

Exploratory Study on an Innovative Use of COSMIC-FFP for Early Quality Assessment

Manar Abu Talib

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

at Concordia University

Montreal, Quebec, Canada

February 2007

Manar Abu Talib, 2007

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mrs. Manar Abu Talib

Entitled: Exploratory Study on an Innovative Use of COSMIC-FFP for Early Quality

Assessment

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science and Software Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 ______________________ Chair

 ______________________ External Examiner

 ______________________ Examiner

 ______________________ Examiner

______________________ Examiner

 ______________________ Thesis Supervisor

______________________ Thesis Supervisor

Approved by ______________________________________

 Department Chair or Graduate Program Director

________________ 20__ ________________________________

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

iii

ABSTRACT

Exploratory Study on an Innovative Use

 of COSMIC-FFP for Early Quality Assessment

Manar Abu Talib, Ph.D.

Concordia University, 2007

The functional size measurement method, COSMIC-FFP, adopted as the ISO/IEC 19761

standard in 2003, was developed by the Common Software Measurement International

Consortium (COSMIC). It focuses on the “user view” of functional requirements and is

applicable throughout the development life cycle. As some of the software systems

targeted by COSMIC-FFP are large-scale and inherently complex, feedback on their

functional complexity would facilitate containment of that complexity throughout the

software life cycle.

In this thesis, a new early quality assessment of COSMIC-FFP models is proposed. The

benefits of this work include earlier prediction of the functional complexity of the

behavior of software in the COSMIC-FFP context, right from the requirements phase, as

well as a mechanism for generating black-box test cases from the COSMIC-FFP model,

test case prioritization and test set adequacy monitoring and optimization within given

budget constraints, and an early prediction of reliability based on Markov chains. We also

present a study of the scales, units and scale types of both COSMIC-FFP and the

Entropy-based Functional Complexity Measure that forms the basis of the testing

assessment method we propose here. Previous studies have analyzed the scale types of

many pieces of software, but not the concept of scale itself, nor how it is used in the

design of a measurement method. Two well-known case studies are introduced to

demonstrate the applicability of the proposed methods: the Hotel Accommodation

System and the Railroad System.

iv

We include a formalized COSMIC-FFP definition in the AS-TRM context (Autonomic

Systems Timed Reactive Object Model), a language for the formal design of autonomic

reactive systems developed at Concordia University. We introduce the Steam Boiler case

study to demonstrate the applicability of formalizing COSMIC-FFP in the AS-TRM

context. Future work based on this thesis can include the development of AS-TRM

specifications for several benchmark case studies, and the collection of COSMIC-FFP

measurement data for both the theoretical and empirical validation of the proposed

measurement method.

The testing method proposed here has been adapted to a specific class of projects, namely

Enterprise Resource Planning (ERP) projects, which are perceived to be mission-critical

initiatives in many organizations. They can be found in business transformation programs

and are instrumental in improving organizational performance.

v

Acknowledgments

A Ph.D. thesis should bring the writer feelings of fulfillment, accomplishment and joy,

which is certainly the case for me. This achievement would have been impossible,

however, without a great deal of help and support.

On an academic level, I would like to thank Dr. Olga Ormandjieva and Dr. Alain Abran

for their astute and constructive criticisms which have helped me shape my thesis into its

final form, and for their support and encouragement.

On a professional level, I would like to thank all my colleagues in the Computer Science

and Software Engineering department, as well as the staff of the department for their

commitment to further education.

On a personal note, I would like to thank my parents, my brothers and my sister for their

support, and my husband Adel for his patience and understanding throughout the writing

process. I would also like to thank my two kids for their cooperation and forbearance.

