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Abstract—Assessing and controlling software quality is still an 

immature discipline. One of the reasons for this is that many of 
the concepts and terms that are used in discussing and describing 
quality are overloaded with a history from manufacturing 
quality. We argue in this paper that a quite distinct approach is 
needed to software quality control as compared with 
manufacturing quality control. In particular, the emphasis in 
software quality control is in design to fulfil business needs, 
rather than replication to agreed standards. We will describe 
how quality goals can be derived from business needs. Following 
that, we will introduce an approach to quality control that uses 
rich causal models, which can take into, account human as well 
as technological influences. A significant concern of developing 
such models is the limited sample sizes that are available for 
eliciting their parameters. In the final section of the paper we will 
show how expert judgement can be reliably used to elicit 
parameters in the absence of statistical data. In total this 
provides a framework for quality control in software engineering 
that is freed from the shackles of an inappropriate legacy. 
 

Index Terms—System Reliability, Quality Control, Failure 
Analysis, Process Control 
 

I. INTRODUCTION 
SSESSING and controlling software quality is hard. You 
cannot hold it or touch it, yet its behaviour has an impact 

on all of our lives. We all are stakeholders in the drive to 
improve the quality of the software that we work with, yet few 
of us are able to explicate precisely how we define measures 
to discriminate between “poor” quality and “high” quality 
products. 

This may seem strange, as quality control is a precise 
science in most other industries, and an important product 
discriminator. There are, however, a number of reasons for 
this. Consider three main aspects of quality control in 

traditional manufacturing: 
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• The control of manufacturing defects 
• The assessment of mean time to failure of a product 

through wear or ageing 
• The use of statistical sampling to provide quality 

predictions with well-defined uncertainties 
In general, these have limited applicability in software 

engineering. The main reason for this is that in software 
engineering we are concerned with controlling the design 
process and not the manufacturing process. We want to: 
• Know how to control the design and development process 

so that design faults and weaknesses are minimized 
• Assess the likelihood that failures to meet the quality 

requirements of users (through design and development 
faults) will be manifest in a specific context of use – and, 
ideally, how that likelihood might vary as the context of 
use (inevitably) changes over time 

• Develop quality measurement and assessment techniques 
that can be applied in cases where a specific design and 
development process may only be applied to a small 
number of projects – perhaps even just an individual 
project. 

In this paper we will discuss methods of addressing each of 
these problems. The key mindset is to remember that a 
software product is developed to provide a range of services 
for a user group, in order to help them achieve certain needs 
or goals. Thus, we should be clear at the outset of any 
software project as to precisely what those needs or goals are. 
These are the key drivers behind the identification of not just 
the functional requirements, but also the quality requirements. 
So, for example, if a user has a business goal of providing 
24x7 service, then any software system that is built to support 
them must satisfy stringent availability requirements. We will 
present an approach that takes business or user goals as the 
primary driver, and then maps these onto quality goals. This 
will make specific reference to the ISO9126 standard, which 
provides a set of definitions of quality characteristics and sub-
characteristics for specifying quality in use of a software 
product. 

Having identified a set of quality in use goals, we next need 
to know how we can best control the software development 
life-cycle in order to be able to maximise the likelihood of 
achieving those goals. The basic problem here is the sparsity 
of empirical data that is available in general. We will present 
an approach using Bayesian probabilistic models that enables 
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any statistical data that is available to be combined with expert 
judgement to produce predictive “causal” models that show 
significant potential as general-purpose models. 

The use of expert judgement in measurement and predictive 
modelling is somewhat contentious. However, there is 
evidence that in certain contexts, experts are well calibrated 
[ref, Ayton, and Pascoe]. Surprisingly accurate measurements 
can be achieved by taking an average over a group of experts. 
A simple experiment here is to ask a group of people in a 
room to judge the height of a third party standing in the room. 
The resulting mean value will be very close to the person’s 
actual height. We will describe how well designed interviews 
can be used to provide meaningful and useful measures of the 
cost effectiveness of reviews and inspections in an 
organisation where detailed process data was not available. 

Finally we will bring these three threads together to show 
how together they provide a rich framework for quality 
control in software engineering. 

 

II. REQUIRING SOFTWARE PRODUCT QUALITY 
The following part of this paper presents a high-level view of 
the process of defining the required quality of a user-centered 
software product. The process is based on the combination of 
quality requirements that exist or can be identified applying 
the TL9000 Handbook and ISO/IEC 9126 series of standards. 

A. The process for quality requirements identification 
For the users, a software product more and more often 
corresponds to a black box that must effectively support their 
business processes. In consequence of this natural approach 
business needs become a driving force of quality software 
product development. This in turn requires that operational 
quality and satisfaction of using a software product set the 
framework for software product development effort:  at the 
beginning of the development process to elicit business-
related software product quality requirements, while at the end 
- to allow a rigorous evaluation. This business view of quality 
is illustrated in Fig.1 
 

 
 
Fig. 1 Business View of software product 
          quality 
 
Identifying quality requirements that can be elicited, 
formalized and further evaluated in each phase of the full 

software product lifecycle thus becomes a crucial task in the 
process of building a high quality software product.   
The QUEST Forum’s TL 9000 Handbooks are designed 
specifically for the telecommunications industry to document 
the industry’s quality system requirements and measures. The 
TL 9000 Quality System Requirements Handbook [1] 
establishes a common set of quality system requirements for 
suppliers of telecommunications products: hardware, software 
or services. The requirements are built upon existing industry 
standards, including ISO 9001. The TL 9000 Quality System 
Measures Handbook [2] defines a minimum set of 
performance measures, cost and quality indicators to measure 
progress and evaluate results of quality system 
implementation.  
The applicability of TL 9000 in the software product lifecycle 
is illustrated in Fig.2. 
 

      
Fig.2 Applicability of TL9000 standards in the 
         software product lifecycle  
 
In parallel, the ISO/IEC Subcommittee 7 (SC7) on system and 
software engineering has developed a set of quality standards 
for the full development process. These standards take the 
initial quality requirements into account during each of the 
development phases, allowing the quality planning, its design, 
monitoring and control.  
Software product quality can be evaluated by measuring 
internal attributes (typically static measures of intermediate 
products), or by measuring external attributes (typically by 
measuring the behaviour of the code when executed), or by 
measuring quality in use attributes.  The objective is for the 
product to have the required effect in a particular context of 
use. To produce these effects, the measurement and evaluation 
of the quality of a software product has to be present 
throughout its lifecycle (Fig. 3).  
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Fig.3 ISO/IEC 9126 Quality in lifecycle 
 
Moreover, the proper quality measurement and evaluation 
methodologies have to be present and applied. The ISO/IEC 
9126 series of standards [3, 4, 5, 6] offers both broadly 
recognized quality models and appropriate measurements 
together with scales and measurement methods. The ISO/IEC 
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14598 series of standards [7, 8, 9, 10, 11, 12] is a 
complementary set offering the support for the software 
quality evaluation processes. 
 
