistic models are the best
candidate for situations with such a rich causal structure.

IV. A PROBABILISTIC MODEL FOR DEFECT PREDICTION
Probabilistic models are a good candidate solution for an

effective model of software defect prediction (one aspect of
quality control) for the following reasons:

1. They can easily model causal influences between
variables in a specified domain;

2. The Bayesian approach enables statistical
inference to be augmented by expert judgement in
those areas of a problem domain where empirical
data is sparse;

3. As a result of the above, it is possible to include
variables in a software reliability model that
correspond to process as well as product attributes;

4. Assigning probabilities to reliability predictions
means that sound decision making approaches using
classical decision theory can be supported.

Our goal was to build a module level defect prediction
model that could then be evaluated against real project
data from within the Philips Electronics group of business
units. This model was built in a collaborative project
between Philips Electronics and Agena Ltd (Fenton,
Krause and Neil, 2001). Although it was not possible to
use members of Philips' development organisations
directly to perform extensive knowledge elicitation,
Philips Research Laboratories (PRL) were able to act as a
surrogate because of their experience from working
directly with Philips business units. This had the added
advantage that the probabilistic network could be built
relatively quickly. However, the fact that the probability
tables were in effect built from “rough” information
sources and strengths of relations necessarily limits the
precision of the model.

The remainder of this section will provide an overview
of the model to indicate the product and process factors
that are taken into account when a quality assessment is
performed using it.

A. Overall structure of the probabilistic network
The probabilistic network is executed using the generic

probabilistic inference engine Hugin (see
http://www.hugin.com for further details). However, the size
and complexity of the network were such that it was not
realistic to attempt to build the network directly using the
Hugin tool. Instead, Agena Ltd used two methods and tools
that are built on top of the Hugin propagation engine:

The SERENE method and tool [SERENE, 1999], which
enables: large networks to be built up from smaller ones in a

modular fashion; and, large probability tables to be built using
pre-defined mathematical functions and probability
distributions.

The IMPRESS method and tool [IMPRESS, 1999], which
extends the SERENE tool by enabling users to generate
complex probability distributions simply by drawing
distribution shapes in a visual editor.

The resulting network takes account of a range of product
and process factors from throughout the lifecycle of a
software module. Because of the size of the model, it is
impractical to display it in a single figure. Instead, we provide
first a schematic view in terms of sub-nets (Figure 7). This
modular structure is the actual decomposition that was used to
build the network using the SERENE tool.

The main sub-nets in the high-level structure correspond to
key software life-cycle phases in the development of a
software module. Thus there are sub-nets representing the
specification phase, the specification review phase, the design
and coding phase and the various testing phases. Two further
sub-nets cover the influence of requirements management on
defect levels, and operational usage on defect discovery. The
final defect density sub-net simply computes the industry
standard defect density metric in terms of residual defects

Specification quality

Specification review

Requirements match

Design and coding
process

Unit testing process

Independent testing
process

Defect density

Operational usage

Specification
defects

Residual
specification

defects

New
requirements

Code defects
Design doc quality

Residual
defects

Residual
defects

delivered

Module sizeSpec quality

Matching
requirements

Intrinsic
complexity

Integration testing
process

Residual
defects

Design doc
quality

Figure 7: Overall network structure.

 6

delivered divided by module size.
This structure was developed using the software

development processes from a number of Philips development
units as models. A common software development process is
not currently in place within Philips. Hence the resulting
structure is necessarily an abstraction. Again, this will limit
the precision of the resulting predictions. Work is in progress
to develop tools to enable the structure to be customised to
specific development processes (http://www.modist.org.uk).

The arc labels in Figure 7 represent ‘joined’ nodes in the
underlying sub-nets. This means that information about the
variables representing these joined nodes is passed directly
between sub-nets. For example, the specification quality and
the defect density sub-nets are joined by an arc labelled
‘Module size’. This node is common to both sub-nets. As a
result, information about the module size arising from the
specification quality sub-net is passed directly to the defect
density sub-net. We refer to ‘Module size’ as an ‘output node’
for the specification quality sub-net, and an ‘input node’ for
the defect density sub-net. In the following sub-section we will
show the details of one of the sub-nets.

B. The specification quality sub-net
Figure 8 illustrates the Specification quality sub-net. In this

figure, the dark shaded nodes with dotted edges are output
nodes, and the dark shaded ones with solid edges are input
nodes. It can be explained in the following way: specification
quality is influenced by three major factors:

• the intrinsic complexity of the module (this is the
complexity of the requirements for the module, which

ranges from “very simple” to “very complex”);
• the internal resources used, which is in turn defined in

terms of the staff quality (ranging from “poor” to
“outstanding”), the document quality (meaning the
quality of the initial requirements specification
document, ranging from “very poor” to “very good”),
and the schedule constraints which ranges from “very
tight” to “very flexible”;

• the stability of the requirements, which in turn is
defined in terms of the novelty of the module
requirements (ranging from “very high” to “very low”)
and the stakeholder involvement (ranging from “very
low” to “very high”). The stability node is defined in
such a way that low novelty makes stakeholder
involvement irrelevant (Philips would have already
built a similar relevant module), but otherwise
stakeholder involvement is crucial.

The specification quality directly influences the number of
specification defects (which is an output node with an ordinal
scale that ranges from 0 to 10 – here “0” represents no defects,
whilst “10” represents a complete rewrite of the document).
Also, together with stability, specification quality influences
the number of new requirements (also an output node with an
ordinal scale ranging from 0 to 10) that will be introduced
during the development and testing process. The other node in
this sub-net is the output node module size, measured in Lines
of Code (LOC). The position taken when constructing the
model is that module size is conditionally dependent on
intrinsic complexity (hence the link). However, although it is
an indicator of such complexity the relationship is fairly weak

- the Node Probability Table (NPT) for this
node models a shallow distribution. schedule document

quality
staff

quality
stakeholder
involvement C. Some comments on the basic

probabilistic network
The methods used to construct the model

have been illustrated in this section. The
resulting network models the entire
development and testing life-cycle of a
typical software module. We believe it
contains all the critical causal factors at an
appropriate level of granularity, at least
within the context of software development
within Philips.