vi

Table of Contents

TABLE OF CONTENTS ...VI

LIST OF FIGURES ...VIII

LIST OF TABLES ..X

CHAPTER I: INTRODUCTION .. 1

1.1 MOTIVATION.. 3

1.1.1 Software Quality .. 4

1.1.2 Software Size and COSMIC-FFP .. 5

1.1.3 Software Complexity .. 8

1.2 MAJOR CONTRIBUTIONS AND THESIS OUTLINE.. 9

1.2.1 Definition ... 11

1.2.2 Planning and Operation .. 12

1.2.3 Interpretations.. 14

CHAPTER II: BACKGROUND ... 16

2.1 FUNCTIONAL SIZE MEASUREMENT: STATE OF THE ART... 16

2.1.1 Function Points.. 16

2.1.2 ISO Standards .. 22

2.1.3 COSMIC-FFP.. 25

2.2 ENTROPY MEASUREMENT IN SOFTWARE ENGINEERING... 29

2.3 SOFTWARE TESTING... 30

2.4 SOFTWARE RELIABILITY .. 34

2.4.1 Markov Chains... 35

2.5 AS-TRM.. 38

2.6 SCALE TYPES ... 42

CHAPTER III: PROPOSED THESIS.. 46

3.1 OBJECTIVE ... 46

3.2 EXPECTED RESULTS AND BENEFITS ... 48

3.3 METHODOLOGY ... 49

CHAPTER IV: RELATED WORK.. 52

4.1 SOFTWARE TESTING... 52

4.1.1 Scenario-based Testing.. 52

4.1.2 Equivalence Classes... 54

4.2 SOFTWARE RELIABILITY .. 55

4.2.1 Markov Chains... 55

4.2.2 Uncertainty Analysis.. 56

4.3 RELIABILITY ASSESSMENT IN THE AS-TRM.. 58

CHAPTER V: MAPPING COSMIC-FFP TO ENTROPY .. 61

5.1 INTRODUCTION... 61

vii

5.2 ANALYSIS OF SIMILARITIES AND DIFFERENCES ACROSS COSMIC-FFP AND ENTROPY

MEASURES ... 64

5.3 THEORETICAL VALIDATION ... 69

CHAPTER VI: TESTING AND RELIABILITY PREDICTION APPROACH...... 78

6.1 SCENARIO-BASED TESTING ASSESSMENT IN COSMIC-FFP 78

6.1.1 Test-Case Generation .. 79

6.1.2 Partitioning into Equivalence Classes... 80

6.1.3 Priority of Test Cases... 83

6.1.4 Test Selection Algorithm... 84

6.1.5 Case Study: Hotel Accommodation System (Reservation)............................... 86

6.1.6 Test-Case Execution (Update Reservation) ... 102

6.2 ENTROPY-BASED RELIABILITY ASSESSMENT IN COSMIC-FFP............................. 106

6.2.1 Markov Model and State Machine Diagrams.. 107

6.2.2 COSMIC-FFP and Sequence Diagrams.. 110

6.2.3 Analysis of Linkages across Models .. 112

6.2.4 Reliability Model for a Component-based System.. 119

6.2.5 Case Study: Railroad System... 123

CHAPTER VII: FORMALIZING COSMIC-FFP IN THE AS-TRM 131

7.1 MAPPING BETWEEN COSMIC-FFP AND THE AS-TRM ... 131

7.2 CASE STUDY: STEAM BOILER .. 133

CHAPTER VIII: CONCLUSIONS AND FUTURE WORK.................................... 140

8.1 SUMMARY OF SIGNIFICANT RESULTS ... 140

8.2 FUTURE WORK... 147

REFERENCES.. 150

ABBREVIATIONS... 157

viii

List of Figures

FIGURE 1: ALBRECHT 83 MODEL (IFPUG 2005) ... 21

FIGURE 2: GENERIC FLOW OF DATA ATTRIBUTES THROUGH SOFTWARE FROM A FUNCTIONAL

PERSPECTIVE (ABRAN, DESHARNAIS ET AL. 2001)... 27

FIGURE 3: GENERAL PROCEDURE FOR MEASURING SOFTWARE SIZE WITH THE COSMIC-FFP

METHOD – ISO 19761 (ABRAN, ORMANDJIEVA ET AL. 2004) 29

FIGURE 4: EXAMPLE OF A NON DETERMINISTIC SYSTEM ... 31

FIGURE 5: ORACLE METHODOLOGY ... 33

FIGURE 6: THESIS METHODOLOGY ... 49

FIGURE 7: TESTING WITH UML ... 53

FIGURE 8: EXAMPLE OF AN EQUIVALENCE CLASS ... 54

FIGURE 9: SCENARIO EXAMPLE .. 62

FIGURE 10: CREATE RESERVATION SEQUENCE DIAGRAM .. 66

FIGURE 11: ENTROPY-BASED FUNCTIONAL COMPLEXITY MEASURE 69

FIGURE 12: MEASUREMENT PROCESS – DETAILED TOPOLOGY OF SUBCONCEPTS (SELLAMI

AND ABRAN 2003) ... 73

FIGURE 13: TEST SET PARTITIONING STRATEGY ... 81

FIGURE 14: METRIC-BASED TEST CASE PARTITIONING ALGORITHM 82

FIGURE 15: HOTEL RESERVATION SYSTEM – USE-CASE DIAGRAM.................................... 88

FIGURE 16: CREATE RESERVATION SEQUENCE DIAGRAM .. 89

FIGURE 17: UPDATE RESERVATION SEQUENCE DIAGRAM.. 89

FIGURE 18: CONFIRM RESERVATION SEQUENCE DIAGRAM .. 90

FIGURE 19: ACCEPT RESERVATION SEQUENCE DIAGRAM .. 90

FIGURE 20: CANCEL RESERVATION SEQUENCE DIAGRAM.. 91

FIGURE 21: SELECT RESERVATION SEQUENCE DIAGRAM... 91

FIGURE 22: ROOM TYPE REPORT SEQUENCE DIAGRAM ... 92

FIGURE 23: HOTEL RESERVATION SYSTEM REQUIREMENTS MANAGEMENT 103

FIGURE 24: RATIONAL TESTMANAGER FOR THE HOTEL RESERVATION SYSTEM............. 104

FIGURE 25: RESULTS OF AUTOMATIC FUNCTION TESTING PRODUCED BY ROBOT............ 105

FIGURE 26: RESULTS PRODUCED BY THE PROPOSED TESTING PROCEDURE 106

FIGURE 27: TRAIN STATE MACHINE.. 109

FIGURE 28: TRAIN STATE DIAGRAM WITH ITS TRANSITION PROBABILITIES PIJ.................. 110

FIGURE 29: TRAIN ENTERS CROSSING SEQUENCE DIAGRAM .. 112

FIGURE 30: TRAIN LEAVES CROSSING SEQUENCE DIAGRAM .. 112

FIGURE 31: DEPENDENCY DIAGRAM .. 116

FIGURE 32: INITIAL STATE-MACHINE DIAGRAM FROM FIGURE 29 117

FIGURE 33: INITIAL STATE-MACHINE DIAGRAM FROM FIGURE 30 117

FIGURE 34: CONTROLLER STATE-MACHINE DIAGRAM.. 118

FIGURE 35: GATE STATE-MACHINE DIAGRAM .. 118

FIGURE 36: CONTROLLER STATE DIAGRAM WITH ITS TRANSITION PROBABILITIES PIJ....... 124

FIGURE 37: GATE STATE DIAGRAM WITH ITS TRANSITION PROBABILITIES PIJ 124

FIGURE 38: SYNCHRONOUS PRODUCT OF TRAIN, CONTROLLER AND GATE...................... 125

FIGURE 39: SYNCHRONOUS PRODUCT OF TRAIN AND CONTROLLER (SECOND

CONFIGURATION) ... 128

ix

FIGURE 40: SYNCHRONOUS PRODUCT OF TRAIN, CONTROLLER AND GATE (SECOND

CONFIGURATION) ... 128

FIGURE 41: STEAM BOILER CONTROLLER.. 135

FIGURE 42: STEAM BOILER CONTROLLER AND ITS INTERFACE .. 136

FIGURE 43: CONTROLLER REACTIVE TASK (1) ... 137

FIGURE 44: CONTROLLER REACTIVE TASK (2) ... 137

x

List of Tables

TABLE 1: BASILI ET AL. FRAMEWORK (BASILI, SELBY ET AL. 1986) 10

TABLE 2: ALBRECHT 79 WEIGHTS .. 17

TABLE 3: ALBRECHT 79 (GSC).. 18

TABLE 4: ALBRECHT 83 ... 18

TABLE 5: ALBRECHT 83 (GSC).. 19

TABLE 6: SIMILARITY BETWEEN COSMIC-FFP & ENTROPY-BASED FUNCTIONAL

COMPLEXITY MEASURE CONCEPTS .. 67

TABLE 7: COSMIC-FFP CONCEPTS AND THEIR UML EQUIVALENTS................................. 78

TABLE 8: TEST-CASE DESCRIPTIONS .. 93

TABLE 9: DISTANCE CALCULATED BETWEEN T2 AND THE REMAINING TEST CASES 94

TABLE 10: HOW TO CALCULATE THE DISSIMILARITY BETWEEN TWO TEST CASES 95

TABLE 11: DISTANCE CALCULATED BETWEEN T1 AND THE REMAINING TEST CASES........... 96

TABLE 12: HOW TO CALCULATE THE DISSIMILARITY BETWEEN TWO TEST CASES 97

TABLE 13: DISTANCE CALCULATED BETWEEN T3 AND THE REMAINING TEST CASES 97

TABLE 14: HOW TO CALCULATE THE DISSIMILARITY BETWEEN TWO TEST CASES 98

TABLE 15: DISTANCE CALCULATED BETWEEN T4 AND THE REMAINING TEST CASES 99

TABLE 16: HOW TO CALCULATE THE DISSIMILARITY BETWEEN TWO TEST CASES 99

TABLE 17: DISTANCE CALCULATED BETWEEN T6 AND THE REMAINING TEST CASES 100

TABLE 18: HOW TO CALCULATE THE DISSIMILARITY BETWEEN TWO TEST CASES 100

TABLE 19: DISTANCE CALCULATED BETWEEN T5 AND THE REMAINING TEST CASES 100

TABLE 20: HOW TO CALCULATE THE DISSIMILARITY BETWEEN TWO TEST CASES 101

TABLE 21: THE FUNCTIONAL COMPLEXITIES FOR THE TEST CASES. 101

TABLE 22: TRANSITION MATRIX P FOR TRAIN OBJECT... 110

TABLE 23: SIMILARITY BETWEEN COSMIC-FFP AND THE STATE MACHINE DIAGRAM

CONCEPTS .. 114

TABLE 24: TRANSITION MATRIX P FOR THE CONTROLLER OBJECT................................... 125

TABLE 25: TRANSITION MATRIX P FOR THE GATE OBJECT ... 125

TABLE 26: SYNCHRONOUS PRODUCT OF TRAIN, CONTROLLER AND GATE....................... 126

TABLE 27: TRANSITION MATRIX P FOR A SYNCHRONOUS PRODUCT 129

TABLE 28: MAPPING COSMIC-FFP CONCEPTS TO AS-TRM NOTATIONS 131

TABLE 29: TOTAL FUNCTIONAL SIZE FOR THE STEAM BOILER USING AS-TRM TERMS .. 138

TABLE 30: SUMMARY OF SIGNIFICANT RESULTS ... 144

1

CHAPTER I: INTRODUCTION

Software complexity is related to the size of the software and to the unpredictability

(uncertainty) of its behavior. In the early phases of software development, we can

quantify the size of software functionality from the functional requirement specifications.

A functional size measurement (FSM) method, COSMIC-FFP, adopted in 2003 as the

ISO/IEC 19761 standard, was developed by the Common Software Measurement

International Consortium (COSMIC). It focuses on the “user view” of functional

requirements and is applicable throughout the development life cycle. Some of the

software systems targeted by COSMIC-FFP are large-scale and inherently complex, and

feedback on their functional complexity would facilitate containment of that complexity

throughout the software life cycle.

In this thesis, a new early quality assessment of reliability and scenario-based test

adequacy in complex COSMIC-FFP models is proposed. The benefits of this work

include earlier prediction of the functional complexity of software behavior in the

COSMIC-FFP context, right from the requirements phase, as well as a mechanism for

generating black-box test cases from the COSMIC-FFP model, test case prioritization and

test set optimization within given budget constraints, and early prediction of reliability.