Figure 4 presents how these ISO/IEC standards integrate to 
the TL9000.  
The practical use of these two combined sets of standards 
requires however a much more detailed view. Furthermore, in 
order to define, plan and implement the quality, the precise 
identification of applicable standards and their particular 
documents for each phase of software development process is 
also required.  

Fig 4. Integration between TL9000 a
           ISO/IEC SC7 standards 
 
The ISO/IEC standard being further
9126  - Software and System Enginee
Quality Metrics. 1999-2002 [3, 4, 5, 6
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For the simplicity of the following dis
software life cycle phases proposed in
be kept. 
 
The crucial effort of defining q
undertaken in the Discovery Phase. In
requirements have to be identified and

• Functional and non-functio
product (out of the scope o

• Operational quality require
• Quality in Use requirement

 
It is important to note here, that acc
quality in the software life cycle defi
[3] the requirements of Quality in Use

External Quality requirements, which in turn contribute to 
specifying Internal Quality requirements. This indicates that 
the attributes of Quality in Use have a direct impact on 
technical and technological decisions that (will) have to be 
taken when the development process starts. This requires that 
Quality in Use characteristics be analyzed, applicable 
measures identified and target values for each of them 
assigned. The ISO standard to be applied to complete this task 
is ISO/IEC 9126 – Part 4: Quality in Use Metrics [6]. The 
characteristics to be analyzed are: 

• effectiveness 
• productivity 
• safety, and 
• satisfaction 

 
Quality in Use requirements help define success criteria of the 
new software product. However alone they will not assure the 
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product’s long term success in the market. Such a success is 
achieved when Quality in Use comes together with, among the 
others, fulfilled operational quality requirements.  
Again, this requires that operational quality requirements be 
analyzed, applicable measures identified and target values for 
each of them assigned.  
 
TL 9000 – The Quality Management System Measurement 
Handbook [2] identifies four (4) categories of requirements 
and/or measurements applicable to software products: 

• common measurements – referring to the number 
of problems reported, response time, overdue 
problem responsiveness and on-time delivery 

• hardware and software measurements – referring to 
system outage 

• software measurements – referring to software 
installation and maintenance 

• service measurement – referring to service quality 
 
The final set of quality requirements and their targeted values, 
comprising of both operational quality and Quality in Use 
requirements will then become the major milestone. This will 
contribute to the definition of functional and non-functional 
requirements of the future software product with the user 
perception of the software product quality already “sewn” into 
the overall definition. 
 
The process of definition of quality requirements does not 
however stop on the level of Quality in Use and operational 
quality as the two sets are then further refined in a 
Requirements Analysis Phase. In this phase the applicable 
quality requirements define the external and internal quality 
attributes of the software product to be developed, which 
usually completes the identification of quality requirements 
being attributed to a software product.  
 
The ISO standards applied in this phase are: 

• ISO/IEC 9126 – Part 2: External Quality Metrics 
[4], and 

• ISO/IEC 9126 – Part 3: Internal Quality Metrics [5] 
 

Product in 
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It has to be stressed here, that the attributes of both external 
and internal quality being defined in this phase make direct 
descendants of quality requirements previously set up in the 
Discovery phase, so the critic rule of traceability in software 
engineering is being conserved.  

 
At this moment, with the process of the definition of software 
product quality properly done, the project of developing new 
software is, or at least should be, well equipped with 
identified and precise quality requirements and ready for 
execution. However, we now have the challenge of directing 
the product in a way that offers good guarantees that its 
quality goals will be achieved. In the next section we will 
argue that a different approach to quality control is needed in 
software development compared with traditional 
manufacturing. 

 

III. OBTAINING AND CONTROLLING SOFTWARE PRODUCT 
QUALITY 

Building software products is a profoundly intellectual 
activity. This provides a fundamental distinction between the 
activity of creating software products, and the activity of 
manufacturing goods. In the former, we are primarily 
concerned with controlling human creativity and directing a 
collaborative endeavor towards achieving some agreed goal (a 
software product that fulfils a specified need). In the latter we 
are interested in replicating an already agreed product, 
multiple times to within prescribed tolerances. 

In both cases we have historically used a common 
vocabulary to express concepts that pertain to the “quality” of 
the respective products. Perhaps even more unjustifiably, 
many have endeavored to apply similar techniques of process 
control to attempt to achieve quality software products as are 
used to achieve quality hardware products. And yet, as we 
have argued, the two activities are fundamentally different. 

In this section, we will argue that the application of process 
control methods using simple regression models has limited 
applicability to the development of software products, and 
introduce the requirements for a quality control method that is 
informed by rich causal models. 

 
 

Fenton and Neil [1999] provide a detailed critique of 
software defect prediction models. The essential problem is 
the oversimplification that is generally associated with the use 

of simple regression models. Typically, the search is for a 
simple relationship between some predictor and the number of 
defects delivered. Size or complexity measures are often used 
as such predictors. The result is a naïve model that could be 
represented by the graph of Figure 5. 

The difficulty is that whilst such a model can be used to 
explain a data set obtained in a specific context, none has so 
far been subject to the form of controlled statistical 
experimentation needed to establish a causal relationship. 
Indeed, the analysis of Fenton and Neil suggests that these 
models fail to include all the causal or explanatory variables 
needed in order to make the models generalisable. Further 
strong empirical support for these arguments is demonstrated 
in [Fenton and Ohlsson, 2000]. 

As an example, in investigating the relationship between 
two variables such as S and D in Figure 5, one would at least 
wish to differentiate between a direct causal relationship and 
the influence of some common cause as a “hidden variable”. 
For example, we might hypothesise “Problem Complexity” 
(PC) as a common cause for our two variables S and D, Figure 
6. 

The model of Figure 5 can simulate the model of Figure 6 
under certain circumstances. However, the latter has greater 
explanatory power, and can lead to quite a different 
interpretation of a set of data. One could take “Smoking” and 
“Higher Grades” at high school as an analogy. Just looking at 
the covariance between the two variables, we might see a 
correlation between smoking and achieving higher grades. 
However, if "Age" is then included in the model, we could 

have a very different interpretation of the same data. As a 
student's age increases, so does the likelihood of their 
smoking. As they mature, their grades also typically improve. 
The covariance is explained. However, for any fixed age 
group, smokers may achieve lower grades than non-smokers. 

We believe that the relationships between product and 
process attributes and numbers of defects are too complex to 
admit straightforward curve fitting models. In predicting 
defects discovered in a particular project, we would certainly 

PC 

S D 

Figure 6: The influence of S on D is now mediated 
through a common cause PS. This model can behave in 
the same way as that of Figure 5, but only in certain 
specific circumstances. 