The node probability tables (NPTs) were
built by eliciting probability distributions
based on experience from within Philips.
Some of these were based on historical
records, others on subjective judgements.
For most of the non-leaf nodes of the
network the NPTs were too large to elicit all
of the relevant probability distributions
using expert judgement. Hence we used the
novel techniques, that have been developed
recently on the SERENE and IMPRESS
projects, to extrapolate all the distributions

Figure 8: Specification quality
sub-net.

new
rqmnts

new
rqmnts

novelty

stability

module
size

specification
quality

internal
resources

intrinsic
complexity

spec.
defects

 7

based on a small number of samples. By applying numerous
consistency checks we believe that the resulting NPTs are a
fair representation of experience within Philips.

As it stands, the network can be used to provide a range of
predictions and “what-if” analyses at any stage during
software development and testing. It can be used both for
quality control and process improvement. However, two
further areas of work were needed before the tool could be
considered ready for extended trials. Firstly and most
importantly, the network needed to be validated using real-
world data. Secondly a more user-friendly interface needed to
be engineered so that (a) the tool did not require users to have
experience with probabilistic modelling techniques, and (b) a
wider range of reporting functions could be provided. The
validation exercise will be described in the next section in a
way that illustrates how the probabilistic network was
packaged to form the AID tool (AID for “Assess, Improve,
Decide”).

V. VALIDATION OF THE AID TOOL

A. Method
The Philips Software Centre (PSC), Bangalore, India, made

validation data available. We gratefully acknowledge their
support in this way. PSC is a centre for excellence for
software development within Philips, and so data was
available from a wide diversity of projects from the various
Business Divisions within PSC.

Data was collected from 28 projects from three Business

Divisions: Mainstream Consumer
Electronics, Philips Medical Systems
and Digital Networks. This gave a
spread of different sizes and types of
projects. Data was collected from three
sources:

• Pre-release and post-release
defect data was collected from
the “Performance Indicators”
database.

• More extensive project data was
available from the Project
Database.

• Completed questionnaires on
selected projects.

In addition, the network was
demonstrated in detail on a one to one
basis to three experienced quality/test
engineers to obtain their reaction to its
behaviour under a number of
hypothetical scenarios.

The data from each project was
entered into the probabilistic model.
For each project:

Figure 9: The entire AID network illustrated using a
Windows Explorer style view.

1. The data available for all nodes
prior to the Unit Test sub-net was
entered first.

2. Available data for the Unit Test sub-net was then
entered, with the exception of data for defects discovered
and fixed.

3. If pre-release defect data was available, the predicted
probability distribution for defects detected and fixed in
the unit test phase was compared with the actual number
of pre-release defects. No distinction was made between
major and minor defects – total numbers were used
throughout. The actual value for pre-release defects was
then entered.

4. All further data for the test phases was then entered
where available, with the exception of the number of
defects found and fixed during independent testing
(“post-release defects”). The predicted probability
distribution for defects found and fixed in independent
testing was compared with the actual value.

5. If available, the actual value for the number of defects
found and fixed during independent testing was then
entered. The prediction for the number of residual
defects was then noted.

Unfortunately, data was not available to validate the
operational usage sub-net. This will need data on field call-
rates that is not currently available.

Given the size of the probabilistic network, this was
insufficient data to perform rigorous statistical tests of
validity. However, it was sufficient data to be able to confirm
whether or not the network’s predictions were reliable enough
to warrant recommending that a more extensive controlled
trial be set up.

 8

B. Summary of results of the validation exercise
Overall there was a high degree of consistency between the

behaviour of the network and the data that was collected.
However, a significant amount of data is needed in order to
make reasonably precise predictions for a specific project.
Extensive data (filled questionnaire, plus project data, plus
defect data) was available for seven out of 28 candidate
projects. These seven projects showed a similar degree of

consistency to the project that will be studied in the next sub-
section. The remaining 21 projects show similar effects, but as
the probability distributions are broader (and hence less
precise) given the significant amounts of “missing”
information, the results are supportive but less convincing
than the seven studied in detail.

It must be emphasised that all defect data refers to the total
of major and minor defects. Hence, residual defects may not
result in a “failure” that is perceptible to a user. This is
particularly the case for user-interface projects.

Note also that the detailed contents of the questionnaires are
held in confidence. Hence we cannot publish an example of
data entry for the early phases in the software life cycle.
Defect data will be reported here, but we must keep the details
of the project anonymous.

C. An example run of AID
We will use screen shots of the AID Tool to illustrate both the
questionnaire based user interface, and a typical validation
run.

One of the concerns with the original network is that many
of the nodes have values on a simple ordinal scale, range from
“very good” to “very poor”. This leaves open the possibility
that different users will apply different calibrations to these

scales. Hence the reliability of the
predictions may vary, dependent on the
specific user of the system. We address
this by providing a questionnaire based
front-end for the system. The ordinal
values are then associated with specific
question answers. The answers themselves
are phrased as categorical, non-
judgemental statements.

The screen in Figure 9 shows the entire
network. The network is modularised so
that a Windows Explorer style view can be
used to navigate quickly around the
network. Check-boxes are provided to
indicate which questions have already been
answered for a specific project.

The questions associated with a specific
sub-net can then be displayed. A question
is answered by selecting the alternative
from the suggested answers that best
matches the state of current project.

For this example project, answers were
available for 13 of the 16 questions
preceding “defects discovered and fixed
during unit test”. Once the answers to these
questions were entered, the predicted
probability distribution for defects
discovered and fixed during unit test had a
mean of 149 and median of 125 (see
Figure 10 – in this figure the monitor
window has been displayed in order to

show the complete probability distribution for this prediction.
Summary statistics can also be displayed.). The actual value
was 122. Given that the probability distribution is skewed, the
median is the most appropriate summary statistic, so we
actually see an apparently very close agreement between
predicted and actual values. This agreement was very
surprising as although we were optimistic that the “qualitative
behaviour” of the network to be transferable from
organisation to organisation, we were expecting the scaling of
the defect numbers to vary. Note, however, that the median is
an imprecise estimate of the number of defects – it is the
centre value of its associated bin on the histogram. So it might
be more appropriate to quote a median of “100-150” in order
to make the imprecision of the estimate explicit.