The optimization includes partitioning the set of test cases generated from COSMIC-FFP

scenarios into equivalence classes based on a testing distance criterion and test case

prioritization. Test case prioritization is based on a new entropy-based measurement in

the COSMIC-FFP context proposed for quantifying functional complexity in terms of the

2

uncertainty of software behavior described in the scenarios of software system usage. The

reliability assessment proposed in this thesis uses Markov chains for predicting the

reliability of the software prior to its implementation. The use of Markov chains requires

a modeling of software behaviors with state diagrams, and therefore we develop here a

new method for mapping COSMIC-FFP scenarios to state diagrams. Also, we present a

study of the scales, units and scale types of both COSMIC-FFP and the Entropy-based

Functional Complexity Measure that forms the basis of the assessment method that we

are proposing. Previous studies have analyzed the scale types of a great deal of software,

but not the concept of scale, nor how it is used in the design of a measurement method.

Two case studies are introduced to demonstrate the applicability of these proposed

methods: the Hotel Accommodation System and the Railroad System.

The definition of COSMIC-FFP is general and can be applied to any specification

language. We include here a formalization of that definition in the AS- TRM context

(Autonomic Systems Timed Reactive Object Model), a language for the formal design of

autonomic reactive systems developed at Concordia University. A formal definition of

the COSMIC-FFP method for AS-TRM specifications would allow functional

complexity and functional size to be formalized during the specification construction

process. The Steam Boiler case study is introduced to demonstrate the applicability of

FSM in terms of AS-TRM formalization. Future work based on this thesis can include the

development of AS-TRM specifications for several benchmark case studies, and the

collection of COSMIC-FFP measurement data for both the theoretical and empirical

validation of the proposed measurement.

3

This section introduces some issues and concepts related to software measurement,

software quality, software size and software complexity that justify the importance of the

proposed research in the current research effort with a view to obtaining feedback on

software quality.

1.1 Motivation

Software measurement is one of the key technologies for controlling and managing the

software development process. Measurement also forms the foundation of both the

science and engineering, and much more research in software is needed to ensure the

recognition of software engineering as a true engineering discipline.

Fenton and Pfleeger (Fenton and Pfleeger 1998) defined software measurement as the

process of quantifying the attributes of software in order to characterize them according

to clearly defined rules. The essential goal of software measurement is to identify

anomalies during the development phase in which they originated, as well as to measure

development progress. Thus, every software development phase should contain measures

to ensure that high project visibility and quality control are achieved (Ormandjieva 2002).

Evaluation and prediction are two main applications of software measurement (Fenton

and Pfleeger 1998). Evaluation assesses an existing software entity by numerically

characterizing one or more of its qualitative attributes. Prediction, by contrast, forecasts

the attributes of a future software entity using a mathematical model and associated

prediction procedures. Whitmire (Whitmire 1997), fleshes out the meaning of evaluation,

4

subdividing it into estimation, assessment, comparison and investigation. The prediction

measurement may be applied in the early phases of software development to forecast

future characteristics of software entities.

Note that, in the large body of literature on software quality, very little has been written

on FSM that can be of use for predicting quality early on in the process, especially when

the software entity is large and complex. FSM has been used mostly for productivity,

benchmarking and estimation purposes, but it can also be used very early in the software

development life cycle, such as when measuring functional user requirements (FURs),

which are known prior to the design, architectural, coding and testing phases. There are

some hints, both in the literature and in practice, that FSM could also be used for quality

purposes (in addition to productivity, benchmarking and effort estimation). Therefore, the

motivation underlying this thesis is to improve methods for early measurement and

prediction of software quality, specifically in a COSMIC-FFP context.

1.1.1 Software Quality

ISO 8402 defines quality as follows: “The totality of features and characteristics of a

product or a service that bear on its ability to satisfy stated or implied needs.” The

measurement of software quality is aimed at predicting the level of quality of the

software entity or to monitor the improvement of that quality during the software

development process, or both. Software quality is classified in two categories: internal

quality, which is measured purely in terms of the process, project, product or resource

itself; and external quality, which is measured only with respect to how the process,

project, product or resource relates to its environment (Fenton and Pfleeger 1998). This

5

thesis targets two external quality factors: the adequacy and the reliability of the test set.

The internal criteria for the adequacy of scenario-based test cases are the functional

complexity of a scenario and the distance between test cases. The adequacy of the test in

terms of coverage is achieved by partitioning the test suite into equivalence classes based

on the distance criteria, and prioritization of the test cases based on their functional

complexity. The internal criteria are based on the certainty of the Markov system (using

the entropy of a Markov chain).

1.1.2 Software Size and COSMIC-FFP

The word “size” in software measurement has two meanings: project size and software

size. The first refers to total effort, estimated or actual, in work-hours or staff-months, for

example. The second refers to the size of either the requirements (functions) or the

deliverables, such as modules or lines of code.

Fenton and Pfleeger (Fenton and Pfleeger 1998) have identified three attributes of

software size: length, complexity and functionality.

Length represents the physical size of the product, and is meaningful to technical staff. It

is useful to measure the length of specifications, designs and codes. For example, a

specification length may help in predicting a design length, which, in turn, may help in

predicting a code length. Now, software size can be measured by counting the number of

lines of code (LOC). LOC is useful in deciding how big a file is when the code needs to

be stored. By contrast, it does not reveal anything about the software's functionality or

6

the quality of coding itself. Another reason why LOC is an inadequate measure is

illustrated in the following example:

Select * from employee

This means that one line of code is required in SQL to bring up the list of employees;

however, around 20 lines are needed in Java or C++, and around 500 lines are needed in

COBOL to execute such a requirement. Moreover, a standard definition is needed to

count the length of the software; for instance, how the blank lines, comment lines, data

declarations, multi-line instructions and multi-instructions should be handled. Different

counting techniques could yield different LOC values.

Software complexity, which is the second attribute of software size, is an essential

characteristic of the software process/product, and constitutes a multifaceted notion that

depends on the context (Fenton and Pfleeger 1998), (Whitmire 1997), (Henderson-Sellers

1996), (Zuse 1991), (Davis and Leblanc 1988). Similar to the classification given by

Whitmire (Whitmire 1997), the complexity of a software system is viewed in different

dimensions, namely the computational, the representational, the structural and the

functional. Computational complexity quantifies the time and resources required to

complete the process, and these are covered in the study of algorithmic efficiency.

Representational complexity considers the tradeoffs between graphical and textual

notations for unambiguous representations of the system model, system interactions and

system behavior. Structural complexity is viewed in terms of coupling and cohesion,

without considering the individual complexity of the components. Functional complexity

7

characterizes the dynamic performance of the system seen as a sequence of events

required to fulfill system functionality.

Finally, functionality, the last attribute of software size, consists of the functions that are

supplied by a product. Many software engineers argue that length is misleading and

complexity is highly subjective; we believe, however, that the amount of functionality a

product provides gives a better picture of product size. It is meaningful to management

and it must be independent of the effort, the method and the technology. Moreover,

functionality conveys an intuitive notion of the number of functions contained in a

delivered product. Several approaches have been proposed for measuring the

functionality of software products, such as:

• Albrecht’s function points (Abran and Robillard 1994).

• The application point proposed in COCOMO 2.0 (Boehm 2002).

• DeMarco’s specification weight (DeMarco 1982).

• COSMIC-FFP (Abran, Desharnais, Oligny, St-Pierre and Symons 2001).

All four approaches measure the functional size of software specification documents, but

each can also be applied to software products later in their life cycle. There are some

hints in the literature and in practice that FSM could be used for quality purposes as well

(in addition to productivity, benchmarking and effort estimation). In this work, it is the

innovative use of the COSMIC-FFP method, the ISO/IEC 19761 standard, that is of

interest. We examine them here and theoretically validate them for their potential to

contribute to the early assessment of software complexity and quality.

8

1.1.3 Software Complexity

Again, functional complexity characterizes the dynamic performance of a system seen as

a sequence of events required to fulfill system functionality.