S D 

Figure 5: Graphical representation of a naïve regression 
model between some predictor S (typically a size 
measure), and the number of software defects D. 
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want to add additional variables to the model of Figure 6. For 
example, the number of defects discovered will depend on the 
effectiveness with which the software is tested. It may also 
depend on the level of detail of the specifications from which 
the test cases are derived, the care with which requirements 
have been managed during product development, and so on. 
We believe that graphical probabilistic models are the best 
candidate for situations with such a rich causal structure. 

IV. A PROBABILISTIC MODEL FOR DEFECT PREDICTION 
Probabilistic models are a good candidate solution for an 

effective model of software defect prediction (one aspect of 
quality control) for the following reasons: 

1. They can easily model causal influences between 
variables in a specified domain; 

2. The Bayesian approach enables statistical 
inference to be augmented by expert judgement in 
those areas of a problem domain where empirical 
data is sparse; 

3. As a result of the above, it is possible to include 
variables in a software reliability model that 
correspond to process as well as product attributes; 

4. Assigning probabilities to reliability predictions 
means that sound decision making approaches using 
classical decision theory can be supported. 

Our goal was to build a module level defect prediction 
model that could then be evaluated against real project 
data from within the Philips Electronics group of business 
units. This model was built in a collaborative project 
between Philips Electronics and Agena Ltd (Fenton, 
Krause and Neil, 2001). Although it was not possible to 
use members of Philips' development organisations 
directly to perform extensive knowledge elicitation, 
Philips Research Laboratories (PRL) were able to act as a 
surrogate because of their experience from working 
directly with Philips business units. This had the added 
advantage that the probabilistic network could be built 
relatively quickly. However, the fact that the probability 
tables were in effect built from “rough” information 
sources and strengths of relations necessarily limits the 
precision of the model. 

The remainder of this section will provide an overview 
of the model to indicate the product and process factors 
that are taken into account when a quality assessment is 
performed using it. 

A. Overall structure of the probabilistic network 
The probabilistic network is executed using the generic 

probabilistic inference engine Hugin (see 
http://www.hugin.com for further details). However, the size 
and complexity of the network were such that it was not 
realistic to attempt to build the network directly using the 
Hugin tool. Instead, Agena Ltd used two methods and tools 
that are built on top of the Hugin propagation engine: 

The SERENE method and tool [SERENE, 1999], which 
enables: large networks to be built up from smaller ones in a 

modular fashion; and, large probability tables to be built using 
pre-defined mathematical functions and probability 
distributions. 

The IMPRESS method and tool [IMPRESS, 1999], which 
extends the SERENE tool by enabling users to generate 
complex probability distributions simply by drawing 
distribution shapes in a visual editor. 

The resulting network takes account of a range of product 
and process factors from throughout the lifecycle of a 
software module. Because of the size of the model, it is 
impractical to display it in a single figure. Instead, we provide 
first a schematic view in terms of sub-nets (Figure 7). This 
modular structure is the actual decomposition that was used to 
build the network using the SERENE tool. 

The main sub-nets in the high-level structure correspond to 
key software life-cycle phases in the development of a 
software module. Thus there are sub-nets representing the 
specification phase, the specification review phase, the design 
and coding phase and the various testing phases. Two further 
sub-nets cover the influence of requirements management on 
defect levels, and operational usage on defect discovery. The 
final defect density sub-net simply computes the industry 
standard defect density metric in terms of residual defects 
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delivered divided by module size. 
This structure was developed using the software 

development processes from a number of Philips development 
units as models. A common software development process is 
not currently in place within Philips. Hence the resulting 
structure is necessarily an abstraction. Again, this will limit 
the precision of the resulting predictions. Work is in progress 
to develop tools to enable the structure to be customised to 
specific development processes (http://www.modist.org.uk). 

The arc labels in Figure 7 represent ‘joined’ nodes in the 
underlying sub-nets. This means that information about the 
variables representing these joined nodes is passed directly 
between sub-nets. For example, the specification quality and 
the defect density sub-nets are joined by an arc labelled 
‘Module size’. This node is common to both sub-nets. As a 
result, information about the module size arising from the 
specification quality sub-net is passed directly to the defect 
density sub-net. We refer to ‘Module size’ as an ‘output node’ 
for the specification quality sub-net, and an ‘input node’ for 
the defect density sub-net. In the following sub-section we will 
show the details of one of the sub-nets.  

B. The specification quality sub-net 
Figure 8 illustrates the Specification quality sub-net. In this 

figure, the dark shaded nodes with dotted edges are output 
nodes, and the dark shaded ones with solid edges are input 
nodes. It can be explained in the following way: specification 
quality is influenced by three major factors:  

• the intrinsic complexity of the module (this is the 
complexity of the requirements for the module, which 

ranges from “very simple” to “very complex”); 
• the internal resources used, which is in turn defined in 

terms of the staff quality (ranging from “poor” to 
“outstanding”), the document quality (meaning the 
quality of the initial requirements specification 
document, ranging from “very poor” to “very good”), 
and the schedule constraints which ranges from “very 
tight” to “very flexible”; 

• the stability of the requirements, which in turn is 
defined in terms of the novelty of the module 
requirements (ranging from “very high” to “very low”) 
and the stakeholder involvement (ranging from “very 
low” to “very high”). The stability node is defined in 
such a way that low novelty makes stakeholder 
involvement irrelevant (Philips would have already 
built a similar relevant module), but otherwise 
stakeholder involvement is crucial. 

The specification quality directly influences the number of 
specification defects (which is an output node with an ordinal 
scale that ranges from 0 to 10 – here “0” represents no defects, 
whilst “10” represents a complete rewrite of the document). 
Also, together with stability, specification quality influences 
the number of new requirements (also an output node with an 
ordinal scale ranging from 0 to 10) that will be introduced 
during the development and testing process. The other node in 
this sub-net is the output node module size, measured in Lines 
of Code (LOC). The position taken when constructing the 
model is that module size is conditionally dependent on 
intrinsic complexity (hence the link). However, although it is 
an indicator of such complexity the relationship is fairly weak 

- the Node Probability Table (NPT) for this 
node models a shallow distribution. schedule document 

quality 
staff 

quality 
stakeholder 
involvement C. Some comments on the basic 

probabilistic network 
The methods used to construct the model 

have been illustrated in this section. The 
resulting network models the entire 
development and testing life-cycle of a 
typical software module. We believe it 
contains all the critical causal factors at an 
appropriate level of granularity, at least 
within the context of software development 
within Philips. 

The node probability tables (NPTs) were 
built by eliciting probability distributions 
based on experience from within Philips. 
Some of these were based on historical 
records, others on subjective judgements. 
For most of the non-leaf nodes of the 
network the NPTs were too large to elicit all 
of the relevant probability distributions 
using expert judgement. Hence we used the 
novel techniques, that have been developed 
recently on the SERENE and IMPRESS 
projects, to extrapolate all the distributions 

Figure 8: Specification quality 
sub-net. 
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based on a small number of samples. By applying numerous 
consistency checks we believe that the resulting NPTs are a 
fair representation of experience within Philips. 

