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ABSTRACT

Effective software project estimation is one of the most chal-
lenging activities in software development. In today’s highly
competitive world, accurate software estimation can make
the difference between successful projects and dismal fail-
ures. Proper project planning and control is not possible
without a sound and reliable estimate.

In this paper we propose a framework, developed by Ericsson
R&D Italy, for project time and cost estimation for software
development projects in the telecommunications domain.
The customization of Design Structure Matrix (DSM), the
application of COSMIC and the study of defect complexity
curves are the components of this new estimation frame-
work. The joint application of these three components al-
lows all stakeholders interested in the estimation result to
have a common view based on objective data and to under-
stand how a change to functional and quality requirements
can impact the result.

Categories and Subject Descriptors

D.2.8 [Software Engineering|: Metrics—complezity mea-
sures, performance measures; D.2.9 [Management|: Cost
estimation

General Terms

Management, Measurement, Economics, Experimentation
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1. INTRODUCTION

How well do most people estimate? This is a crucial ques-
tion. The software industry’s estimation track record pro-
vides some interesting clues to the nature of the problems
associated with estimating software projects. In recent years
The Standish Group [4] has published biennial surveys called
The Chaos Report, which describe the outcome of software
projects. Interestingly the survey published in 2004 reports
that 54% of projects were delivered late, only 18% failed
outright, and 28% were delivered on time and within bud-
get.

The reasons that projects miss their targets are manifold,
but it is certain that one of the most important reasons is due
to a failure in project estimation. Keeping this in mind and
considering the major estimation methodologies (e.g. delphi
process [24, 26, 11], statistical sizing [19], analogy [25], algo-
rithmic models [22, 23], function point [9], object points [10],
or use case point [20, 16]) we can say that project estimation
has still a long way to go and there is not an univocal well-
known way of working or methodology recognized from all
scientific and business communities. This is due to the fact
that each of these methodologies was developed for a partic-
ular domain and each has its own strengths and weaknesses.
So how should the appropriate methodology be chosen for a
particular project? The current thinking, with which many
practitioners strongly concur, is that you should use at least
three different methods [21]. Each provides some insight
and understanding, which can then be combined to derive
an answer.

Taking this into consideration, Ericsson R&D Italy set about
to define and deploy a generic framework for software project
schedule and cost estimation, referred to as the Ericsson
Project Estimation Analyzer. The following requirements
were established at the outset:

1. to have a formal and rigorous method capable of mea-
suring functional requirements. This is based on the
strong belief that the measurements of any entity must
be obtained by means of objective valuation and not
from subjective criteria, as stated by Tom De Marco:
“you cannot control what you cannot measure” [15].
Such a method should be able to demonstrate high



level of precision and repeatability, be easy to under-
stand and apply in the selected domain be inexpensive
to not require changes to already existing development
processes.

2. to have a method able to estimate possible rework dur-
ing the lifecycle of the product.

3. to have a tool that takes as input the results of the two
above methods and that can simulate different esti-
mation scenarios when the project characteristics (e.g.
requirements and quality factors) are changed.

To fulfill these requirements, the following solutions were
chosen:

1. the use of COSMIC to estimate the functional require-
ments of a product. COSMIC was developed by the
Common Software Measurement International Consor-
tium (COSMIC) and in 2003 was adopted as the ISO
IEC 19761 standard. The approach is to analyze the
system not only from the user’s point of view but also
as a white box, estimating the impact of requirements
on all system components [18, 8, 2.

2. The classification of projects in terms of complexity
classes and performance trends (i.e. defect curves) for
each class, by analyzing the historical data of previous
projects executed at Ericsson.

3. The use of a design structure matriz (DSM) [13, 27] to
analyze and simulate different scenarios taking as in-
put both functional estimations and defect sizes. DSM
is based on a square matrix that captures dependencies
between system components. These components can
include, but are not limited to, product parts, teams,
processes, or activities. When effort estimation, learn-
ing curve, rework probability and percentage of impact
are provided as input, DSM is able to simulate the
whole system and to find the most likely behaviour.