Information theory-based software measurement (Khoshgoftaar and Allen; Martin and

England 1981) is used to quantify functional complexity in terms of an amount of

information based on some abstraction of the interactions among software components

(Ormandjieva 2002). However, what does information mean in this context? Shannon,

the father of information theory, has stated that information causes change, and, if it

doesn’t, it is not information (Shannon, E., Weaver and Warren 1969). In other words, we

say that we have gained information when we know something now that we didn't know

before, when what we know has changed. Under the assumption that the complexity of a

software product is associated with the information content of that product, the

quantification of the amount of information will be used to assess the functional

complexity of the software system and the required quality improvement (Alagar,

Ormandjieva and Zheng 2000). Now, the average amount of information is quantified by

the entropy of a set of events occurring in one usage of the software (Alagar,

Ormandjieva et al. 2000).

Entropy is a concept in information theory which was introduced by C. E. Shannon

(Shannon, C. E. et al. 1969) as a quantitative measurement of the uncertainty associated

with a random phenomenon. It is said that one phenomenon represents less uncertainty

than a second one if we are more confident about the result of experimentation associated

with the first than we are about the result of experimentation associated with the second.

9

A random phenomenon can be described as a mathematical model, referred to as a

probability space, designed to use mathematical reasoning to investigate questions about

that phenomenon. For example, in throwing a die, the probability of 1, 2, 3, 4, 5 or 6

appearing is 1/6 for each. A great deal of uncertainty is associated with throwing a die,

since the expected outcome of the experiment is uncertain. Considering any set of n

events and their probability distribution { 1p , …, np }, the quantification of this

uncertainty quantity is calculated using the following entropy formula:

∑
=

=
n

i

ii ppH
1

2log- . …… (1)

Here, we propose a new entropy-based measurement in the COSMIC-FFP context for

quantifying the uncertainty of software behavior described in terms of the scenarios of

software system usage. The expected benefits of this work include earlier prediction of

the functional complexity of software behavior, right from the requirements phase, a

mechanism for generating black-box test cases and their prioritization, as well as an early

prediction of reliability.

1.2 Major Contributions and Thesis Outline

The major contributions of this thesis have been published in the following papers and

journals: (Abran, Ormandjieva and Abu Talib 2004), (Abu Talib, Ormandjieva, Abran

and Buglione 2005), (Abu Talib, Ormandjieva, Abran, Khelifi and Buglione 2006), (Abu

Talib, Abran and Ormandjieva 2006), (Abu Talib, Ormandjieva and Abran 2007) and

(Abu Talib, Abran and Ormandjieva 2005). In order to facilitate the introduction of such

a large body of work, we have used the Basili et al. framework (Basili, Selby and

10

Hutchens 1986) to help in outlining the thesis work process, as well as to provide a

classification scheme for understanding and evaluating the thesis work that has already

been completed and published. A schematic representation of this framework is presented

in Table 1.

Table 1: Basili et al. framework (Basili, Selby et al. 1986)

I Definition

Motivation Object Purpose Perspective Domain Scope

II Planning

Design Criteria Measurement

III Operation

Preparation Execution Data Analysis

IV Interpretation

Context of Interpretation Extrapolation

The framework is defined in terms of six components, namely motivation, object,

purpose, perspective, domain and range. During the definition phase, an intuitive

understanding of a high-level problem is developed into a precise specification that could

contribute to its solution. “Motivation” identifies the high-level problem to be tackled.

“Object” defines the principal entity being studied. “Purpose” is the explicit problem to

be resolved. “Perspective” specifies from what point of view the explicit problem will be

addressed.

11

Usually, an experiment in software engineering has two domains: team and project.

Teams (comprising one or more members) work on software projects which attempt to

resolve an issue, in terms of a software deliverable (manual, program and specifications).

Four combinations of domains are possible: one team working on one project, many

teams working on one project, one team working on many projects and a combination of

many teams and projects.

Our thesis work was planned in detail in the second phase of the framework. During the

design step, the case studies were selected. The direct and indirect criteria or factors that

are related to the thesis’ purpose were identified. Then, the measures designed to quantify

these direct and indirect criteria were determined.

The thesis work itself is actually carried out during the third phase of the framework:

Training might be required for the team that will be taking the measurements. Data are

collected and validated during the execution of the case studies. These data are then

analyzed using techniques chosen during the design step.

1.2.1 Definition

We present an exploratory study of related concepts across information theory-based

measures and functional size measures, which was published in (Abran, Ormandjieva et

al. 2004). Information theory-based software measurement has been used in the design of

an entropy-based measure of functional complexity in terms of an amount of information

based on some abstraction of the interactions among software components. As an FSM

method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761 standard, measures

12

software functionality in terms of the data movements across and within the software

boundary. We explore some of the links between the two types of measures, and, in

particular, the similarities (and differences) between their generic models of software

functionality, their detailed model components taken into account in their respective

measurement processes, and, finally, their measurement function. Also presented is an

overview of some measurement concepts across COSMIC-FFP and our proposed

Entropy-based Functional Complexity Measure. This overview validates three

metrological properties (scale, unit and scale type) in both these measurement methods.

The study for this work was published in (Abu Talib, Abran et al. 2005).

Investigations are also identified for extending the use of FSMs for scenario-based black-

box testing and for reliability prediction purposes.

1.2.2 Planning and Operation

COSMIC-FFP focuses on the FURs of the software and is applicable throughout the

development life cycle, from the requirements phase up to and including the

implementation and maintenance phases. In this thesis, we extend the use of COSMIC-

FFP for testing purposes by combining the functions measured by the COSMIC-FFP

measurement method with the black box testing strategy. Our work here leverages the

advantage of COSMIC-FFP, which is its applicability during the early development

phase once the specifications have been documented, and also investigates the

applicability of entropy measurement in terms of its use with COSMIC-FFP for assigning

priorities to test cases. The criteria or factors related to such a study are the length of the

test case, the length of the longest common prefix between two test cases, the test set, the

13

total number of events in a sequence, the number of occurrences of an event, the distance

between two test cases, the similarity between two test cases, the dissimilarity between

two test cases and, finally, the functional complexity. A case study of the Hotel

Reservation System is applied in order to demonstrate the feasibility of the proposed

testing strategy. Note that this testing strategy and the case study results have been also

published in (Abu Talib, Ormandjieva et al. 2005), (Abu Talib, Ormandjieva et al. 2006).

Moreover, this thesis extends the architecture-based software reliability prediction model

to the COSMIC-FFP context. The model is based on Markov chains and is applicable

prior to implementation with the ability to build reliability models much earlier, at the

requirements phase or based on the design specifications. In essence, each component of

the system is modeled by a discrete time Markov chain. Then, a probabilistic analysis by

Markov chains can be performed to evaluate the product’s reliability in the early phases

of software development and to improve the reliability process for large software

systems. The criteria needed for this work are the transition matrix for each state diagram,

the steady vector, the entropy for both the whole component and the object, and the

reliability of both the component and the system. This approach of applying a Markov

model in the COSMIC-FFP context is illustrated with the Railroad Crossing case study.

The proposed reliability prediction approach and the results of the case study have been

published in (Abu Talib, Abran et al. 2006; Abu Talib, Ormandjieva et al. 2007).

Finally, this thesis includes the starting points for the formalization of the COSMIC-FFP

definition for the AS-TRM (Autonomic System Timed Reactive Object Model), a

14

language for the formal design of real-time reactive systems developed at Concordia

University. A formal definition of the COSMIC-FFP method for the AS-TRM

specifications would allow the formalization of functional complexity and functional size

during the specification construction process. The mapping between COSMIC-FFP and

AS-TRM terms has been explored, and the Steam Boiler case is the case study applied for

estimating its functional size using AS-TRM terminology.

1.2.3 Interpretations

Both the proposed testing and the reliability prediction approaches have clearly stated

steps and well-defined rules., The feasibility of the data obtained was demonstrated, in a

spite of the difficulties usually encountered in attempting to do this. The proposed testing

approach cannot test all the possibilities, but at least the maximum number of test cases

that cover the most functionality of a system given budgetary constraints. The more test

cases there are and the wider the variety of events, the greater the functional complexity.

As for the reliability prediction approach, the higher the value of a reliability measure, the

less uncertainty there is in the model, and thus the higher the level of software reliability.