As it stands, the network can be used to provide a range of 
predictions and “what-if” analyses at any stage during 
software development and testing. It can be used both for 
quality control and process improvement. However, two 
further areas of work were needed before the tool could be 
considered ready for extended trials. Firstly and most 
importantly, the network needed to be validated using real-
world data. Secondly a more user-friendly interface needed to 
be engineered so that (a) the tool did not require users to have 
experience with probabilistic modelling techniques, and (b) a 
wider range of reporting functions could be provided. The 
validation exercise will be described in the next section in a 
way that illustrates how the probabilistic network was 
packaged to form the AID tool (AID for “Assess, Improve, 
Decide”). 

V. VALIDATION OF THE AID TOOL 

A. Method 
The Philips Software Centre (PSC), Bangalore, India, made 

validation data available. We gratefully acknowledge their 
support in this way. PSC is a centre for excellence for 
software development within Philips, and so data was 
available from a wide diversity of projects from the various 
Business Divisions within PSC. 

Data was collected from 28 projects from three Business 

Divisions: Mainstream Consumer 
Electronics, Philips Medical Systems 
and Digital Networks. This gave a 
spread of different sizes and types of 
projects. Data was collected from three 
sources: 

• Pre-release and post-release 
defect data was collected from 
the “Performance Indicators” 
database. 

• More extensive project data was 
available from the Project 
Database. 

• Completed questionnaires on 
selected projects. 

In addition, the network was 
demonstrated in detail on a one to one 
basis to three experienced quality/test 
engineers to obtain their reaction to its 
behaviour under a number of 
hypothetical scenarios. 

The data from each project was 
entered into the probabilistic model. 
For each project: 

Figure 9: The entire AID network illustrated using a 
Windows Explorer style view. 

1. The data available for all nodes 
prior to the Unit Test sub-net was 
entered first. 

2. Available data for the Unit Test sub-net was then 
entered, with the exception of data for defects discovered 
and fixed. 

3. If pre-release defect data was available, the predicted 
probability distribution for defects detected and fixed in 
the unit test phase was compared with the actual number 
of pre-release defects. No distinction was made between 
major and minor defects – total numbers were used 
throughout. The actual value for pre-release defects was 
then entered. 

4. All further data for the test phases was then entered 
where available, with the exception of the number of 
defects found and fixed during independent testing 
(“post-release defects”). The predicted probability 
distribution for defects found and fixed in independent 
testing was compared with the actual value. 

5. If available, the actual value for the number of defects 
found and fixed during independent testing was then 
entered. The prediction for the number of residual 
defects was then noted. 

Unfortunately, data was not available to validate the 
operational usage sub-net. This will need data on field call-
rates that is not currently available. 

Given the size of the probabilistic network, this was 
insufficient data to perform rigorous statistical tests of 
validity. However, it was sufficient data to be able to confirm 
whether or not the network’s predictions were reliable enough 
to warrant recommending that a more extensive controlled 
trial be set up. 
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B. Summary of results of the validation exercise 
Overall there was a high degree of consistency between the 

behaviour of the network and the data that was collected. 
However, a significant amount of data is needed in order to 
make reasonably precise predictions for a specific project. 
Extensive data (filled questionnaire, plus project data, plus 
defect data) was available for seven out of 28 candidate 
projects. These seven projects showed a similar degree of 

consistency to the project that will be studied in the next sub-
section. The remaining 21 projects show similar effects, but as 
the probability distributions are broader (and hence less 
precise) given the significant amounts of “missing” 
information, the results are supportive but less convincing 
than the seven studied in detail. 

It must be emphasised that all defect data refers to the total 
of major and minor defects. Hence, residual defects may not 
result in a “failure” that is perceptible to a user. This is 
particularly the case for user-interface projects. 

Note also that the detailed contents of the questionnaires are 
held in confidence. Hence we cannot publish an example of 
data entry for the early phases in the software life cycle. 
Defect data will be reported here, but we must keep the details 
of the project anonymous. 

C. An example run of AID 
We will use screen shots of the AID Tool to illustrate both the 
questionnaire based user interface, and a typical validation 
run. 

One of the concerns with the original network is that many 
of the nodes have values on a simple ordinal scale, range from 
“very good” to “very poor”. This leaves open the possibility 
that different users will apply different calibrations to these 

scales. Hence the reliability of the 
predictions may vary, dependent on the 
specific user of the system. We address 
this by providing a questionnaire based 
front-end for the system. The ordinal 
values are then associated with specific 
question answers. The answers themselves 
are phrased as categorical, non-
judgemental statements. 

The screen in Figure 9 shows the entire 
network. The network is modularised so 
that a Windows Explorer style view can be 
used to navigate quickly around the 
network. Check-boxes are provided to 
indicate which questions have already been 
answered for a specific project. 

The questions associated with a specific 
sub-net can then be displayed. A question 
is answered by selecting the alternative 
from the suggested answers that best 
matches the state of current project. 

For this example project, answers were 
available for 13 of the 16 questions 
preceding “defects discovered and fixed 
during unit test”. Once the answers to these 
questions were entered, the predicted 
probability distribution for defects 
discovered and fixed during unit test had a 
mean of 149 and median of 125 (see 
Figure 10 – in this figure the monitor 
window has been displayed in order to 

show the complete probability distribution for this prediction. 
Summary statistics can also be displayed.). The actual value 
was 122. Given that the probability distribution is skewed, the 
median is the most appropriate summary statistic, so we 
actually see an apparently very close agreement between 
predicted and actual values. This agreement was very 
surprising as although we were optimistic that the “qualitative 
behaviour” of the network to be transferable from 
organisation to organisation, we were expecting the scaling of 
the defect numbers to vary. Note, however, that the median is 
an imprecise estimate of the number of defects – it is the 
centre value of its associated bin on the histogram. So it might 
be more appropriate to quote a median of “100-150” in order 
to make the imprecision of the estimate explicit. 

Figure 10: The prediction for defects discovered and fixed 
during Unit Test for project “Test 3”. 

The actual value for defects discovered and fixed was entered. 
Answers for “staff quality” and “resources” were available for 
the Integration Test and Independent Test sub-networks. Once 
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these had been entered, the prediction for defects discovered 
and fixed during independent test had a mean of 51, median of 
30 and standard deviation of 45 (see figure 5.4). The actual 
value was 31. 
As was the case with unit test, there was close agreement 
between the median of the prediction and the actual value. 
“Test 3” was developed by PSC as a module or sub-system for 
a specific Philips development group. The latter then 
integrated “Test 3” into their product, and tested the complete 
product. This is the test phase we refer to as Independent Test. 