These three components are the basis for the proposed frame-
work. This paper shows the process needed to develop such
a framework, and the motivation that guided the selection
of the chosen techniques. The experiments on significant
projects within Ericsson R&D Italy validated the innova-
tion of this framework in terms of efficacy and precision.
This paper is organized into the following sections: Section 2
describes the motivation behind choosing COSMIC as a suit-
able FSM method for use in the telecommunications domain.
Section 3 provides a brief description of how Ericsson R&D
Italy defines the term rework and why the authors consid-
ered it so important to measure. Section 4 describes the
reasons drove the choice of DSM as a performance manage-
ment tool. Section 5 introduces the defined framework and
the process of deployment. Section 6 reports on the exper-
iments performed and COSMIC performances. Section 7
states the authors’ conclusions.

2. WHY COSMIC?

Functional size measurement (FSM) methods [1] are intended
to measure the size of software by quantifying the functional
user requirements. IFPUG FPA and COSMIC are the main
methods of FSM: they are already international standards
and are widely used in practice. COSMIC represents the
second generation of FSM [17]. They are applicable not
only for the development of business application software
but also for the development of real-time, embedded and
telecoms software [6]. The introduction of the concept of a
measurement viewpoint, that allows the analysis of software
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at different levels, makes the measurement of the software
more suitable and realistic. It captures the size of each layer
of multi-layered software architecture as well as the size of
each separate component within each layer. Such size mea-
sure should prove useful for understanding development per-
formance and for estimating purposes. The first part of the
analysis undertaken was to identify the best FSM method
for the telecommunications domain. Both FPA and COS-
MIC had previously been applied on several projects in order
to evaluate effort estimation and the relationship between
the number of function points and man-hours. This paper
shows how the applied measurement procedure of COSMIC
provides very good estimates close to the actual effort spent
in each project, and highlights the reasons why COSMIC
outperforms FPA in the telecommunication domain. More-
over the paper describes how the COSMIC methodology ad-
equately fulfills the requirements stated above and also cap-
tures non functional requirements (e.g. scalability, memory
usage, processor load).

3. THE PROBLEM OF REWORK

Even with a good estimation model for functional size mea-
surement, there are a lot of obstacles during the product
development phase that cause deviations. In our context
the experience has shown that rework is the main cause of
deviations. Therefore Ericsson historical data was analysed
in order to characterize this rework. The resulting model is
based on the relation:

rework = defectiveness

This assumption is justified by the fact that our analysis
highlighted that defects discovered during the development
phase are the main cause of rework. The analysis also high-
lighted two important factors: firstly, it was not sufficient to
simply incorporate a buffer during project estimation, the
buffer in more cases was or too large or not enough compro-
mising the estimation made. Secondly the cost of fixing the
defects found in different verification phase, has a significant
difference in terms of effort required. More precisely, four
complexity classes were defining for our projects. Each class
is characterized by technologies used (i.e. hardware, soft-
ware, firmware), size of development, number of test case
planned to verify the product, number of internal and ex-
ternal project dependencies, development languages used for
coding, etc. According to this classification it was found that
elements in the same class perform in the same way. From
this it is possible to define performance curves that charac-
terize each class in terms of time, cost and quality. In the
quality dimension an analysis was performed on the number
of defects discovered during the development phase. Trends
were found connected both to the number of defects per test
phase (e.g. desk check, basic test and function test) and
to the number of faults slipping through. Slipping through
evaluates the effectiveness of the verification phases by an-
alyzing the defects slipped from early verification phases to
later ones. As the number of hours required to fix a fault
increase the later the fault is found, it is possible to claim
that slipping through is the main cause of rework. Moreover
it was discovered that this increases with complexity. This
implies therefore that it is important to have a rework model
and to be aware as to how the defectiveness (slip through)
is a very interesting characterization of rework.



4. DSM - A TOOL FOR PERFORMANCE
MANAGEMENT

Products, processes, and organizations are complex systems
which pose a challenge to plan the manage. However one
method is starting to be adopted for representing and ana-
lyzing complex system architectures. This method, the de-
sign structure matrix (DSM) [13, 27] is helping researchers
and practitioners plan and manage product architectures,
organizational structures and process flows. It is considered
a system modeling tool. It has two main strengths. Firstly,
it can represent a large number of system elements and their
relationships in a compact way that highlights important
patterns in the data (such as feedback loops and modules).
Secondly, it can be amenable to matrix-based analysis tech-
niques, which can be used to improve the structure of the
system [7].