Theoretical validation is the proof of a valid scale, unit or scale type, and the case studies

constitute the proof of concepts (i.e. demonstration of feasibility). By contrast, larger case

studies can be taken into account in future work in order to see how scalable these

approaches are for large amounts of data. In addition, more templates are required to

capture information about the scenarios, which are sequences of events, and about the

state diagrams, which visualize the Markov chain for each component in a system.

15

This thesis is organized as follows: Chapter 2 discusses software size, entropy

measurement, software testing, software reliability, AS-TRM and the scale types in

greater detail. Chapter 3 sets out the thesis objectives, results and benefits. It also

introduces the methodology required as the starting point for this research. The related

work that has been carried out in the testing and in the reliability prediction fields and

AS-TRM are documented in chapter 4. In chapter 5, COSMIC-FFP is mapped to the

measurement of complexity based on entropy, and their scale types, for COSMIC-FFP

and functional complexity, are investigated. Chapter 6 contains more detail about the

proposed testing and reliability approaches, as well as the case studies. The main keys to

formalizing COSMIC-FFP in the AS-TRM with a case study are presented in chapter 7.

We conclude and outline future work in chapter 8.

16

CHAPTER II: BACKGROUND

Software measurement is an essential activity of software development which allows for

continuous feedback on the quality of products and processes during the software life

cycle (Fenton and Pfleeger 1998).

Proposed here are new approaches for obtaining feedback on software functional

complexity, and its applicability to testing and reliability assessments are investigated in

the context of COSMIC-FFP, which was adopted in 2003 as the ISO/IEC 19761 standard

(Abran, Desharnais et al. 2001), (ISO/IEC19761 2003), (ISO14143-1 1988). Before

introducing the concepts related to COSMIC-FFP, it is important to present the state of

the art of FSM. Entropy measurement in software engineering is also introduced in this

chapter, as are the related concepts in software testing, software reliability, AS-TRM

formalization and the scale types.

2.1 Functional Size Measurement: State of the Art

2.1.1 Function Points

The Function Point (FP) approach (Abran and Robillard 1994) is widely used in industry,

specifically in Management Information System (MIS). It is considered better than LOC,

since it reflects the requirements from the user’s point of view and it measures software

size from the specification stage (early in the life cycle). The FP approach provides a

standardized method for measuring the various functions of a software application. Allan

Albrecht of IBM developed Function Point Analysis (FPA) in 1979, and, in 1984, the

17

International Function Point Users Group (IFPUG) was set up to clarify FPA rules and

set standards, and to promote their use and evolution.

The Albrecht 79 model (Abran and Robillard 1994) determines the Unadjusted Function

Point Count (UFC) from the specifications, and involves four function types: files, inputs,

outputs and inquiries, and one set of weight complexities. The UFC is the weighted sum

of number of items of each type: UFC = Sum of (number of each item type * weight).

Table 2: Albrecht 79 weights

The FP count is, therefore, equal to UFC * [0.75 + 0.01 * TDI], where TDI is the Total

Degree of Influence. As seen in Table 3, each system component is rated from 0 to 5,

where 0 means irrelevant, 2 means moderate, 3 means average, 4 means significant and 5

means essential. The sum of previous influences constitutes the TDI.

Function Types Weights

Files 10

Inputs 4

Outputs 5

Inquiries 4

18

Table 3: Albrecht 79 (GSC)

10 General System

Characteristics

Backup

Data communications

Distributed processing

Performance issues

Heavily used configuration

Online data entry

Conversational data entry

Online update of master files

Complex functions

Internal processing complexity

In 1983, Albrecht and Gaffney expanded the model to five function types, three sets of

weights (Table 4) and 14 GSCs (Table 5).

Table 4: Albrecht 83

Function Types Weights

Low Average High

Internal logical files 7 10 15

External interfaces files 5 7 10

External inputs 3 4 6

External outputs 4 5 7

External inquiries 3 4 6

Degree of

Influence:

0. None

1. Incidental

2. Moderate

3. Average

4. Significant

5. Essential

19

Table 5: Albrecht 83 (GSC)

14 General System Characteristics

1) Reusability 9) Complex Functions

2) Data communications 10) Internal processing complexity

3) Distributed processing 11) Installation ease

4) Performance issues 12) Operational ease

5) Heavily used configuration 13) Multiple sites

6) Online data entry 14) Facilitate change

7) Conversational data entry

8) Online update of master files

The formula now becomes: FP = UFC * [0.65 + 0.01 * TDI]. The detailed explanations

of the five function types are taken from (IFPUG 2005), and they are as follows:

External Inputs (EI): EI is an elementary process in which data cross the boundary from

outside to inside. The data come from a system “actor”. The actor can add, change and

delete information on an internal logical file. The data can be either control information

or business information. If the data are control information, then the actor does not have

to maintain an internal logical file. Examples of external inputs are file names and menu

selection commands.

External Outputs (EO): EO is an elementary process in which derived data pass across

the boundary from inside to outside. The data are sent to a system actor. In addition, the

20

system actor may update an ILF. The data create reports or output files which are sent to

other actors. These reports and files are created from information contained in one or

more internal logical files and/or external interface files. Reports and messages are

examples of external outputs.

External Inquiry (EQ): EQ is an elementary process with both input and output

components where an act or retrieves data from one or more internal logical files and/or

external interface files. The input process does not update or maintain any FTRs (Internal

Logical Files or External Interface Files) and the output side does not contain derived

data.

Internal Logical Files (ILF): An ILF is a user-identifiable group of logically related data

that resides entirely within the application boundary and is maintained through External

Inputs.

External Interface Files (EIF): An EIF is a user-identifiable group of logically related

data that is used for reference purposes only. The data reside entirely outside the

application boundary and are maintained by other applications’ external inputs. The EIF

is an internal logical file for another application. The primary difference between an EIF

and ILF is that an EIF is maintained by another application.

The complete picture of the Albrecht 83 model is shown in Figure 1.

21

Figure 1: Albrecht 83 Model (IFPUG 2005)

The FP method has some limitations, such as subjectivity in the technology factor. As

well, researchers (Abran and Robillard 1994) have shown that the value adjustment factor

does not improve the accuracy relative to the UFC. Moreover, FP is suitable for

measuring the functionality aspects of software size but not the complexity aspects. FP is

also found to be effective in functionality-intensive applications (e.g. data processing),

but not so effective in algorithmically complex applications (e.g. compilers). Another

factor is the subjectivity in the assignment of weights. FP weights were determined

subjectively from IBM experience, and may not necessarily be applicable to other

environments. There is also the issue of double counting. Internal complexity is counted

in assigning the UFC weight, as is the case in the TDI. Problems with the measurement

""UUnnaaddjjuusstteedd

FFuunnccttiioonn PPooiinnttss””

""VVaalluuee

AAddjjuussttmmeenntt

FFaaccttoorr””

XX

FFuunnccttiioonn

PPooiinnttss

Information
Processing Size

Adjustment for
Technical & Quality

Requirements

Application Boundary

To/From

Users

Inputs

Outputs

Inquiries

Interfaces Other
Applications

Logical
Internal

Files

==

14 x ‘General
Application

Characteristics’

22

theory could constitute other limitations, in that measurements from different scales could

be incorrectly combined. For example, weights and TDI ratings are expressed on the

ordinal scale, while point counts are expressed on the absolute scale (or at least on a ratio

scale). Linear combinations of the two are meaningless (Abran and Robillard 1994).

Even with its limitations, FP can be more useful than software length, if FP is used with

care. There are also several variations of FP counting that have been proposed, such as

Mark 2 FPA, among others.

2.1.2 ISO Standards

In this section, other ISO standards regarding the measurement of functionality are

discussed. NESMA (Netherlands Software Metrics Users Association) and MK2 (Mark 2

FPA) have proposed almost the same concepts and terms, as well as the same rules and

guidelines within FPA. There are some differences, however, which are mainly taken

from (NESMA 2004), (Symons 1999) and (Committee 1998).