The code size of Test 3 was 144 KLOC. The modules 
(perhaps sub-system is a better term given the size) used in the 
validation study ranged in size from 40-150 KLOC. The 
probabilistic reliability model incorporates a relatively weak 
coupling between module size and numbers of defects. The 
results of the validation continue to support the view that other 
product and process factors have a more significant impact on 
numbers of defects. However, we did make one modification 
to the specification quality sub-net as a result of the 
experience gained during the validation. Instead of “Intrinsic 
Complexity” being the sole direct influence on “Module 
Size”, we have now explicitly factored out “Problem Size” as 
a joint influence with “Intrinsic Complexity” on “Module 
Size”. 

D. Conclusions 
A disadvantage of a reliability model of this complexity is 

the amount of data that is needed to support a statistically 
significant validation study. As the metrics programme at PSC 
is relatively young (as is the organisation itself), this amount 
of data was not available. As a result, we were only able to 
carry out a less formal validation study. Nevertheless, the 
outcome of this study was very positive. Feedback was 
obtained on various aspects of the functionality provided by 
the AID interface to the reliability model, yet the results 
indicated that only minor changes were needed to the 
underlying model itself. More extensive validation studies are 

reported in (Fenton, Krause and Neil, 2001). 
There is a limit to what we can realistically expect to 

achieve in the way of statistical validation. This is inherent in 
the nature of software engineering. Even if a development 
organisation conforms to well defined processes, they will not 
produce homogenous products – each project will differ to an 
extent. Neither do we have the large relevant sample sizes 
necessary for statistical process control. It is primarily for 
these reasons that we augment empirical evidence with expert 
judgement using the Bayesian framework described in this 
paper. As more data becomes available, it is possible to 
critique and revise the model so that the probability tables 
move from being subjective estimates to being a statement of 
physical properties of the world (see, e.g. [Krause, 1998]). 
However, in the absence of an extensive and expensive 
reliability testing phase, this model can be used to provide an 
estimate of residual defects that is sufficiently precise for 
many software project decisions. Furthermore, we will argue 
in the next section that carefully elicited expert judgement can 
provide a useful source of data. 

VI. EXPERT JUDGEMENT CAN BE DATA TOO 
A significant feature of the Bayesian approach to model 

building is that enables expert judgement to be combined with 
statistical so that predictive models can be built in domains 
where “hard” data is sparse. A natural reaction to this is, “how 
much can we trust that expert judgement?”. In this section, we 
will argue that if the right techniques are used in its elicitation, 
expert judgement can be a reliable source of data. We will 
demonstrate this using a study of the cost-effectiveness of 
software inspections. 

A. Software Inspection and its Cost-Effectiveness 
One practical and proven technique to ensure that quality is 

built into the product right from the beginning is software 
inspection [Ebenau and Strauss, 1993]. Software inspection 
allows to detect and remove defects as soon as these are 
introduced into software artifacts thereby preventing these 
defects from slipping into subsequent phases where they can 
cause high rework cost. Thus, software inspection allows to 
achieve high software quality at a reasonable cost.  

 However, there are many ways to perform inspections and 
not all of them might be beneficial. Therefore it is one 
challenge from a quality control point of view not only to 
control the quality of the produced product but also from the 
producing processes, in this case the software inspection 
process. 

In particular, this means we must be able to quantify the 
quality impact of inspections, monitor it, and improve it if 
necessary. In [Briand et al., 2000] one of the authors proposed 
a rigorous but practical method to do so, which is sketched 
here. The challenge in assessing the quality of the inspection 
process lies in a situation often encountered in quality 
measurement: required measurement data are not available. 
Therefore the proposed method determines the cost-
effectiveness of inspections by combining project data and 

Figure 11: The prediction for defects discovered and 
fixed during Independent Test for project “Test 3”. 
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expert opinion. 
1) Measuring Inspection Cost Effectiveness 

In order to control the quality of the inspection process, we 
must first quantify the quality criterion we are interested in. 
The quantitative benefit of inspections is the saved rework 
effort. To capture this, we assess therefore the cost-
effectiveness of inspections  

In order to measure cost-effectiveness the cost-effectiveness 
model initially proposed by Kusumoto [Kusumoto et al., 
1992] is selected. However, the original model is re-expressed 
and generalized to multiple inspection activities in order to 
relax some of its assumptions. For more details regarding this 
selection the interested reader is referred to the discussions in 
[Briand et. al., 1998b] and [Briand et. al., 2000].  

Generally, the model defines cost-effectiveness (CE) as:  

sinspectiont_without_defect_cospotential_
pectionsmed_by_inscost_consutions_by_inspecCost_savedE −

=C  

The total potential defect costs are the defect rework cost 
that would have been incurred if no inspections had taken 
place. The cost consumed by inspections is the cost spent on 
performing inspections, while the cost saved by inspections 
estimate the cost saved in later phases due to the defect 
detection in inspections.  

Thus, the model is intuitive as it can be interpreted as the 
percentage of defect rework costs that are saved due to 
inspections. With this definition cost-effectiveness is stated in 
terms of effort savings and can be compared across different 
types of inspections (e.g., between inspections of different 
projects or in different phases of the life-cyle). 

However, expressed in the form above, the model requires 
data that is difficult to obtain. Therefore, it is our approach to 
express the model in terms of parameters that can either be 
easily obtained through data collection during project 
performance or through the elicitation of expert opinion. 

2) On the Use of Expert opinion 
There are many reasons why expert opinion may be needed. 

One of these reasons, that we face here, is when information 
regarding a phenomenon cannot be collected by any other 
affordable means (measurements, observations, 
experimentation) or that the required data is simply not being 
collected. The question is now, especially when looking at the 
problem from a scientific perspective, whether expert data are 
valid data.  

It might be argued that expert data are soft data in the sense 
that they incorporate the assumptions and interpretation of the 
experts [17]. Specifically, expert data are subject to bias, 
uncertainty, and incompleteness. However, these problems 
can be prevented and controlled. Generally, the aim of expert 
knowledge elicitation techniques is to prevent the problems to 
the maximum extent possible, detect bias when it occurs, and 
model uncertainty. Elicitation techniques achieve this by 
carefully selecting experts, designing the mode of data 
collection and the interview procedure, and quantifying 
uncertainty in experts’ responses. Thus, expert judgment can 
be defined as data gathered formally, in a structured manner, 
and in accordance with research on human cognition and 

communication [17].  
To summarize, we believe that expert judgment is valid 

data and is comparable to other data. Expert judgment has 
been used in similar ways and with success in other fields 
such as nuclear engineering (risk models) [14] and policy 
decision making [20], and in software engineering for cost 
estimation purposes [2], [12].  