DSM is based on a square matrix that documents dependen-
cies between system components. These components can be
product parts, teams, processes, activities, or other things.
From simple analysis, it is possible to prescribe a modu-
lar system architecture or organization structure. Adding
a time-basis enables a faster, lower-risk process to be pre-
scribed. Because DSM highlights process feedbacks, it helps
identifying iteration and rework loops which are key drivers
of cost and schedule risk. DSM can also show how delays
in external inputs, such as requirements and equipment can
directly lead to increased cost, schedule, and risk.

DSM is concise and visually appealing and it is in use in
a number of industries, companies, and agencies (it is also
known as the dependency structure matrix and the depen-
dency source matrix [3]).

Consider a system (or project) that is composed of two el-
ements /sub-systems (or activities/phases): Element A and
Element B. A graph may be developed to represent this sys-
tem. The graph is constructed by allowing a node on the
graph to represent a system element and an edge joining
two nodes to represent the relationship between two system
elements. The directionality of influence from one element
to another is captured by an arrow instead of a simple link.
The resultant graph is called a directed graph or simply a
digraph. There are three basic building blocks for describ-
ing the relationship amongst system elements: parallel (or
concurrent), sequential (or dependent) and coupled (or in-
terdependent).

The matrix representation of a digraph is a binary and square
matrix with m rows and columns, and n non-zero elements,
where m is the number of nodes and n is the number of
edges in the digraph. The matrix layout is as follows: the
system elements names are placed down the side of the ma-
trix as row headings and across the top as column headings
in the same order. If there exists an edge from node i to
node j, then the value of element %, j is marked 1 (or black).
Otherwise, the value of the element is zero (or left empty).

This paper shows that the characterization made on DSM
provides a valid tool to simulate the wanted estimation and
improves visibility and understanding of project/system com-
plexity for every stakeholder of the project estimation.

5. THE FRAMEWORK

This work has been driven by the following considerations
and questions:

1. Is it possible to have a method that, taking require-
ments as input can measure in a formal and rigorous
way the respective effort in our domain?

2. If yes, what kind of requisite should this method have
in order to be attractive and easy to insert in our con-
text? The minimum requirement should be perfor-
mant in terms of precision and repeatability, ease of
application in our domain, easy to understand, inex-
pensive to introduce and not require changes to exist-
ing development processes.

3. Would it be sufficient to have a method that only cov-
ers the functional part of software and not all aspects
(i.e. defectiveness, dependencies, non functional re-
quirements) [14]7

4. Is it possible to have a tool that can in an easy way
simulate the planning scenarios changing the sensible
factors of a project, like requirements, times, and qual-
ity?

By answering these questions a definition of a framework
based on three components was derived:

e COSMIC for function requirements estimation (as an
answer to the first and second questions / require-
ments).

e Performance curves for rework analysis and rework es-
timation (as an answer to the third question).

e Design structure matriz (DSM) as a model for simu-
lating the complete system (as an answer to the fourth
question as a performance management tool).

The steps required to estimate a new development by means
of this framework can be summarized as follows:

1. Evaluate the functional size using COSMIC.

2. Translate the COSMIC size in effort (MHrs) using the
multiply factor as described in Section 5.2.

3. Define the work breakdown structure for the new de-
velopment listing all activities and dependencies among
them.

4. Evaluate the man-hours of each activity (min, max and
most likely) using Table 4.

5. Determine the complexity class of the new develop-
ment and thereby the performance curves.

6. Use the performance curves to characterize the rework
index.

7. Simulate the system using DSM. In this way DSM,
through hundred iteration of the whole system, is able
to find the most probable behaviour that characterize
the project estimation.

The next sections describe the roadmap that drive us to the
definition of the above steps®.

5.1 Description of the application domain

Before showing the customization of these methods to our
domain let us provide a very short sketch of our system and
products.