“Both the NESMA (NESMA CPM 2.0) and the IFPUG (IFPUG CPM 4.1) now use the

same philosophy, the same concepts and terms, and the same rules and guidelines within

FPA” (NESMA, 2003). More precisely, this statement means that both groups count the

functions that users can identify, and these functions are of the same five types: external

input, external output, external inquiry, internal logical file and external interface file.

NESMA uses the same complexity matrices and unadjusted function point table to value

the complexity of functions. It also uses the same 14 general system characteristics with

almost the same valuation criteria, determining the unadjusted function point count, the

23

value adjustment factor, the adjusted function point count, the application function point

count and the project function point count in the same way that IFPUG does.

By contrast, in 1996, at the request of NESMA members, the organization published

operational guidelines on complex counting issues to help counters, where IFPUG has

not provided specific guidelines on these issues. For example, an output generated by a

non-unique identifying selection criterion is counted as an external output by NESMA,

but as an external inquiry by IFPUG the point when no further data processing has to be

done. This difference does not have a major influence on the number of function points in

an application or project, because it does not influence the quantity of identifiable

functions, only the type of function; i.e. an external inquiry or external output. Often the

data to be changed or deleted in an application is first displayed before it is actually

changed or deleted. The act of displaying this data is known as “an implicit inquiry”.

IFPUG counts one extra external inquiry for this when the display is a distinct user

requirement. NESMA counts an extra external inquiry for this when the user has required

a specific query function for which the primary function is to transfer information to the

user. In other cases, NESMA considers the display to be a part of the change and/or

delete function, and counts the data presented only as additional data element types for

that function. In practice, this difference does not have much influence on the number of

function points in an application or project, because this same display will also often have

been specified as an independent external inquiry (and will therefore have been counted

already).

24

As a result, it can be said that there are a few differences between NESMA and IFPUG in

terms of the number of function points in an application or project, and these have only a

negligible effect on that number. Moreover, they have resolved almost all their

differences in regard to how the complexity of functions should be established and how

to determine the number of data element types and file types referenced.

All the requirements or user functionalities are introduced in terms of “Logical

Transactions” (LT) in the MK2 method. An LT comprises an input component, some

processing and an output component, and is defined as being triggered by an event in the

real world of interest to the user, or a request for information. MK2 takes the size of the

input and output components of an LT to be proportional to the number of DETs on the

component. However, the size of the processing component is taken to be proportional to

the number of entity types. On the basis of these two weighted counts, an MK2 FP size is

given to each LT.

The MK2 FP size scale was designed to be more sensitive to small changes in

functionality than the IFPUG scale, and to be more sensitive to variations in the internal

processing complexity of the world of MIS. “The MK II method works at a much finer

level of granularity than the IFPUG method and this leads to lower sizes for small

enhancements” (Symons, 1999). The major difference is that MK2, with its granularity, is

a continuous measure, whereas IFPUG limits component size once a threshold is reached.

As the concepts on which the size measure is based are logical transactions and entities,

25

the MK2 functional size measure should be independent of the technology or methods

used to develop the software.

The weightings introduced by Symons are designed to deliver a size scale of similar

magnitude for the MK2 method as for the IFPUG method. On average, therefore, the

methods give roughly the same software sizes up to around 400 function points. For

larger sizes, MK2 FPA tends to produce increasingly larger sizes than the IFPUG

method. For some purposes, portfolio management for instance, the methods may be

regarded as equivalent. However, for the most common purposes of performance

measurement and estimating, it is preferable to use one scale or the other consistently,

only converting from one to another if needed, using a formula which shows the average

relationship.

2.1.3 COSMIC-FFP

The FSM method developed by the Common Software Measurement International

Consortium (COSMIC) has now been adopted as an international standard (ISO 19761

(ISO/IEC19761 2003)) and is referred to as the COSMIC-FFP method (Abran,

Desharnais et al. 2001). This measurement method has been designed to measure the

functional size of management information systems, real-time software and multi-layer

systems. Its design conforms to all ISO requirements (ISO 14143-1 (ISO14143-1 1988))

for FSM methods, and was developed to address some of the major weaknesses of earlier

methods, like FPA (Abran and Robillard 1994), the design of which dates back almost 30

years, to a time when software was much smaller and much less varied. COSMIC-FFP

focuses on the “user view” of functional requirements and is applicable throughout the

26

development life cycle, right from the requirements phase to the implementation and

maintenance phases. Before starting to measure using the COSMIC-FFP method, it is

imperative to carefully define the purpose, the scope and the measurement viewpoint.

This may be considered as the first step of the measurement process. The measurer

defines why the measurement is being undertaken, and/or what the result will be, as well

as the set of FURs to be included in a specific FSM exercise. Measurements taken using

the COSMIC-FFP method with a different purpose and scope and a different

measurement viewpoint may therefore give quite a different size.

In the measurement of software functional size using the COSMIC-FFP method, the

software functional processes and their triggering events must be identified (Abran,

Desharnais et al. 2001), (ISO/IEC19761 2003). In COSMIC-FFP, the unit of

measurement is a data movement, which is a base functional component that moves one

or more data attributes belonging to a single data group. Data movements can be of four

types: Entry, Exit, Read or Write. The functional process is an elementary component of

a set of user requirements triggered by one or more triggering events either directly or

indirectly via an actor. It comprises at least two data movement types: an Entry plus at

least either an Exit or a Write. The triggering event is an event occurring outside the

boundary of the measured software and initiates one or more functional processes. The

subprocesses of each functional process are sequences of events. An Entry moves a data

group, which is a set of data attributes, from a user across the boundary into the

functional process, while an Exit moves a data group from a functional process across the

boundary to the user requiring it. A Write moves a data group lying inside the functional

27

process to persistent storage, and a Read moves a data group from persistent storage to

the functional process. See Figure 2 for an illustration of the generic flow of data

attributes through software from a functional perspective.

Figure 2: Generic flow of data attributes through software from a functional perspective (Abran,

Desharnais et al. 2001)

A general procedure for measuring software functional size with the COSMIC-FFP

method is proposed here, as in Figure 3. The measurement process is performed in five

steps.

o

r

Engineered

Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

« Front

end »
USERS

READS

WRITES

« Back
end »

EXITS

ENTRIES

I/O Hardware

B

O

U

N

D

A

R

Y

28

First, the boundary of the software to be measured is identified by the measurer based on

the requirements and the specifications of the interaction between the hardware and the

software. Second, the measurer identifies all possible functional processes, triggering

events and data groups from the requirements. These are considered as candidate items at

this stage. Third, the candidate items (i.e. functional processes, triggering events and data

groups) are mapped into the COSMIC-FFP software context model (Figure 3) based on

the COSMIC-FFP rules. In this mapping, each functional process must be associated with

a triggering event and to the data group(s) manipulated by it. This mapping also allows

the identification of layers. Fourth, the COSMIC-FFP subprocesses (i.e. data movements

of the following types: Entry, Exit, Read and Write) are identified within each functional

process. The COSMIC-FFP measurement function is applied to the subprocesses

identified to determine their respective COSMIC-FFP Cfsu size measure. Finally, the

measurer computes an aggregate of the measurement results to obtain the total functional

size of the software being measured.

29

Functional User

Requirements

(FURs)

Identify

Application’s

Boundary

Identify
Candidate

Functional
Processes

Identify

Candidate
Data Groups

Identify
Candidate

Triggering
Events

Map candidate

items into Model

Apply Measurement

Function

Aggregate Measurement

Results

Cfsu

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

Figure 3: General procedure for measuring software size with the COSMIC-FFP method – ISO

19761 (Abran, Ormandjieva et al. 2004)

2.2 Entropy Measurement in Software Engineering

R. Hamming has introduced the concept of entropy into software engineering as a

measure of the average rate at which information is conveyed in a message or language

(Peters and Pedrycz 2000). A message means a string of symbols drawn from an alphabet

of symbols 1s , …, qs The field of information theory deals with the measure of the

amount of information contained in a message (Hamming 1980). Information, in this

context, is something that is not already known; that is, more information is gained when

a symbol occurs where it is not expected than if it occurs where it is expected. Rate, in

this context, means the frequency of occurrence of each symbol (Hamming 1980).

Thus, the amount of information conveyed by a single symbol in a message is related to

its probability of occurring: ii pI 2log - = …… (2).