Figure 10: The prediction for defects discovered and fixed
during Unit Test for project “Test 3”.

The actual value for defects discovered and fixed was entered.
Answers for “staff quality” and “resources” were available for
the Integration Test and Independent Test sub-networks. Once

 9

these had been entered, the prediction for defects discovered
and fixed during independent test had a mean of 51, median of
30 and standard deviation of 45 (see figure 5.4). The actual
value was 31.
As was the case with unit test, there was close agreement
between the median of the prediction and the actual value.
“Test 3” was developed by PSC as a module or sub-system for
a specific Philips development group. The latter then
integrated “Test 3” into their product, and tested the complete
product. This is the test phase we refer to as Independent Test.

The code size of Test 3 was 144 KLOC. The modules
(perhaps sub-system is a better term given the size) used in the
validation study ranged in size from 40-150 KLOC. The
probabilistic reliability model incorporates a relatively weak
coupling between module size and numbers of defects. The
results of the validation continue to support the view that other
product and process factors have a more significant impact on
numbers of defects. However, we did make one modification
to the specification quality sub-net as a result of the
experience gained during the validation. Instead of “Intrinsic
Complexity” being the sole direct influence on “Module
Size”, we have now explicitly factored out “Problem Size” as
a joint influence with “Intrinsic Complexity” on “Module
Size”.

D. Conclusions
A disadvantage of a reliability model of this complexity is

the amount of data that is needed to support a statistically
significant validation study. As the metrics programme at PSC
is relatively young (as is the organisation itself), this amount
of data was not available. As a result, we were only able to
carry out a less formal validation study. Nevertheless, the
outcome of this study was very positive. Feedback was
obtained on various aspects of the functionality provided by
the AID interface to the reliability model, yet the results
indicated that only minor changes were needed to the
underlying model itself. More extensive validation studies are

reported in (Fenton, Krause and Neil, 2001).
There is a limit to what we can realistically expect to

achieve in the way of statistical validation. This is inherent in
the nature of software engineering. Even if a development
organisation conforms to well defined processes, they will not
produce homogenous products – each project will differ to an
extent. Neither do we have the large relevant sample sizes
necessary for statistical process control. It is primarily for
these reasons that we augment empirical evidence with expert
judgement using the Bayesian framework described in this
paper. As more data becomes available, it is possible to
critique and revise the model so that the probability tables
move from being subjective estimates to being a statement of
physical properties of the world (see, e.g. [Krause, 1998]).
However, in the absence of an extensive and expensive
reliability testing phase, this model can be used to provide an
estimate of residual defects that is sufficiently precise for
many software project decisions. Furthermore, we will argue
in the next section that carefully elicited expert judgement can
provide a useful source of data.

VI. EXPERT JUDGEMENT CAN BE DATA TOO
A significant feature of the Bayesian approach to model

building is that enables expert judgement to be combined with
statistical so that predictive models can be built in domains
where “hard” data is sparse. A natural reaction to this is, “how
much can we trust that expert judgement?”. In this section, we
will argue that if the right techniques are used in its elicitation,
expert judgement can be a reliable source of data. We will
demonstrate this using a study of the cost-effectiveness of
software inspections.

A. Software Inspection and its Cost-Effectiveness
One practical and proven technique to ensure that quality is

built into the product right from the beginning is software
inspection [Ebenau and Strauss, 1993]. Software inspection
allows to detect and remove defects as soon as these are
introduced into software artifacts thereby preventing these
defects from slipping into subsequent phases where they can
cause high rework cost. Thus, software inspection allows to
achieve high software quality at a reasonable cost.

 However, there are many ways to perform inspections and
not all of them might be beneficial. Therefore it is one
challenge from a quality control point of view not only to
control the quality of the produced product but also from the
producing processes, in this case the software inspection
process.

In particular, this means we must be able to quantify the
quality impact of inspections, monitor it, and improve it if
necessary. In [Briand et al., 2000] one of the authors proposed
a rigorous but practical method to do so, which is sketched
here. The challenge in assessing the quality of the inspection
process lies in a situation often encountered in quality
measurement: required measurement data are not available.
Therefore the proposed method determines the cost-
effectiveness of inspections by combining project data and

Figure 11: The prediction for defects discovered and
fixed during Independent Test for project “Test 3”.

 10

expert opinion.
1) Measuring Inspection Cost Effectiveness

In order to control the quality of the inspection process, we
must first quantify the quality criterion we are interested in.
The quantitative benefit of inspections is the saved rework
effort. To capture this, we assess therefore the cost-
effectiveness of inspections

In order to measure cost-effectiveness the cost-effectiveness
model initially proposed by Kusumoto [Kusumoto et al.,
1992] is selected. However, the original model is re-expressed
and generalized to multiple inspection activities in order to
relax some of its assumptions. For more details regarding this
selection the interested reader is referred to the discussions in
[Briand et. al., 1998b] and [Briand et. al., 2000].

Generally, the model defines cost-effectiveness (CE) as:

sinspectiont_without_defect_cospotential_
pectionsmed_by_inscost_consutions_by_inspecCost_savedE −

=C

The total potential defect costs are the defect rework cost
that would have been incurred if no inspections had taken
place. The cost consumed by inspections is the cost spent on
performing inspections, while the cost saved by inspections
estimate the cost saved in later phases due to the defect
detection in inspections.

Thus, the model is intuitive as it can be interpreted as the
percentage of defect rework costs that are saved due to
inspections. With this definition cost-effectiveness is stated in
terms of effort savings and can be compared across different
types of inspections (e.g., between inspections of different
projects or in different phases of the life-cyle).

However, expressed in the form above, the model requires
data that is difficult to obtain. Therefore, it is our approach to
express the model in terms of parameters that can either be
easily obtained through data collection during project
performance or through the elicitation of expert opinion.

2) On the Use of Expert opinion
There are many reasons why expert opinion may be needed.

One of these reasons, that we face here, is when information
regarding a phenomenon cannot be collected by any other
affordable means (measurements, observations,
experimentation) or that the required data is simply not being
collected. The question is now, especially when looking at the
problem from a scientific perspective, whether expert data are
valid data.