Ericsson products are mostly characterized by a layered ar-
chitecture structured in software, firmware and hardware
components. The communication among different layers and
components is based on signaling exchanges. A signal is an
event triggered between two different processes that carries
data to be computed.

When a customer request new features in the form of re-

!Note: For reason of confidentiality figures have been omit-
ted from pictures and tables that describe historical perfor-
mance of projects. Only the trend is shown.



Table 1: Complexity characterization table.

Exec.
Compl. SW SW/FW SW/FW FW HW FW/HW Multi-site | Partners Sub- Length
Class /HW (Design) projects | (months)
C1 <2 blocks <2 blocks <2 blocks | 1 board DfE one-roof none none <4
C1 <2 SW 1 board +
+ 2 FW 1 block
C2 <5 blocks <5 blocks <2 blocks <5 blocks 2 boards 1 board 2 sites none none <6
+ 1 board 2 blocks
<2 SW
C3 6<blocks<10 <3 SW + 2 FW 1 board + 3 sites 1 1 <8
+ 3 FW + 2 board >2 blocks
C4 >blocks >7 blocks >5 blocks >7 blocks >3 boards >1 board + > sites >2 >2 >8
-+ n board >2 blocks

quirements it is possible to identify the system that is im-
pacted and to distribute the new features on the impacted
subsystems, their relative components (software, firmware
or hardware), down to identification of individual software
unit, firmware unit, or hardware unit.

In general, the identification of the right system and its sub-
system is performed during the pre-study phase, where re-
quirements are collected and accepted and an impact anal-
ysis made.

When impacts in the system are determined and dependen-
cies with other system discovered, then during the feasibility
stage the inter-work between different components in differ-
ent subsystems are all analyzed.

In this context both FPA and COSMIC were applied to sev-
eral projects in order to observe and analyze their behaviours
in terms of precision and performance. The reason for ap-
plying both was to validate the choice of COSMIC, in order
to see if the requirements to determine a functional size mea-
surement was fully satisfied.

5.2 Evaluate functional size using COSMIC

The measurement procedure defined in order to apply COS-
MIC in our domain needs to be clarified.

e The scope of the counting is the total subsystems scope.

e The boundary and the function point of view definition
come natural and immediately: the boundary and the
user point of view can be dynamically moved from one
component to another.

e Every signal is considered as a functional process where
the number of data movements is equivalent to the
number of parameter it contains.

e The four data movements are grouped into a couple of
data movements: ENTRY-WRITE and EXIT-READ.
This is because there is a correlation between each en-
try signal and the writing of its parameters in the com-
ponent system.

e In COMIC the number of the parameters in a data
movement represents its weight.

The counting with COSMIC was found to be very straight-
forward, without the need to adapt the method to our sys-
tem and the counting was found to be systematic without
any misleading.

Naturally a large number of components and signals causes
the counting process to become time consuming. Howaver,
this is possible to automate using as input the implementa-
tion proposal document (written during feasibility stage of a
project) where interwork among different components of the
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impacted subsystems are described and well documented,
also in terms of data exchanges (i.e. the parameters in the
signals).

So from customer requirements, using our standard process
to map functional requirements onto systems, subsystem,
component units, it was possible to make a rigorous and
formal functional estimation. In this way the counting is:

e independent from the person who counts because con-
nected to measurable entities (signals and related pa-
rameters);

e not ambiguous, we counts all signals between com-
ponets (clear level of application).

The application of this method to several past projects re-
sulted in a very good performance. Using the man-hours
for past projects and applying COSMIC it was found a mul-
tiply factor that allow to translate COSMIC size in effort
(man-hours), see Table 10. It has been noted that the unit
cost ratio® remains constant with an average error of 5% as
showed in Section 7.

Therefore it is possible to conclude that COSMIC is the an-
swer to the first and second questions in Section 5.

5.3 Rework characterization

The process defined to characterized the rework concept is
as follows:

1. A list of project characteristics that can better cap-
ture the notions of size/complexity was defined and
the raw data (related to these characteristics) was col-
lected concerning the projects involved in the analysis
process.