3) Expert Elicitation Techniques 
Bias and uncertainty are two important aspects (among 

others) that have to be addressed in expert opinion elicitation. 
In the following these two concepts are explained in more 
detail. 
 

a) Bias 
During elicitation, the experts will perform four cognitive 

tasks. They must comprehend the wording and the context 
questions asked. Then they must remember relevant 
information to answer each question. By processing this 
information the experts identify an answer, which is said to be 
“internal” as it is in the expert’s own representation mode. At 
this stage, people typically use mental shortcuts called 
heuristics to help integrate and process the information 
[Kahneman et al., 1982]. Finally, the internal answer has to be 
translated into the format requested by the interviewer (i.e., 
the so-called response mode). 

In each of these steps, especially in applying the heuristics, 
systematic errors can occur, which would distort the estimate. 
To obtain reliable data it is therefore necessary to anticipate 
these biases and design and monitor the elicitation accordingly 
[Meyer and Booker, 1991]. This involves to anticipate which 
biases are likely to occur in the planned elicitation and re-
design the planned elicitation to make it less prone to the 
anticipated biases.  During the elicitation the experts need to 
be made aware of the potential intrusion of particular biases. 
Finally, during elicitation, the interviewer monitors the 
experts' body language and the verbalized thoughts of the 
expert for the occurrence of bias  
 

b) Uncertainty 
Often it is impossible to ask the experts for a single value 

for an estimate. One reason is that subjective estimates are 
inherently uncertain. This uncertainty stems from the experts’ 
lack of knowledge on the exact value for a parameter. 
Providing an exact answer might be impossible since experts 
may not know the exact value or since the parameter value 
may actually vary with circumstances. For example, it is 
obvious that the cost of defect correction does not warrant a 
unique value but a probability distribution, since the 
correction effort can vary with the type of defect. 

To explicitly capture this uncertainty the experts can give 
their answers in the form of a probability distribution (i.e., as a 
response mode as it will be introduced later). With such a 
distribution the experts are able to quantify their uncertainty. 
The probability distribution most often used in expert opinion 
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elicitation is a triangular distribution as shown in Figure . 
Thus, the expert is asked to provide a range, given by 
minimum and maximum values, in which the estimate can be 
and the most likely value. Other distributions might be used as 
well. 

Defect breakdown
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max.min.

100%0%

p
Defect breakdown
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Figure 12 Capturing uncertainty using distributions 

4) A Cost-Effectiveness Assessment Procedure 
An overview of the cost effectiveness assessment procedure 

using expert elicitation techniques is shown in Figure 12. 
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Figure 13: Assessment Procedure 

Step 1: Make the CE model operational in context 
The objective of this step is to instantiate the CE model for 

the projects in the case study. Thus, the underlying 
assumptions of the CE model have to be assessed and relaxed 
if necessary. Additionally, the data sources for the model 
parameters have to be determined. In general, when 
instantiating the CE model for analysis, design, and code 
inspections, its parameters have to be determined on a fine 
level of granularity (e.g., correction effort for code defects 
detected in unit test). Therefore it is very likely that some of 
the parameters required are not collected in most 
environments. In this case the model has to be reformulated so 
that it consists of parameters that can either be derived from 
existing measurement data or that can be obtained from expert 
opinion. A key concept in this step is the decomposition 
[Mosleh et al., 1987] of the model. This concept stresses the 
importance that the expert-based parameters are in a form 
allowing the expert to concentrate on estimating something 
that is tangible and easy to envisage. Parameters that are 
usable for expert elicitation may represent physical quantities, 
counts, proportions, but also probabilities. 

Additionally in this step, based on an understanding of the 
development process in place, it has to be determined who in 
the development team is a good expert to estimate each of the 
parameters, i.e., who has the required background and 

experience. 
 

a) Step 2: Preparation for expert knowledge elicitation 
The objective of this step is to prepare the means of the 

elicitation. These means consist of 1) questionnaires that are 
used to capture the experts’ estimates, 2) an interview 
procedure that guides the interviewer in performing the 
elicitation, and 3) the selection of experts.  

Based on the information identified in Step 1, 
questionnaires have to be developed that capture the 
information to be obtained from the experts through well-
formed questions [Oppenheim, 1992]. Along with the 
questionnaire an interview procedure is to be defined to guide 
the interviewer during the course of interviews. This aims at 
making the interviews more systematic and consistent.  

Following the discussion on expert opinion, the aim of 
expert knowledge elicitation techniques is to reduce the 
impact of bias to the maximum extent possible and model the 
uncertainty in the experts’ answers. Moreover, in a literature 
survey on the use of expert opinion in risk assessment, 
[Mosleh et al., 1987] conclude that the methods by which 
expert opinion are elicited can have a significant impact on the 
accuracy of the resulting estimates. Thus, designing the 
questionnaire and interview procedure carefully and selecting 
appropriate response modes (i.e., the format in which the 
experts have to encode their answers) is of crucial importance.  

Finally, in this second step, experts have to be identified, 
according to precise criteria, and motivated to do the job well. 
Several experts are necessary to estimate parameters as the 
multiplicity of answers will help cancel out random error 
[Hofer, 1986].   

Using some of these experts, the interview procedure and 
the questionnaire are usually tried in a pilot test. The purpose 
of these pilot tests is to gain feedback and optimize the 
elicitation accordingly. Some of the most important goals of 
pilot testing is to determine whether the experts are able to 
answer the questions and if there are sources of confusion and 
bias that might have been overlooked. 
 

b) Step 3: Performing interviews and screening answers 
An interview is scheduled with each expert. Face-to-face 

interviews are preferable, as the experts are more motivated, 
and the interviewer has more control over the elicitation. 
However, depending on the amount of questions that have to 
be answered by the expert, the interview can also be 
performed using the telephone.  

During the interview the interviewer guides the expert 
through the questionnaire using the precisely defined 
interview procedure. Appropriate visual aids should be used 
during interviews, especially those illustrating the response 
mode. 

Once all interviews are completed, the answers of the 
experts are compared. If significant differences are observed 
this needs to be investigated further.  
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c) Step 4: Compute cost-effectiveness 
The objective of the fourth step is to determine the cost-

effectiveness of inspections, in the environment under study, 
and according to the CE model. Step 1 produces operational 
CE models for each inspection phase, including the 
description of their parameters. Together with the experts’ 
responses, the cost-effectiveness is then computed as 
illustrated in Figure 14 with design inspections.  

For those parameters that can be determined from 
measurement data, the values are computed from either 
inspection or test data. For those parameters that are to be 
estimated by expert knowledge elicitation, the estimates of 
different experts for each question have to be aggregated. 

Since the estimates of the experts were actually probability 
distributions, also estimate a probability distribution for the 
cost-effectiveness is computed. This distribution captures the 
inherent uncertainty in the cost-effectiveness of inspections. 
This uncertainty has two sources: the uncertainty in the 
experts’ estimates and the inherent variation of cost-
effectiveness across inspections. An important methodological 
point in presenting the results of any expert opinion study is to 
make explicit the underlying uncertainty of the results [Hora 
and Iman, 1989]. A probability distribution of the cost-
effectiveness takes this aspect automatically into account. 
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Figure 14: Determining CE 

Monte-Carlo (MC-) Simulation is a convenient way of 
performing the aggregation of experts’ data [Vose, 1996] and 
the computation of the cost-effectiveness distribution. During 
one simulation run, a value for each input parameter is 
sampled from the experts’ probability distributions. The set of 
sampled values forms a possible scenario, which is used as 
input to the model to compute the corresponding cost-
effectiveness value. Repeating this procedure 1000 times 
provides 1000 cost-effectiveness values which form a 
distribution. 