It might be argued that expert data are soft data in the sense
that they incorporate the assumptions and interpretation of the
experts [17]. Specifically, expert data are subject to bias,
uncertainty, and incompleteness. However, these problems
can be prevented and controlled. Generally, the aim of expert
knowledge elicitation techniques is to prevent the problems to
the maximum extent possible, detect bias when it occurs, and
model uncertainty. Elicitation techniques achieve this by
carefully selecting experts, designing the mode of data
collection and the interview procedure, and quantifying
uncertainty in experts’ responses. Thus, expert judgment can
be defined as data gathered formally, in a structured manner,
and in accordance with research on human cognition and

communication [17].
To summarize, we believe that expert judgment is valid

data and is comparable to other data. Expert judgment has
been used in similar ways and with success in other fields
such as nuclear engineering (risk models) [14] and policy
decision making [20], and in software engineering for cost
estimation purposes [2], [12].

3) Expert Elicitation Techniques
Bias and uncertainty are two important aspects (among

others) that have to be addressed in expert opinion elicitation.
In the following these two concepts are explained in more
detail.

a) Bias
During elicitation, the experts will perform four cognitive

tasks. They must comprehend the wording and the context
questions asked. Then they must remember relevant
information to answer each question. By processing this
information the experts identify an answer, which is said to be
“internal” as it is in the expert’s own representation mode. At
this stage, people typically use mental shortcuts called
heuristics to help integrate and process the information
[Kahneman et al., 1982]. Finally, the internal answer has to be
translated into the format requested by the interviewer (i.e.,
the so-called response mode).

In each of these steps, especially in applying the heuristics,
systematic errors can occur, which would distort the estimate.
To obtain reliable data it is therefore necessary to anticipate
these biases and design and monitor the elicitation accordingly
[Meyer and Booker, 1991]. This involves to anticipate which
biases are likely to occur in the planned elicitation and re-
design the planned elicitation to make it less prone to the
anticipated biases. During the elicitation the experts need to
be made aware of the potential intrusion of particular biases.
Finally, during elicitation, the interviewer monitors the
experts' body language and the verbalized thoughts of the
expert for the occurrence of bias

b) Uncertainty
Often it is impossible to ask the experts for a single value

for an estimate. One reason is that subjective estimates are
inherently uncertain. This uncertainty stems from the experts’
lack of knowledge on the exact value for a parameter.
Providing an exact answer might be impossible since experts
may not know the exact value or since the parameter value
may actually vary with circumstances. For example, it is
obvious that the cost of defect correction does not warrant a
unique value but a probability distribution, since the
correction effort can vary with the type of defect.

To explicitly capture this uncertainty the experts can give
their answers in the form of a probability distribution (i.e., as a
response mode as it will be introduced later). With such a
distribution the experts are able to quantify their uncertainty.
The probability distribution most often used in expert opinion

 11

elicitation is a triangular distribution as shown in Figure .
Thus, the expert is asked to provide a range, given by
minimum and maximum values, in which the estimate can be
and the most likely value. Other distributions might be used as
well.

Defect breakdown

most-likely

max.min.

100%0%

p
Defect breakdown

most-likely

max.min.

100%0%

p

most-likely

max.min.

100%0%

p

Figure 12 Capturing uncertainty using distributions

4) A Cost-Effectiveness Assessment Procedure
An overview of the cost effectiveness assessment procedure

using expert elicitation techniques is shown in Figure 12.

Make
Model

operational

Make
Model

operational

Prepare for
elicitation

Perform Pilottest

Prepare for
elicitation

Perform Pilottest

Data Collection
in Project

Data Collection
in Project

Determine
CE distribution
Determine

CE distribution

Kusumoto
Model

Kusumoto
Model

Reformulated
Model

Reformulated
Model

Parameters
(project)

Parameters
(project)

Parameters
(expert opinion)
Parameters

(expert opinion)

QuestionnairesQuestionnaires

Interview
Procedure
Interview

Procedure

List of expertsList of experts

Project
data

Project
data

Expert
data

Expert
data

Perform
interviews

Screen answers

Perform
interviews

Screen answers

Quantified
CE

Quantified
CE

1

2 3

4

Make
Model

operational

Make
Model

operational

Prepare for
elicitation

Perform Pilottest

Prepare for
elicitation

Perform Pilottest

Data Collection
in Project

Data Collection
in Project

Determine
CE distribution
Determine

CE distribution

Kusumoto
Model

Kusumoto
Model

Reformulated
Model

Reformulated
Model

Parameters
(project)

Parameters
(project)

Parameters
(expert opinion)
Parameters

(expert opinion)

QuestionnairesQuestionnaires

Interview
Procedure
Interview

Procedure

List of expertsList of experts

Project
data

Project
data

Expert
data

Expert
data

Perform
interviews

Screen answers

Perform
interviews

Screen answers

Quantified
CE

Quantified
CE

1

2 3

4

Figure 13: Assessment Procedure

Step 1: Make the CE model operational in context
The objective of this step is to instantiate the CE model for

the projects in the case study. Thus, the underlying
assumptions of the CE model have to be assessed and relaxed
if necessary. Additionally, the data sources for the model
parameters have to be determined. In general, when
instantiating the CE model for analysis, design, and code
inspections, its parameters have to be determined on a fine
level of granularity (e.g., correction effort for code defects
detected in unit test). Therefore it is very likely that some of
the parameters required are not collected in most
environments. In this case the model has to be reformulated so
that it consists of parameters that can either be derived from
existing measurement data or that can be obtained from expert
opinion. A key concept in this step is the decomposition
[Mosleh et al., 1987] of the model. This concept stresses the
importance that the expert-based parameters are in a form
allowing the expert to concentrate on estimating something
that is tangible and easy to envisage. Parameters that are
usable for expert elicitation may represent physical quantities,
counts, proportions, but also probabilities.

Additionally in this step, based on an understanding of the
development process in place, it has to be determined who in
the development team is a good expert to estimate each of the
parameters, i.e., who has the required background and

experience.

a) Step 2: Preparation for expert knowledge elicitation
The objective of this step is to prepare the means of the

elicitation. These means consist of 1) questionnaires that are
used to capture the experts’ estimates, 2) an interview
procedure that guides the interviewer in performing the
elicitation, and 3) the selection of experts.