2. Four complexity classes were defined: initial (C1), in-
termediate (C2), adequate (C3), advanced (C4) in or-
der to classify all our development projects. Each
class has specific characteristics in terms of technolo-
gies (software, firmware, hardware) used, size of de-
velopment, number of test cases planned to verify the
product, number of internal and external project de-
pendencies, development languages used for coding,
etc, as shown in Figure 1.

3. We found, according to this classification similar per-
formance for all projects in each class.

4. Rework was defined on the basis of complexity and
performance classes.

According to the previous classification similar performances
of all elements in each class was found. This allowed the def-

2The unit cost ratio is also referred as project delivery rate
in the ISBSG repository [5]




inition of performances curves that characterize each class
in all three dimensions: time cost and quality. Studies were
focused mainly in the quality dimension analyzing the de-
fects discovered during development. Trends were found
connected to the number of defects for the test phase (e.g.
basic test and function test) and also to the slip through.
The slip through evaluates the effectiveness of the verifica-
tion phases by analyzing the defects slipped from early ver-
ification phases to later ones.
Figure 1 shows the slip through characterization. More pre-
cisely the histogram shows the number of defects found in
each verification phase: review and inspection (R&I), code
desk check (DC), basic test (BT), module test (MT), func-
tion test (FT), and system test (ST) . Figure 1 also presents
the ideal defect trend in a project (the blue line), a real
defect trend (the green line) and the percentage of faults
slipped in each phase (the black line). Note that in a ideal
trend the percentage of faults should be zero.
It can be observed that a large number of faults sleep in
advanced test phases. The distance between the two curves
(blue and green) represents how the project deviates from
the expected behaviour. The bigger the distance the more
is the rework in the project activities.
If it is considered that the hours spent to fix a fault in-
creases the later the fault is discovered, then it is possible
to state that this is the main cause of rework, moreover it
was found to increase with increasing the complexity of the
project (from C1 to C4). This relation is evident looking
at Table 3 where it is reported the effort needed to fix a
defect in different implementation phases for each complex-
ity class. Thanks to different time reporting of designer in
fixing defect it was possible to collect these data.
Therefore defectiveness and slip through are the best char-
acterizations of the rework.
In conclusion the answer to the third question in Section 5
(It would be enough to have a method that covers only the
functional part of software and not the whole aspects?) is
that it would not be enough and that rework has a crucial
role in project estimation and it is important to have a tool
that allows this to be included in the project estimation.
It is now possible to define three other important factors that
are very useful when building an estimation framework:
e The rework probability for each complexity class per
developing phase. See Table 2.
e The percentage of impact (in term of effort - man-
hours) for each complexity class per developing phase.
See Table 2 and Table 3
e The percentage of activity phase design, coding, ba-
sic test, module test, function test, system test). See
Table 4.
In all of the above mentioned tables, the data reported in
class C1 forms the basis of the evaluation for the other com-
plexity class and it is expressed as a range that is subject
to a percentage of increase based on the complexity class.
It is important to remark that these tables capture the per-
formance trend of Ericsson R&D Italy projects. As a conse-
quence, in order to be used in another context, they have to
be rebuilt to capture the complexity and trend characteriz-
ing that context.
The next section introduces the DSM tool that uses the char-
acterization of rework and the functional size measurements
made by means of COSMIC to simulate a complete project
estimation.

Table 6: DSM estimation table example.

Name Best Case | Most Likely | Worst Case
D_HW_1run 46 49 51
BT _Irun 70 73 76
D_HW_2run 57 60 63
BT 2run 47 49 51
D_FPGA 142 150 158
D_FW 109 115 121
BJT 78 82 86
D_Block 160 167 174
MT 41 43 45
FT_P 189 197 205
FT_E 59 62 65

5.4 Simulation with DSM

The DSM method adapted in the Ericsson project context
is the Task-Based DSM Simulation (called DSM Sim) [12].
As input, DSM-Sim requires the following data:

1. A DSM matrix with activities and dependencies. A
DSM binary matrix was characterized by setting rows
and columns with the tasks used for the development of
a feature in a project (design, coding, basic test, mod-
ule test, function test, and system test) reporting the
dependencies among different tasks. See an example in
Table 5 where the possible activities for implementing
a feature = are reported with their dependencies.