5) Experience with the proposed method 
The proposed method was developed specifically for a 

development organization and validated in a carefully 
designed case study, which took place in a business unit of 
Siemens AG, Germany, that is developing products and 
services for mobile communication and intelligent networks 
[Briand et al., 2000].  

Figure 15 shows the resulting cost-effectiveness 
distributions for analysis, design, and code inspections. We 
can see that the distributions of cost-effectiveness as well as 
the savings for analysis, design, and code inspections are 
clearly ordered. Analysis inspections are considerably more 
cost-effective than their design counterpart, which are in turn 
even more markedly better than code inspections. Despite the 
uncertainty modeled during expert knowledge elicitation, the 
distribution patterns are quite clear to this respect. 
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Figure 15: CE Results 

These patterns confirm what is usually acknowledged by 
software engineering professionals, i.e., earlier inspections are 
more beneficial. In addition, the QA engineers of the 
organization where the data was collected confirmed that they 
suspected the benefits of code inspections to be limited for 
some parts of the system, a suspicion confirmed by our 
results.  

Overall, the usage of expert opinion allowed us to quickly 
and with a surprisingly low level of effort give concrete 
feedback to the quality assurance team. Moreover, the 
methodology is used here for inspections but could be adapted 
to any situation where a new technology needs to be assessed 
and complete data collection is not possible. 

VII. SYNTHESIS AND CONCLUSIONS 
Section 2 of this paper provided an overview of the current 

state of the art in defining quality goals for software products. 
A vitally important aspect of this work is that the quality goals 
be derived from the underlying business goals of the 
customer(s) of that software. 

In Section 3, we then argued that the manufacturing 
approach to quality control was inadequate in the context of 
software products. This is because the process of controlling 
the development of software products is a matter of 
controlling the human creative and design processes. In 
contrast, controlling the quality of traditional manufacturing 
goods is primarily a matter of controlling the replication of a 
pre-agreed design. We demonstrated that the use of Bayesian 
Probabilistic networks to implement causal models, was an 
effective way of controlling the delivery of agreed quality 
goals in the case of the creation of software products. 

A concern with this Bayesian approach is the trust-
worthiness of the use of expert judgement to build quality 
assessment and quality control models. We address this 
concern in Section 6 by showing how careful elicitation of 
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expert judgement can be a reliable and valuable source of 
data. 

It is our firm belief that this synthesis of three strands of 
research in software quality provides a foundation for an 
effective method of quality control for software related 
products. 

 

APPENDIX 
For the benefit of those who are unfamiliar with probability 

theory, we provide in this appendix a brief introduction to 
probabilistic causal models. 

A. Conditional probability 
Probabilities conform to three basic axioms: 
• p(A), the probability of an event 

(outcome/consequence…), A, is a number between 0 and 
1; 

• p(A)=0 means A is impossible, p(A)=1 means A is 
certain; 

• p(A or B) = p(A) + p(B) provided A and B are disjoint. 
However, merely to refer to the probability p(H) of an event 
or hypothesis is an oversimplification. In general, probabilities 
are context sensitive. For example, the probability of suffering 
from certain forms of cancer is higher in Europe than it is in 
Asia. Strictly, the probability of any event or hypothesis is 
conditional on the available evidence or current context. This 
can be made explicit by the notation p(H | E), which is read as 
“the probability of H given the evidence E”. In the coin 
example, H would be a “heads” event and E an explicit 
reference to the evidence that the coin is a fair one. If there 
was evidence E' that the coin was double sided heads, then we 
would have p(H | E') = 1.0. 
As soon as we start thinking in terms of conditional 
probabilities, we begin to need to think about the structure of 
problems as well as the assignment of numbers. To say that 
the probability of an hypothesis is conditional on one or more 
items is to identify the information relevant to the problem at 
hand. To say that the identification of an item of evidence 
influences the probability of an hypothesis being valid is to 
place a directionality on the links between evidences and 
hypotheses. 
Often a direction corresponding to causal influence can be the 
most meaningful. For example, in medical diagnosis one can 

in a certain sense say that measles “causes” red spots (there 
might be other causes). So, as well as assigning a value to the 
conditional p(‘red spots’ | measles), one might also wish to 

provide an explicit graphical representation of the problem. In 
this case it is very simple (Figure A.1). 
Note that to say that p(‘red spots’ | measles) = p means that we 
can assign probability p to ‘red spots’ if measles is observed 
and only measles is observed. If any further evidence E is 
observed, then we will be required to determine p(‘red spots’ | 
measles, E). The comma inside the parentheses denotes 
conjunction. 
Building up a graphical representation can be a great aid in 
framing a problem. A significant recent advance in probability 
theory has been the demonstration of a formal equivalence 
between the structure of a graphical model and the 
dependencies that are expressed by a numerical probability 
distribution. In numerical terms, we say that event A is 
independent of event B if observation of B makes no 
difference to the probability that A will occur: p(A | B) = 
p(A). In graphical terms we indicate that A is independent of 
B by the absence of any direct arrow between the nodes 
representing A and B in a graphical model. 
So far, we have concentrated on the static aspects of assessing 
probabilities and indicating influences. However, probability 
is a dynamic theory; it provides a mechanism for coherently 
revising the probabilities of events as evidence becomes 
available. Conditional probability and Bayes’ Theorem play a 
central role in this. We will use a simple example to illustrate 
Bayesian updating, and then introduce Bayes’ Theorem in the 
next section. 
Suppose we are interested in the number of defects that are 
detected and fixed in a certain testing phase. If the software 
under test had been developed to high standards, perhaps 
undergoing formal reviews before release to the test phase, 
then the high quality of the software would in a sense “cause” 
a low number of defects to be detected in the test phase. 
However, if the testing were ineffective and superficial, then 
this would provide an alternative cause for a low number of 
defects being detected during the test phase. (This was 
precisely the common empirical scenario identified in [Fenton 
and Ohlsson, 2000]). 
 