Based on the information identified in Step 1,
questionnaires have to be developed that capture the
information to be obtained from the experts through well-
formed questions [Oppenheim, 1992]. Along with the
questionnaire an interview procedure is to be defined to guide
the interviewer during the course of interviews. This aims at
making the interviews more systematic and consistent.

Following the discussion on expert opinion, the aim of
expert knowledge elicitation techniques is to reduce the
impact of bias to the maximum extent possible and model the
uncertainty in the experts’ answers. Moreover, in a literature
survey on the use of expert opinion in risk assessment,
[Mosleh et al., 1987] conclude that the methods by which
expert opinion are elicited can have a significant impact on the
accuracy of the resulting estimates. Thus, designing the
questionnaire and interview procedure carefully and selecting
appropriate response modes (i.e., the format in which the
experts have to encode their answers) is of crucial importance.

Finally, in this second step, experts have to be identified,
according to precise criteria, and motivated to do the job well.
Several experts are necessary to estimate parameters as the
multiplicity of answers will help cancel out random error
[Hofer, 1986].

Using some of these experts, the interview procedure and
the questionnaire are usually tried in a pilot test. The purpose
of these pilot tests is to gain feedback and optimize the
elicitation accordingly. Some of the most important goals of
pilot testing is to determine whether the experts are able to
answer the questions and if there are sources of confusion and
bias that might have been overlooked.

b) Step 3: Performing interviews and screening answers
An interview is scheduled with each expert. Face-to-face

interviews are preferable, as the experts are more motivated,
and the interviewer has more control over the elicitation.
However, depending on the amount of questions that have to
be answered by the expert, the interview can also be
performed using the telephone.

During the interview the interviewer guides the expert
through the questionnaire using the precisely defined
interview procedure. Appropriate visual aids should be used
during interviews, especially those illustrating the response
mode.

Once all interviews are completed, the answers of the
experts are compared. If significant differences are observed
this needs to be investigated further.

 12

c) Step 4: Compute cost-effectiveness
The objective of the fourth step is to determine the cost-

effectiveness of inspections, in the environment under study,
and according to the CE model. Step 1 produces operational
CE models for each inspection phase, including the
description of their parameters. Together with the experts’
responses, the cost-effectiveness is then computed as
illustrated in Figure 14 with design inspections.

For those parameters that can be determined from
measurement data, the values are computed from either
inspection or test data. For those parameters that are to be
estimated by expert knowledge elicitation, the estimates of
different experts for each question have to be aggregated.

Since the estimates of the experts were actually probability
distributions, also estimate a probability distribution for the
cost-effectiveness is computed. This distribution captures the
inherent uncertainty in the cost-effectiveness of inspections.
This uncertainty has two sources: the uncertainty in the
experts’ estimates and the inherent variation of cost-
effectiveness across inspections. An important methodological
point in presenting the results of any expert opinion study is to
make explicit the underlying uncertainty of the results [Hora
and Iman, 1989]. A probability distribution of the cost-
effectiveness takes this aspect automatically into account.

C
E

 M
odel

C
E

(a
f ,A

) cost-effectiveness
distribution

pDI,D

Proportion of design defects
in design inspections?

aggregation

n
D

I,D =n
D *p

D
I,D

estimate
model parameter

MC-simulation
of CE model

Data

Number of defects in
design inspections?
nDI=200

Project data

Interviews
C

E
 M

odel
C

E
(a

f ,A
) cost-effectiveness

distribution

pDI,D

Proportion of design defects
in design inspections?

aggregation

n
D

I,D =n
D *p

D
I,D

estimate
model parameter

MC-simulation
of CE model

Data

Number of defects in
design inspections?
nDI=200Data

Number of defects in
design inspections?
nDI=200

Project data

Interviews

Figure 14: Determining CE

Monte-Carlo (MC-) Simulation is a convenient way of
performing the aggregation of experts’ data [Vose, 1996] and
the computation of the cost-effectiveness distribution. During
one simulation run, a value for each input parameter is
sampled from the experts’ probability distributions. The set of
sampled values forms a possible scenario, which is used as
input to the model to compute the corresponding cost-
effectiveness value. Repeating this procedure 1000 times
provides 1000 cost-effectiveness values which form a
distribution.

5) Experience with the proposed method
The proposed method was developed specifically for a

development organization and validated in a carefully
designed case study, which took place in a business unit of
Siemens AG, Germany, that is developing products and
services for mobile communication and intelligent networks
[Briand et al., 2000].

Figure 15 shows the resulting cost-effectiveness
distributions for analysis, design, and code inspections. We
can see that the distributions of cost-effectiveness as well as
the savings for analysis, design, and code inspections are
clearly ordered. Analysis inspections are considerably more
cost-effective than their design counterpart, which are in turn
even more markedly better than code inspections. Despite the
uncertainty modeled during expert knowledge elicitation, the
distribution patterns are quite clear to this respect.

Cost-effectiveness of Inspections

 Legends:

Proportion of total potential defect cost saved

0.0

0.1

0.2

0.3

0.4

0.5

-10 0 10 20 30 40 50 60 70 80 90 100

C21/ Analyse Rev
C11/ Code Review
C19/ Design Revi

Analysis

Design

Code

Cost-effectiveness of Inspections

 Legends:

Proportion of total potential defect cost saved

0.0

0.1

0.2

0.3

0.4

0.5

-10 0 10 20 30 40 50 60 70 80 90 100

C21/ Analyse Rev
C11/ Code Review
C19/ Design Revi

Analysis

Design

Code

Figure 15: CE Results

These patterns confirm what is usually acknowledged by
software engineering professionals, i.e., earlier inspections are
more beneficial. In addition, the QA engineers of the
organization where the data was collected confirmed that they
suspected the benefits of code inspections to be limited for
some parts of the system, a suspicion confirmed by our
results.

Overall, the usage of expert opinion allowed us to quickly
and with a surprisingly low level of effort give concrete
feedback to the quality assurance team. Moreover, the
methodology is used here for inspections but could be adapted
to any situation where a new technology needs to be assessed
and complete data collection is not possible.