2. For each activity, three cost estimates are required: an
optimistic or best case value (BCV), a most likely value
(MLV), and a pessimistic or worst case value (WCV).
The effort of a feature is calculated by COSMIC. Using
Table 4 we estimate the effort of the the single activ-
ities as the percentage of the total future cost. The
range expressed in Table 4 gives the three values of
the estimation table (BCV, MLV, WCV). The most
likely value is the average of the best and worst case
in the ranges expressed in Table 4 For example the
estimation table can be expressed in man-hours as in
Table 6. It is then possible to translate the effort in
duration for time simulation.

3. Each activity also has an associated improvement curve,
which represents the learning factor. This is based on
the assumption that repeating the same activity a sec-
ond or successive number of times costs less time/effort.
The improvement curve is given as a percentage, the
percentage of the original effort required to regenerate
the activity (e.g. it takes X% of the original effort to
repeat activity a second and successive times). For in-
stance as shown in Table 7 D_HW_lrun will take 25%
effort less compared with the first time the activity was
executed.

4. In addition, for each activity, the model requires an as-
sessment on the probability that a rework occurs and
the percentage of impact caused by that rework. Using
Table 2 and Table 3 we can define three DSM matrices
for the probability of rework: the best case, the most
likely case and the worst case, see Table 83). More-
over we can define three DSM matrices also for the
percentage of impact (best case, most likely case and
worst case, see Table 8).

3Due to size limitations, only the worst case example is re-
ported.
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Table 2: Probability of the rework per complexity class.

C2

C3

C4

X1+10%, X2+13%

X1+20%, X2+23%

X1+25%, X2+28%

Y1+10%, Y2+13%

Y1+20%, Y2+23%

Y1+25%, Y2+28%

21+2%, Z2+3%

Z1+6%, 724+9%

21+9%, Z24+11%

WI1+2%, W2+3%

W1+6%, W2+9%

WI+9%, W2+11%

V1+2%, V2+3%

V1+6%, V2+9%

V1+9%, V2+11%

Probability of rework C1
Design X1, X2
Coding Y1, Y2

Basic Test 71, 72
Module Test W1, W2
Function Test V1, V2
System Test TI1, T2

T1+2%, T2+3%

T1+6%, T2+9%

T1+9%, T2+11%

Table 3: Percentage of impacts per complexity class.

C2

C3

C4

G14+10%, G2+13%

G14-20%, G2+23%

GI1+25%, G2+28%

H1+10%, H2+13%

H1+20%, H2+23%

H1+25%, H2+28%

Li+2%, L2+3%

L1+6%, L2+9%

LI+9%, L2+11%

KI1+2%, K2+3%

K1+6%, K2+9%

KI1+9%, K2+11%

J1+2%, J2+3%

J14+6%, J2+9%

JI1+9%, J2+11%

Percentage of impact CI
Design G1, G2
Coding HI, H2

Basic Test L1, L2
Module Test K1, K2
Function Test J1, J2
System Test 11, 12

11+2%, 12+3%

11+6%, I2+9%

114+9%, I2+11%

Table 4: Percentage of implementation phase per complexity class.

C2

C3

C4

P1+10%, P2+13%

P1+20%, P2+23%

P1+25%, P2+28%

Q1+10%, Q2+13%

QI1+20%, Q2+23%

QI1+25%, Q2+28%

RI1+2%, R2+3%

RI1+6%, R2+9%

RI1+9%, R2+11%

M1+2%, M2+3%

MI1+6%, M2+9%

M1+9%, M24+11%

N1+2%, N2+3%

N1+6%, N2+9%

N1+9%, N2+11%

Percentage of the

implement. phase C1
Design P1, P2
Coding Q1, Q2
Basic Test R1, R2
Module Test M1, M2
Function Test N1, N2
System Test 01, 02

O01+2%, 024+3%

014+6%, 024+9%

O1+9%, 02+11%

Table 5: DSM matrix for a feature X example.