red 
spots 

measles 

Figure A.1: A very simple probabilistic 
k
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This situation can be represented by the simple graphical 
model of figure A.2. Here the nodes in the graph could 
represent simple binary variables with states “low” and 
“high”, perhaps. However, in general a node may have many 
alternative states or even represent a continuous variable. We 
will stay with the binary states for ease of discussion. 
It can be helpful to think of figure A.2 as a fragment of a 
much larger model. In particular, the node SQ (“Software 
Quality”) could be a synthesis of, for example: review 
effectiveness; developer’s skill level; quality of input 
specifications; and, resource availability. With appropriate 
probability assignments to this model, a variety of reasoning 
styles can be modelled. A straightforward reasoning from 
cause to effect is possible. If TE (test effectiveness) is “low”, 
then the model will predict that DD (defects discovered and 
fixed) will also be low. If earlier evidence indicates SQ 
(software quality) is “high”, then again DD will be “low”. 
However, an important feature is that although conditional 
probabilities may have been assessed in terms of effect given 
cause, Bayes’ rule enables inference to be performed in the 
“reverse” direction – to provide the probabilities of potential 
causes given the observation of some effect. In this case, if 
DD is observed to be “low” the model will tell us that low test 
effectiveness or high software quality are possible 
explanations (perhaps with an indication as to which one is the 
most likely explanation). The concept of “explaining away” 
will also be modelled. For example, if we also have 
independent evidence that the software quality was indeed 
high, then this will provide sufficient explanation of the 
observed value for DD and the probability that test 
effectiveness was low will be reduced. 
This situation can be more formally summarised as follows. If 
we have no knowledge of the state DD then nodes TE and SQ 
are marginally independent – knowledge of the state of one 
will not influence the probability of the other being in any of 
its possible states. However, nodes TE and SQ are 
conditionally dependent given DD – once the state of DD is 

known there is an influence (via DD) between TE and SQ 
as described above. 

TE SQ We will see in the next section that models of complex 
situations can be built up by composing together relatively 
simple local sub-models of the above kind (See also [Neil 
et al, 2000]). This is enormously valuable. Without being 
able to structure a problem in this way it can be virtually 
impossible to assess probability distributions over large 
numbers of variables. In addition, the computational 
problem of updating such a probability distribution given 
new evidence would be intractable. 

DD 
B. Bayes’ theorem and graphical models 

As indicated in the previous section, probability is a 
dynamic theory; it provides a mechanism for coherently 
revising the probabilities of events as evidence becomes 
available. Bayes’ theorem is a fundamental component of 
the dynamic aspects. 
As mentioned earlier, we write p(A | B) to represent the 
probability of some event (an hypothesis) conditional on 
the occurrence of some event B (evidence). If we are 

counting sample events from some universe Ω, then we are 
interested in the fraction of events B for which A is also true. 
In effect we are focusing attention from the universe Ω to a 
restricted subset in which B holds. From this it should be clear 
that (with the comma denoting conjunction of events): 

Figure A.2: Some subtle interactions between variables 
captured in a simple graphical model. Node TE represents 
“Test Effectiveness”, SQ represents “Software Quality” and 
DD represents “Defects Detected and Fixed”. 
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This is the simplest form of Bayes’ rule. However, it is more 
usually rewritten in a form that tells us how to obtain a 
posterior probability in a hypothesis A after observation of 
some evidence B, given the prior probability in A and the 
likelihood of observing B were A to be the case: 
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Z 

X Y 

This theorem is of immense practical importance. It means 
that we can reason both in a forward direction from causes to 
effects, and in a reverse direction (via Bayes’ rule) from 
effects to possible causes. That is, both deductive and 
abductive modes of reasoning are possible. 

Figure A.3: X is conditionally independent of Y given 
Z.
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However, two significant problems need to be addressed. 
Although in principle we can use generalisations of Bayes’ 
rule to update probability distributions over sets of variables, 
in practice: 
1) Eliciting probability distributions over sets of variables is 

a major problem. For example, suppose we had a problem 
describable by seven variables each with two possible 
states. Then we will need to elicit (27-1) distinct values in 
order to be able to define the probability distribution 
completely. As can be seen, the problem of knowledge 
elicitation is intractable in the general case. 

2) The computations required to update a probability 
distribution over a set of variables are similarly 
intractable in the general case. 

Up until the late 1980’s, these two problems were major 
obstacles to the rigorous use of probabilistic methods in 
computer based reasoning models. However, work initiated by 
Lauritzen and Spiegelhalter [1988] and Pearl [1988] provided 
a resolution to these problems for a wide class of problems. 
This work related the independence conditions described in 
graphical models to factorisations of the joint distributions 
over sets of variables. We have already seen some simple 
examples of such models in the previous section. In 
probabilistic terms, two variables X and Y are independent if 
p(X,Y) = p(X)p(Y) – the probability distribution over the two 
variables factorises into two independent distributions. This is 
expressed in a graphic by the absence of a direct arrow 
expressing influence between the two variables. 
We could introduce a third variable Z, say, and state that “X is 
conditionally independent of Y given Z”. This is expressed 
graphically in Figure A.3. An expression of this in terms of 
probability distributions is: 
 p(X,Y | Z) = p(X | Z)p(Y | Z) 
A significant feature of the graphical structure of Figure A.3 is 
that we can now decompose the joint probability distribution 
for the variables X, Y and Z into the product of terms 
involving at most two variables: 
 p(X,Y,Z) = p(X | Z)p(Y | Z)p(Z) 
In a similar way, we can decompose the joint probability 
distribution for the variables associated with the nodes DD, 
TE and SQ of Figure 4.2 as 
 p(DD, TE, SQ) = p(DD | TE,SQ)p(TE)p(SQ) 
This gives us a series of example cases where a graph has 
admitted a simple factorisation of the corresponding joint 
probability distribution. If the graph is directed (the arrows all 
have an associated direction) and there are no cycles in the 
graph, then this property is a general one. Such graphs are 
called Directed Acyclic Graphs (DAGs). Using a slightly 
imprecise notation for simplicity, we have [Lauritzen and 
Spiegelhalter, 1988]: 
Proposition 
Let U = {X1, X2, …, Xn} have an associated DAG G. Then 
the joint probability distribution p(U) admits a direct 
factorisation: 

  ))(|()(
1

∏
=

=
n

i

ii XpaXpUp

Here pa(Xi) denotes a value assignment to the parents of Xi. 
(If an arrow in a graph is directed from A to B, then A is a 
parent node and B a child node). 
 
The net result is that the probability distribution for a large set 
of variables may be represented by a product of the 
conditional probability relationships between small clusters of 
semantically related propositions. Now, instead of needing to 
elicit a joint probability distribution over a set of complex 
events, the problem is broken down into the assessment of 
these conditional probabilities as parameters of the graphical 
representation. 
The lessons from this section can be summarised quite 
succinctly. First, graphs may be used to represent qualitative 
influences in a domain. Secondly, the conditional 
independence statements implied by the graph can be used to 
factorise the associated probability distribution. This 
factorisation can then be exploited to (a) ease the problem 
eliciting the global probability distribution, and (b) allow the 
development of computationally efficient algorithms for 
updating probabilities on the receipt of evidence. We will now 
describe how these techniques have been exploited to produce 
a probabilistic model for software defect prediction. 
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