VII. SYNTHESIS AND CONCLUSIONS
Section 2 of this paper provided an overview of the current

state of the art in defining quality goals for software products.
A vitally important aspect of this work is that the quality goals
be derived from the underlying business goals of the
customer(s) of that software.

In Section 3, we then argued that the manufacturing
approach to quality control was inadequate in the context of
software products. This is because the process of controlling
the development of software products is a matter of
controlling the human creative and design processes. In
contrast, controlling the quality of traditional manufacturing
goods is primarily a matter of controlling the replication of a
pre-agreed design. We demonstrated that the use of Bayesian
Probabilistic networks to implement causal models, was an
effective way of controlling the delivery of agreed quality
goals in the case of the creation of software products.

A concern with this Bayesian approach is the trust-
worthiness of the use of expert judgement to build quality
assessment and quality control models. We address this
concern in Section 6 by showing how careful elicitation of

 13

expert judgement can be a reliable and valuable source of
data.

It is our firm belief that this synthesis of three strands of
research in software quality provides a foundation for an
effective method of quality control for software related
products.

APPENDIX
For the benefit of those who are unfamiliar with probability

theory, we provide in this appendix a brief introduction to
probabilistic causal models.

A. Conditional probability
Probabilities conform to three basic axioms:
• p(A), the probability of an event

(outcome/consequence…), A, is a number between 0 and
1;

• p(A)=0 means A is impossible, p(A)=1 means A is
certain;

• p(A or B) = p(A) + p(B) provided A and B are disjoint.
However, merely to refer to the probability p(H) of an event
or hypothesis is an oversimplification. In general, probabilities
are context sensitive. For example, the probability of suffering
from certain forms of cancer is higher in Europe than it is in
Asia. Strictly, the probability of any event or hypothesis is
conditional on the available evidence or current context. This
can be made explicit by the notation p(H | E), which is read as
“the probability of H given the evidence E”. In the coin
example, H would be a “heads” event and E an explicit
reference to the evidence that the coin is a fair one. If there
was evidence E' that the coin was double sided heads, then we
would have p(H | E') = 1.0.
As soon as we start thinking in terms of conditional
probabilities, we begin to need to think about the structure of
problems as well as the assignment of numbers. To say that
the probability of an hypothesis is conditional on one or more
items is to identify the information relevant to the problem at
hand. To say that the identification of an item of evidence
influences the probability of an hypothesis being valid is to
place a directionality on the links between evidences and
hypotheses.
Often a direction corresponding to causal influence can be the
most meaningful. For example, in medical diagnosis one can

in a certain sense say that measles “causes” red spots (there
might be other causes). So, as well as assigning a value to the
conditional p(‘red spots’ | measles), one might also wish to

provide an explicit graphical representation of the problem. In
this case it is very simple (Figure A.1).
Note that to say that p(‘red spots’ | measles) = p means that we
can assign probability p to ‘red spots’ if measles is observed
and only measles is observed. If any further evidence E is
observed, then we will be required to determine p(‘red spots’ |
measles, E). The comma inside the parentheses denotes
conjunction.
Building up a graphical representation can be a great aid in
framing a problem. A significant recent advance in probability
theory has been the demonstration of a formal equivalence
between the structure of a graphical model and the
dependencies that are expressed by a numerical probability
distribution. In numerical terms, we say that event A is
independent of event B if observation of B makes no
difference to the probability that A will occur: p(A | B) =
p(A). In graphical terms we indicate that A is independent of
B by the absence of any direct arrow between the nodes
representing A and B in a graphical model.
So far, we have concentrated on the static aspects of assessing
probabilities and indicating influences. However, probability
is a dynamic theory; it provides a mechanism for coherently
revising the probabilities of events as evidence becomes
available. Conditional probability and Bayes’ Theorem play a
central role in this. We will use a simple example to illustrate
Bayesian updating, and then introduce Bayes’ Theorem in the
next section.
Suppose we are interested in the number of defects that are
detected and fixed in a certain testing phase. If the software
under test had been developed to high standards, perhaps
undergoing formal reviews before release to the test phase,
then the high quality of the software would in a sense “cause”
a low number of defects to be detected in the test phase.
However, if the testing were ineffective and superficial, then
this would provide an alternative cause for a low number of
defects being detected during the test phase. (This was
precisely the common empirical scenario identified in [Fenton
and Ohlsson, 2000]).

red
spots

measles

Figure A.1: A very simple probabilistic
k

 14

This situation can be represented by the simple graphical
model of figure A.2. Here the nodes in the graph could
represent simple binary variables with states “low” and
“high”, perhaps. However, in general a node may have many
alternative states or even represent a continuous variable. We
will stay with the binary states for ease of discussion.
It can be helpful to think of figure A.2 as a fragment of a
much larger model. In particular, the node SQ (“Software
Quality”) could be a synthesis of, for example: review
effectiveness; developer’s skill level; quality of input
specifications; and, resource availability. With appropriate
probability assignments to this model, a variety of reasoning
styles can be modelled. A straightforward reasoning from
cause to effect is possible. If TE (test effectiveness) is “low”,
then the model will predict that DD (defects discovered and
fixed) will also be low. If earlier evidence indicates SQ
(software quality) is “high”, then again DD will be “low”.
However, an important feature is that although conditional
probabilities may have been assessed in terms of effect given
cause, Bayes’ rule enables inference to be performed in the
“reverse” direction – to provide the probabilities of potential
causes given the observation of some effect. In this case, if
DD is observed to be “low” the model will tell us that low test
effectiveness or high software quality are possible
explanations (perhaps with an indication as to which one is the
most likely explanation). The concept of “explaining away”
will also be modelled. For example, if we also have
independent evidence that the software quality was indeed
high, then this will provide sufficient explanation of the
observed value for DD and the probability that test
effectiveness was low will be reduced.
This situation can be more formally summarised as follows. If
we have no knowledge of the state DD then nodes TE and SQ
are marginally independent – knowledge of the state of one
will not influence the probability of the other being in any of
its possible states. However, nodes TE and SQ are
conditionally dependent given DD – once the state of DD is

known there is an influence (via DD) between TE and SQ
as described above.