Activity Name

314

8 10

11

D_HW_Irun

BT _Irun

D_HW _2run

BT _2run

D_FPGA

D_FW

BJT

D_Block

MT

FT_P

FT_E

2l 5| o] 00| ~1) o ol | wof v

20




Table 8: DSM probability of the rework (worst case).

Activity Name 1 2 3

4

5 6 7 8 9 10 11

D_HW_Irun

BT _Irun
D_HW _2run
BT 2run
D_FPGA

D_FW

BJT

D_Block

MT

FT_P

2 5| | 00| ~1| o & il e 1|

FT_E

Table 9: DSM percentage

of impact (worst case).

Activity Name 1 2 3

4

5 6 7 8 9 10 11

D_HW_Irun

BT _Irun
D_HW _2run
BT 2run
D_FPGA

D_FW

BJT

D_Block

MT

FT_P

T 5| | 00| ~1| o & ] e 1|

FT_E

Table 7: DSM learning curve example.

Name LC
D_HW_1run | 0,25
BT_Trun 0,16
D_HW_ 2run | 0,25
BT _2run 0,16
D_FPGA 0,2
D_FW 0,2
BJT 0,16
D_Block 0,18
MT 0,2
FT_P 0,15
FT_E 0,2

The model also uses three other vectors, each with a length
equal to the number of activities. First, a sequencing vector
specifies the order of the activities in DSM. Second, a work
vector, W, keeps track of the amount of work remaining to
be done on each activity. Usually, each entry in this vector
is set to 100% to begin each simulation run. Third, a work
now vector of boolean entries indicates whether an activity
has been started.

The simulation uses a simple, time advancing approach.
Each run consists of a series of equal time steps, At, the
size of which is smaller than the duration of the shortest
activity (e.g. if activities have durations ranging from five
to 50 weeks, a reasonable At could be 0.5 weeks, as activ-
ity durations are rounded off to an integer number of time
steps. Smaller time steps provide greater model resolution
at the expense of greater simulation execution time).
During each time step, the model checks for the upstream
most activity requiring work and any activities that can be
executed concurrently. Activities do not begin work until
their required inputs are available from completed, upstream
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activities. Work is done on available activities during the
time step and their work remaining is reduced by the frac-
tion of their duration represented by the time step. The
cumulative process cost is increased based on the cost of
this work. Whenever an activity finishes, the model checks
for potential iterations (rework for upstream activities) and
second-order rework resulting from iterations using the prob-
abilities in DSM. If rework occurs, its amount — a percentage
of the activity given in DSM and modified by improvement
curve effects — is added to the W vector. When all activities
are complete, all W vector entries equal zero. The model
converts the number of time steps required into appropriate
units and outputs this as the process duration or schedule,
S, for the run.

DSM as characterized above, executes a simulation of a com-
plete system with hundreds iterations. In each iteration the
DSM algorithm selects random values in the ranges indi-
cated in the DSM matrices. The result is a Gaussian curve
representing the time duration distribution called the prob-
ability mass function and a cumulative distribution function
representing the probability of the distribution.

By combining these two results it is possible to determine
find the most probable duration for the feature development.
See an example of simulation of a worst case in Figure 2:
here the probability mass function indicates that the du-
ration most probable in the worst case is 311 days. The
cumulative distribution functions show the most probable
values are between 70% and 80%, about 311 and 322 days
in the worst case.

DSM can be used as a live tool during the entire project,
showing how changes can cause deviation in the original
plans. Most software projects still tend to run late because of
arbitrary estimate overruling by customers and senior exec-
utives, creeping requirements, and inadequate early quality
control. A famous phrase from an Agile project management



Figure 2: Probability mass and cumulative distribution functions

for worst case.

0.4

035 4

0.3 4
o 0.25 4
::l
= 0.2+
T 15 4
0.1
nos 4

290 28906 311.2 322.8 3344 346 357.6 3649.2 380.8 3924 404

Duration expressed in days

- 0.8
r 0.8
0y
0.6
0.5
0.4
0.3
0z
0.1

Prob_Cu

e PWF —e— COF

is “Maybe it is not our estimating skills that need upgrad-
ing, but our negotiating skills”. In software, we can nego-
tiate the completion date and the development resources,
we can negotiate functionality, or we can cancel the project.
And such negotiation is often an ongoing process. So it is
very important to have a tool that in an easy and effective
can demonstrate to all stakeholders in the project, how the
project is impacted by adding or removing requirements and
activities. DSM is therefore considered a very powerful tool.