30

Hartley (1928) was the first to propose the use of logarithms in this connection. The

logarithm guarantees that the amount of information increases as the number of symbols

increases.

The accumulation of information is additive (Hamming 1980); that is, the amount of

information conveyed by two symbols is the sum of their individual information content.

It follows, then, that an entire alphabet of symbols 1s , …, qs would, on average, provide

the amount of information calculated in formula (2), with the bit as the unit of

information per symbol. It can be shown that the maximum amount of information per

symbol is provided by an alphabet with symbols that all occur with equal probability. The

average amount of information conveyed by each symbol in such an alphabet is for an

alphabet having qs2log symbols, each with an equal probability of occurring. The

minimum amount of information is conveyed by an alphabet in which one symbol occurs

with a probability of one, and all others occur with a probability of zero. Such an alphabet

is said to have a language entropy of zero.

2.3 Software Testing

Testing represents a major effort within the whole of the software development life cycle.

The Guide to the Software Engineering Body of Knowledge (SWEBOK) (Bertolino

2004) provides an overview, including references, of the basic and generally accepted

notions underlying the Software Testing Knowledge Area. It describes testing as an

activity performed to evaluate product quality, and to improve it by identifying defects

and problems. The definition of testing provided in (Bertolino 2004) is as follows:

31

“Software testing consists of the dynamic verification of the behavior of a program on a

finite set of test cases, suitably selected from the usually infinite executions domain,

against the specified expected behavior.”

The underlined terms are key concerns in software testing, and we must explain them

briefly here prior to introducing COSMIC-FFP (Abran, Desharnais et al. 2001) into the

testing context.

The term dynamic implies that, when we want to test a program, we can execute it with

differently valued inputs. The valued input not only means the input value alone, but also

the specified input state. The input value alone is not sufficient to determine the outcome

of a test. For example, a nondeterministic system may react to the same input with

different behaviors, depending on the system state. The nondeterministic system

described in Figure 4 may go from state S2 to either state S3 or S4 while reading a as an

input value. The input state is also necessary in order for the system to decide where to

go. However, this is a design issue and outside the scope of this thesis.

Figure 4: Example of a Non Deterministic System

Finite means having a test set (which includes test cases) while testing the system. In

practice, an exhaustive test set can generally be considered infinite, even in simple

a

a

a

b

S2

S3

S4

S1

32

programs. For example, a small program comparing two integers and returning the

smaller number may require that the set of integers constitute the infinite test set. This is

what makes testing a long and expensive process. Testing implies a tradeoff between

limited resources and schedules, and inherently unlimited test requirements. As a result,

we need a finite test set with which enough testing is conducted to obtain reasonable

assurance of acceptable behavior.

The term selected refers to the way in which the finite test set has been chosen. The most

difficult problem in generating test cases is finding a test selection strategy that is both

valid and reliable (Chow 1978). The power of a test case generation technique for

detecting faults in an implementation is referred to as fault coverage (En-nouaary,

Dssouli and Khendek 2002). Many different test methods exist (e.g. formal methods

based on Finite-State Machines and Extended Finite State Machines (Beizer 1990)),

which are all assumed to generate test suites containing test cases especially likely to

reveal failures. These test methods can be compared according to their respective fault

coverage. One method is considered more powerful than another if it has better fault

coverage.

Finally, to make the testing process useful, it must be possible, even if not always easy, to

decide whether or not the observed outcomes or observed outputs of program execution

are acceptable. This describes the term expected in the testing definition. It must be

possible to determine whether or not the observed behavior is in conformity with user

expectations, specifications, anticipated behavior requirements or reasonable

33

expectations. The test pass/fail decision is, in the testing literature, commonly referred to

as the “oracle problem” (Bertolino 2004), (Beizer 1990) (see Figure 5).

Expected Output

User Expectations, Specification,
anticipated behaviour requirements

or reasonable expectations
Program Under Test

Observed Output

Fault is detected

 No Yes

Test Set

Do they
conform?

Conform

Figure 5: Oracle methodology

In our work here, the use of the COSMIC-FFP method has been investigated in the

context of black-box use-case-driven testing using the Oracle methodology. Such testing

is a testing methodology at the system level, where the scenarios depict the sequence of

executions of the system, and the test cases can be derived from the use-case model and

its corresponding UML diagrams. It is called “black-box testing” because the structure of

the implementation is not known, and the test cases are generated and executed from the

specification of the required functionality at defined interfaces (use-case model, in our

case).

34

2.4 Software Reliability

Software reliability is the probability of failure-free software operation for a specified

period of time in a specified environment (Engineers 1991). Reliability is expressed on a

scale of 0 to 1. A system that is highly reliable will have a reliability measure close to 1,

while an unreliable system will have a reliability measure close to 0.

Software reliability has many characteristics (Peters and Pedrycz 2000), and software

failures are primarily due to design faults. Repairs are made by modifying the design to

make it robust in conditions that can trigger a failure. There are no wear-out phenomena

associated with software reliability, because software errors occur without warning. Also,

so-called “old” code can exhibit an increasing failure rate as a function of errors induced

during an upgrade. Moreover, while external environmental conditions do not affect

software reliability, internal environmental conditions, such as insufficient memory or

inappropriate clock speeds, do affect it. An important characteristic of software reliability

is that it is not time-dependent. Failures occur when the logic path that contains an error

is executed. Reliability growth is observed as errors are detected and corrected.

Software reliability measurement consists mainly of two activities. One is reliability

estimation, an activity in which current software reliability is evaluated by applying

statistical inference techniques to failure data obtained during system test or system

operation. Also determined is whether or not a reliability model is, in retrospect, a good

fit. The other is reliability prediction, an activity in which future software reliability is

predicted based upon available software measurement data.

35

Traditional software reliability engineering assumes usage-based statistical testing under

the guidance of operational profiles that characterize usage patterns. Current software

reliability models are applicable when the code is generated and is being tested, and

apply statistical inference procedures to failure data taken from software testing and

operation to determine whether or not a reliability model is, in retrospect, a good fit

(Fenton and Pfleeger 1998).

2.4.1 Markov Chains

Reliability modeling has two classification schemes: the Musa, and Okumoto

classification scheme (Musa and Okumoto 1982) and the Hoang Pham classification

scheme (Pham 1999). The latter has two reliability models, a deterministic model and a

probabilistic model. The deterministic model is used to study the number of distinct

operators and operands in a program, as well as the number of errors and the number of

machine instructions in the program. The probabilistic model represents the failure

occurrences and the fault removals as probabilistic events, which are subdivided into six

groups: error-seeding, failure rate, curve-fitting, reliability growth, Markov Chains and

the Non-homogeneous Poisson Process.

The Markov model (Ormandjieva 2002, Strook 2005 and Trvedi 1975) is a very powerful

tool with which scientists and engineers can analyze and predict the behaviors of a

complex system.

36

A Markov model analysis can yield a variety of useful performance measures describing

the operation of the system, including the following:

� System reliability;

� Availability;

� Mean time to failure (MTTF);

� Mean time between failures (MTBF);

� The probability of being in a given state at a given time;

� The probability of repairing the system within a given time period

(maintainability);

� The average number of visits to a given state within a given time period.

There is interest in using Markov models for software reliability prediction purposes as

well, since:

� Environmental laws are considered as random and not controlled by system laws;

� Being in a particular state, a system may choose to execute any of the transitions

available in that state in order to move to another state.

A Markov process is a stochastic one, with two main characteristics:

• It can take on a finite number of possible states, which we will index by the non-

negative integers: 0, 1 ….

• It has what is known as the “Markovian” property: the probability distribution of

future states of the process depends only on the current state, and is conditionally

independent of past states (the path of the process).

In other words, a Markov system can be in one of several mutually exclusive states, and

can move from one state to another according to the fixed probabilities. For example, if a

Markov system is in state Si, there is a fixed probability pij of it moving into state Sj at the

37

next time step. Therefore, the transition matrix is defined as matrix P, the ij
th
 entry of

which is pij, and the entries in each row add up to 1.