TE SQ We will see in the next section that models of complex
situations can be built up by composing together relatively
simple local sub-models of the above kind (See also [Neil
et al, 2000]). This is enormously valuable. Without being
able to structure a problem in this way it can be virtually
impossible to assess probability distributions over large
numbers of variables. In addition, the computational
problem of updating such a probability distribution given
new evidence would be intractable.

DD
B. Bayes’ theorem and graphical models

As indicated in the previous section, probability is a
dynamic theory; it provides a mechanism for coherently
revising the probabilities of events as evidence becomes
available. Bayes’ theorem is a fundamental component of
the dynamic aspects.
As mentioned earlier, we write p(A | B) to represent the
probability of some event (an hypothesis) conditional on
the occurrence of some event B (evidence). If we are

counting sample events from some universe Ω, then we are
interested in the fraction of events B for which A is also true.
In effect we are focusing attention from the universe Ω to a
restricted subset in which B holds. From this it should be clear
that (with the comma denoting conjunction of events):

Figure A.2: Some subtle interactions between variables
captured in a simple graphical model. Node TE represents
“Test Effectiveness”, SQ represents “Software Quality” and
DD represents “Defects Detected and Fixed”.

)(
),()|(

Bp
BApBAp =

This is the simplest form of Bayes’ rule. However, it is more
usually rewritten in a form that tells us how to obtain a
posterior probability in a hypothesis A after observation of
some evidence B, given the prior probability in A and the
likelihood of observing B were A to be the case:

)(
)()|(

)|(
Bp

ApABp
BAp =

Z

X Y

This theorem is of immense practical importance. It means
that we can reason both in a forward direction from causes to
effects, and in a reverse direction (via Bayes’ rule) from
effects to possible causes. That is, both deductive and
abductive modes of reasoning are possible.

Figure A.3: X is conditionally independent of Y given
Z.

 15

However, two significant problems need to be addressed.
Although in principle we can use generalisations of Bayes’
rule to update probability distributions over sets of variables,
in practice:
1) Eliciting probability distributions over sets of variables is

a major problem. For example, suppose we had a problem
describable by seven variables each with two possible
states. Then we will need to elicit (27-1) distinct values in
order to be able to define the probability distribution
completely. As can be seen, the problem of knowledge
elicitation is intractable in the general case.

2) The computations required to update a probability
distribution over a set of variables are similarly
intractable in the general case.

Up until the late 1980’s, these two problems were major
obstacles to the rigorous use of probabilistic methods in
computer based reasoning models. However, work initiated by
Lauritzen and Spiegelhalter [1988] and Pearl [1988] provided
a resolution to these problems for a wide class of problems.
This work related the independence conditions described in
graphical models to factorisations of the joint distributions
over sets of variables. We have already seen some simple
examples of such models in the previous section. In
probabilistic terms, two variables X and Y are independent if
p(X,Y) = p(X)p(Y) – the probability distribution over the two
variables factorises into two independent distributions. This is
expressed in a graphic by the absence of a direct arrow
expressing influence between the two variables.
We could introduce a third variable Z, say, and state that “X is
conditionally independent of Y given Z”. This is expressed
graphically in Figure A.3. An expression of this in terms of
probability distributions is:
 p(X,Y | Z) = p(X | Z)p(Y | Z)
A significant feature of the graphical structure of Figure A.3 is
that we can now decompose the joint probability distribution
for the variables X, Y and Z into the product of terms
involving at most two variables:
 p(X,Y,Z) = p(X | Z)p(Y | Z)p(Z)
In a similar way, we can decompose the joint probability
distribution for the variables associated with the nodes DD,
TE and SQ of Figure 4.2 as
 p(DD, TE, SQ) = p(DD | TE,SQ)p(TE)p(SQ)
This gives us a series of example cases where a graph has
admitted a simple factorisation of the corresponding joint
probability distribution. If the graph is directed (the arrows all
have an associated direction) and there are no cycles in the
graph, then this property is a general one. Such graphs are
called Directed Acyclic Graphs (DAGs). Using a slightly
imprecise notation for simplicity, we have [Lauritzen and
Spiegelhalter, 1988]:
Proposition
Let U = {X1, X2, …, Xn} have an associated DAG G. Then
the joint probability distribution p(U) admits a direct
factorisation:

))(|()(
1

∏
=

=
n

i

ii XpaXpUp

Here pa(Xi) denotes a value assignment to the parents of Xi.
(If an arrow in a graph is directed from A to B, then A is a
parent node and B a child node).

The net result is that the probability distribution for a large set
of variables may be represented by a product of the
conditional probability relationships between small clusters of
semantically related propositions. Now, instead of needing to
elicit a joint probability distribution over a set of complex
events, the problem is broken down into the assessment of
these conditional probabilities as parameters of the graphical
representation.
The lessons from this section can be summarised quite
succinctly. First, graphs may be used to represent qualitative
influences in a domain. Secondly, the conditional
independence statements implied by the graph can be used to
factorise the associated probability distribution. This
factorisation can then be exploited to (a) ease the problem
eliciting the global probability distribution, and (b) allow the
development of computationally efficient algorithms for
updating probabilities on the receipt of evidence. We will now
describe how these techniques have been exploited to produce
a probabilistic model for software defect prediction.

ACKNOWLEDGMENT
Paul Krause thanks the support of Norman Fenton and

Martin Neil of Agena Limited, UK (www.agena.co.uk) who
have been instrumental in the development of many of the
ideas in this paper.

REFERENCES
[1] TL9000 Quality Management System Requirements Handbook,

Release 3.0, QuEST Forum 2001
[2] TL9000 Quality Management System Measurements Handbook,

Release 3.0, QuEST Forum 2001
[3] ISO/IEC 9126 – Software and System Engineering – Product

quality – Part 1: Quality model. 1999-2002
[4] ISO/IEC 9126 – Software and System Engineering – Product

quality – Part 2: External Quality Metrics. 1999-2002
[5] ISO/IEC 9126 – Software and System Engineering – Product

quality – Part 3: Internal Quality Metrics. 1999-2002
[6] ISO/IEC 9126 – Software and System Engineering – Product

quality – Part 4: Quality in Use Metrics. 1999-2002
[7] ISO/IEC 15288 - Software and System Engineering – Life Cycle

Management – System Life Cycle Processes, 2002
[8] L. Briand, K. El Emam, and F. Bomarius, COBRA: A Hybrid

Method for Software Cost Estimation, Benchmarking, and Risk
Assessment, in Proceedings of the 20th International Conference
on Software Engineering, pp. 390-399, 1998.