6. EXPERIMENTS RESULTS

In order to test the framework ten projects were selected
from an historical database. For each project we simulated
to be in the planning phase where we usually identify the
technical impacts and describe them in a document called
implementation proposal (IP). We used as input for the es-
timation method defined in Section 5, the IP of the project
used actually at its planning phase time. It is important to
take into account the fact that the IP captures both func-
tional and not functional requirements describing their im-
pacted on the architecture of the system*. The validation
process applied to each project is described in the following
steps:

1. Evaluate functional size applying the COSMIC proce-
dure method on the architecture described in the IP,
using only the project data that were available in the
initial project phase.

2. Translate the COSMIC size in effort (man-hours) using
the multiply factor as described in Section 5.2;

3. Define the work breakdown structure for the new de-
velopment listing all activities and dependencies among
them.

4. Evaluate the man-hours of each activity (min, max and
most likely) using Table 4.

5. Find the complexity class of the new development and
according to it the performance curves.

“The non-functional requirements in our domain (e.g. scal-
ability, processor load, memory usage.) are constant.
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6. Use performance curves to characterize the rework in-
dex.

7. Simulate the system using DSM. In this way DSM,
through hundreds iteration of the system, is able to
find the most probable behaviour that characterize the
project estimation.

8. Compare the DSM results with the final project data
(time and budget) available in the historical database.

Applying the framework to these projects we had very en-
couraging results. DSM performs constantly around 98% of
precision.

The contribution of COSMIC to such results is very signif-
icant, as shown in Table 10 which contains the number of
COSMIC and FPA per man-hours. It is evident that the
trend of COSMICs is stable with respect to the size of the
projects. Furthermore the maximum distance error for COS-
MIC is about 2%. It is also interesting to note that FPAs
have a non-linear trend. It is also very interesting that using
the IP as input for counting COSMICs both functional and
not functional requirements are captured. In that sense the
estimation method can be considered also more reliable in
our domain.

7. CONCLUSIONS

As described in the introduction, software estimation is a
strategic activity in order to be competitive in the mar-
ket respecting planned time and costs. It follows therefore
that the business impact of having an accurate framework
for software project estimation is essential for software com-
pany.

In this paper a new framework for estimation project size
based on COSMIC, DSM and rework characterization has
been proposed. In addition to the good performance ob-
tained and the very good feedback that can be given to the
COSMIC community, the main contribution of this work
consists in the approach used to build the framework. In
fact it can be easily generalized to be used in other con-
texts, simply by customizing the questions that drove the
definition of the framework described. Another important
outcome of this work is the identification of rework as a cru-



Table 10: Customized COSMIC and FP method application results.

Size of project in Mhrs | FP | COSMIC | COSMIC in Mhrs | FP in Mhrs | COSMIC/FP
5783 239 626 9,238 24,197 2,619
7850 291 866 9,065 26,976 2,976
6600 358 719 9,179 18,436 2,008
10480 4133 1168 8,973 24,203 2,697
15484 865 1727 8,966 17,900 1,996
13700 668 1499 9,139 20,509 2,244
14740 590 1578 9,341 24,983 2,674
3200 200 347 9,222 16 1,735
2000 180 | 434 9,216 92,222 21T
7000 311 768 9,114 22,508 2,469

cial factor in a project estimation process. This is because
rework due to defectiveness causes a chain reaction in the
projects, making significant deviation in terms of time, bud-
get and quality. Furthermore since rework often requires a
task force or puts high pressure on the organizations, moti-
vation and productivity can be impacted. In that sense we
conclude that estimation without taking into account this
factor cannot be considered reliable. The model proposed
to estimate rework performs very well in our domain and it
significantly contributes to the good results obtained during
our experiments.
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