[9] L. Briand, K. El Emam, O. Laitenberger, and T. Fussbroich,
Using Simulation to Build Inspection Efficiency Benchmarks
for Development Projects, in Proceedings of the 20th
International Conference on Software Engineering, pp. 340-349,
1998.

[10] L. Briand, B. Freimut, F. Vollei, Assessing the Cost-
Effectiveness of Inspections by Combining Project Data and
Expert Opinion, Proceedings of the 11th International

http://www.agena.co.uk/

 16

Symposium on Software Reliability Engineering, pp 124-135,
2000.

[11] R. G. Ebenau and S. H. Strauss, Software Inspection Process.,
McGraw Hill, 1993.

[12] M. Höst and C. Wohlin, A Subjective Effort Estimation
Experiment, International Journal of Information and Software
Technology, Vol. 39, No. 11, pp. 755-762, 1997.

[13] E. Hofer, On surveys of expert opinion, Nuclear Engineering
and Design, vol. 93, no. 2-3, pp. 153-160, 1986.

[14] S.C. Hora and R.L. Iman, Expert opinion in risk analysis: the
NUREG-1150 methodology, Nuclear Science and Engineering,
vol. 102, pp. 323-331, Aug. 1989.

[15] D. Kahneman, P. Slovic, and A. Tversky, eds., Judgement under
uncertainty: Heuristics and biases. Cambridge University Press,
1982.

[16] S. Kusumoto, K. Matsumoto, T. Kikuno, and K. Torii, A new
metric for cost-effectiveness of software reviews, IEICE
Transactions on Information and Systems, vol. E75-D, no. 5, pp.
674-680, 1992.

[17] M. A. Meyer and J. M. Booker, Elicitating and Analyzing
Expert Judgement: A Practical Guide., Academic Press, Ltd.,
1991.

[18] A. Mosleh, V.M. Bier, and G. Apostolakis, The elicitation and
use of expert opinion in risk assessment: a critical review, in
Probabilistic Safety Assessment and Risk Management: PSA
'87, vol. 1 of 3, pp. 152-158, 1987.

[19] A.N. Oppenheim, Questionnaire Design, Interviewing and
Attitude Measurement. Pinter Publishers, 1992.

[20] T. Saaty, The Analytic Hierarchy Process, McGraw-Hill, 1990.
[21] D. Vose, Quantitative Risk Analysis: A Guide to Monte Carlo

Simulation Modelling. John Wiley Sons, 1996.
[22] Agena Ltd, “Bayesian Belief Nets”,

http://www.agena.co.uk/bbn_article/bbns.html, 1999.
[23] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Rigorous

and Practical Approach, (2nd Edition), PWS Publishing
Company, 1997.

[24] N. Fenton and M. Neil “A Critique of Software Defect
Prediction Research”, IEEE Trans. Software Eng., 25, No.5,
1999.

[25] N. Fenton and N. Ohlsson “Quantitative analysis of faults and
failures in a complex software system”, IEEE Trans. Software
Eng., 26, 797-814, 2000.

[26] HUGIN Expert Brochure. Hugin Expert A/S, P.O. Box 8201
DK-9220 Aalborg, Denmark, 1998.

[27] IMPRESS (IMproving the software PRocESS using bayesian
nets) EPSRC Project GR/L06683,
http://www.csr.city.ac.uk/csr_city/projects/impress.html, 1999.

[28] P.J. Krause. “Learning Probabilistic Networks”, Knowledge
Engineering Review, 13, 321-351, 1998

[29] S.L. Lauritzen and D.J. Spiegelhalter, “Local computations with
probabilities on graphical structures and their application to
expert systems (with discussion)” J. Roy. Stat. Soc. Ser B 50,
pp. 157-224, 1988.

[30] N. Lewis, “Continuous process improvement using Bayesian
Belief Networks. The lessons to be learnt”. Proceedings of the
twenty forth international conference on Computers and
Industrial Engineering. Brunel University. 9th-11th September,
1998.

[31] McCall, P.K. Richards and G.F. Walters, Factors in software
quality. Volumes 1, 2 and 3. Springfield Va., NTIS, AD/A-049-
014/015/055, 1977.

[32] J. Musa, Software Reliability Engineering, McGraw Hill, 1999.
[33] M. Neil, B. Littlewood and N. Fenton, “Applying Bayesian

Belief Networks to Systems Dependability Assessment”.
Proceedings of Safety Critical Systems Club Symposium, Leeds,
Published by Springer-Verlag, 6-8 February 1996.

[34] M. Neil, N. Fenton and L. Nielson, “Building large-scale
Bayesian Networks”, Knowledge Engineering Review, to
appear 2000.

[35] J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference Morgan Kauffman, 1988.
(Revised in 1997)

[36] SERENE consortium, “SERENE (SafEty and Risk Evaluation
using bayesian Nets): Method Manual”, ESPRIT Project 22187,
http://www.dcs.qmw.ac.uk/~norman /serene.htm, 1999.

http://www.csr.city.ac.uk/csr_city/projects/impress.html

	INTRODUCTION
	Requiring software product quality
	The process for quality requirements identification
	Definition of quality requirements

	Obtaining and controlling software product quality
	A Probabilistic Model for Defect Prediction
	Overall structure of the probabilistic network
	The specification quality sub-net
	Some comments on the basic probabilistic network

	Validation of the AID Tool
	Method
	Summary of results of the validation exercise
	An example run of AID
	Conclusions

	Expert Judgement can be Data Too
	Software Inspection and its Cost-Effectiveness
	Measuring Inspection Cost Effectiveness
	On the Use of Expert opinion
	Expert Elicitation Techniques
	Bias
	Uncertainty

	A Cost-Effectiveness Assessment Procedure
	Step 2: Preparation for expert knowledge elicitation
	Step 3: Performing interviews and screening answers
	Step 4: Compute cost-effectiveness

	Experience with the proposed method

	synthesis and conclusions
	Conditional probability
	Bayes’ theorem and graphical models