Markov processes have many applications in the environmental sciences and in

management. A simple example of a Markov model is the weather model (Wikipedia

Encyclopedia). Given the weather state on the preceding day, we can represent the

weather probabilities for today by a transition matrix:

The weather on day 0 is known to be sunny. This is represented by a vector in which the

"sunny" entry is 100%, and the "rainy" entry is 0%:

The weather on day 1 can be predicted by:

Thus, there is a 90% chance that day 1 will also be sunny. The weather on day 2 can be

predicted in the same way:

Now, we need to calculate the steady vector that represents the probabilities of sunny and

rainy weather on all days, and is independent of the initial weather. The steady-state

vector is defined as:

38

Since q is independent of initial conditions, it must remain unchanged when transformed

by P. This makes it an eigenvector (with eigenvalue 1), and means it can be derived from

P as follows:

- Set s = q2, so 5 s = q1.

- We want s + 5 s = 1, therefore s = 0.167.

- The steady-state vector is:

In our work here, we are extending the use of the COSMIC-FFP method for reliability

prediction purposes in the context of the Markov Model. This can be done once the

similarity between COSMIC-FFP and Markov Model concepts has been explored.

2.5 AS-TRM

Another objective of this thesis is to contribute to the success of autonomic systems

research through a rigorous investigation of an architectural approach to developing and

evolving autonomic (self-managing) systems, and for the continuous monitoring of their

quality. The automation of system self-management requires a solid formal foundation

39

for system development, including integration of the non-functional requirements into the

development process, as described in our work here.

The Timed Reactive Object Model (TROM) formalism created at Concordia University

has the required expressive power for specifying autonomic elements. The formalism has

to be extended to include specification of the autonomic system architecture, system

configuration and self-monitoring within a single formal framework, and to integrate the

non-functional requirements (NFRs) for quality through the usage and structure

specification of their mapping to system. Both the TROM and the AS-TRM are briefly

described below.

The TROM formalism is a three-tier formal model (Alagar, Achuthan and Muthiayen

1996). As a layered model, each tier communicates only with the tier immediately above

it. The independence of the tiers makes modularity, reuse, encapsulation and hierarchical

decomposition possible. The three-tier structure describes the system configuration, AS

components and their interaction, reactive classes and the relative Abstract Data Type.

The uppermost tier is the system architecture specification. The third tier is the AS-

Component configuration specification. It specifies the configuration of reactive objects

and their collaboration, as well as the port links, which regulate the communication

tunnels between objects. The second tier constitutes the TROM class, which is a Generic

Reactive Class and is included in the subsystem. The TROM class is also a hierarchical

finite-state machine augmented with ports, attributes, logical assertions on the attributes

and time constraints. The lowest tier is the Larch Shared Language (LSL) trait, which

represents the Abstract Data Type used in the TROM classes.

40

The TROMLAB (Timed Reactive Object Model Lab) is a framework that provides an

environment for rigorous development of real-time reactive systems (Alagar, Achuthan et

al. 1996). It is based on the TROM, which is a formalism based on the object-oriented

and real-time technologies.

The TROMLAB contains a number of tools to assist in the development of real-time

reactive systems. These tools provide an automatic mechanism for collecting and

analyzing quality measurement data. The current architecture of the TROMLAB consists

of the following components:

- Rose-GRC Translator (Popistas 1999): a module which maps the graphical model

in Rational Rose to formal specifications based on the TROM;

- Interpreter (Tao 1996): a module which syntactically performs verification on

specifications and generates an internal representation of them;

- Simulator (Muthiayen 1996): a module which animates a subsystem based on an

internal representation generated by the interpreter;

- Browser for Reuse (Muthiayen 2000): an interface to a library which helps the

user navigate, query and access system components during development;

- Graphical User Interface (Srinivasan 1999): an interface for the system developer

to interact with the TROMLAB environment;

- Reasoning System (Haidar 1999): a debugging facility that allows the user to

query system behavior based on interactive queries;

- Verification Assistant (Pompeo 1999): an automated tool which extracts

mechanized axioms from real-time reactive systems;

41

- Test Case Generator (Zheng 2002 and Chen 2002): an automated tool for

generating test cases from specifications.

The process model in TROMLAB (Alagar, Achuthan et al. 1996) supports the iterative

development approach, which provides the following benefits:

- Reduces risks by exposing them early in the development process.

- Gives importance to the architecture of the system’s configuration.

- Designs modules for large-scale software reuses.

AS-TRM extends the TROM formalism (Vassev, Kuang, Ormandjieva and Paquet 2006)

by adding more tiers and including the following specifications:

• A timed reactive autonomic component (AC);

• A group of synchronously interacting ACs (ACG);

• An autonomic system (AS), consisting of asynchronously communicating ACGs.

The autonomic (self-monitoring) behavior is implemented in all upper tiers within the

formal framework, as described below.

The AC is a newly added tier that encapsulates TROM objects (the TROM formalism’s

second tier) into an AS-TRM autonomic component (AC). The synchronous interaction

among the ACs allows a reactive task to be performed. The communication between an

AC and its upper-tier ACG is realized through an interface and is asynchronous.

An AS-TRM Component Group is a set of synchronously communicating ACs

cooperating in the completion of a group task. Each ACG can independently accomplish

42

a complete real-time reactive task. The self-monitoring behavior in the ACG tier and the

asynchronous interaction between an ACG and the ACs is realized by an ACG Manager

(AGM).

The Autonomic System (AS) tier abstracts a set of asynchronously communicating

ACGs. The self-monitoring behavior and the asynchronous interaction between an AS

and the ACGs is realized by the Global Manager (GM).

2.6 Scale Types

In measurement theory, the meaning of numbers is characterized by scale types (Fenton

and Pfleeger 1998, Whitmire 1997, Zuse 1991 and ISO 2002), but the theory does not

directly address the concept of scale, as typically defined in metrology. A scale is defined

as a set of ordered values, continuous or discrete, or a set of categories to which the

attribute is mapped (ISO 2002), whereas a scale type depends on the nature of the

relationship between the values on the scale (ISO 1993).

In a mathematical representation, a scale is defined by <E, N, Φ>, where E is the

empirical structure, N is the numerical structure and Φ is the mapping between them

(Zuse 1991). By contrast, a scale type is always defined by admissible transformations,

and relationships between mappings are described in terms of transformations (Whitmire

1997). There are five major scale types: nominal, ordinal, interval, ratio and absolute, and

they can be seen as describing certain empirical knowledge behind the numbers

(Whitmire 1997). Knowing the characteristics of each type helps in interpreting the

43

measures (Fenton and Pfleeger 1998). In the following subsections, the scale types are

summarized.

Nominal Scale Type:

Nominal-scale measurement places elements in a classification scheme (Fenton and

Pfleeger 1998; Whitmire 1997). The classification partitions the set of empirical entities

into equivalence classes with respect to a certain attribute. Two entities are considered to

be equivalent, and therefore to belong to the same equivalence class, if and only if the

same attribute of both is being measured. Empirical classes are exhaustive and mutually

exclusive. The classes are not ordered because of a lack of empirical knowledge about

relationships among the classes. In nominal-scale measurement, each empirical class

might be represented by a unique number or symbol, and the only mathematical operation

allowed in the nominal scale type is “=”. The only admissible transformation is one-to-

one mapping that preserves the partitioning. An example of a nominal scale type could be

the assignment of numbers to the football team players where you cannot say that the

player with number one is, for example, the best or the shortest on his team, since

assigning the number one in such a case serves only to distinguish that player from the

others on the team.

Ordinal Scale Type:

The ordinal scale forms the basis of software measurement, and all other extended

measurement structures are based on it (Zuse 1991). The ordinal scale assigns numbers or

symbols to objects so that they can be ranked and ordered with respect to an attribute

44

(Whitmire 1997). The main characteristic of the ordinal scale is that the numbers

represent a ranking only, and so addition, subtraction and other arithmetic operations

have no meaning. Also, any mapping that preserves the ordering is acceptable as an

ordinal scale (Fenton and Pfleeger 1998). For example, data loss failures are more critical

than incorrect output failures, and therefore 10 could be assigned for the data loss failures

and 5 for the incorrect output failures. In this case, such failures can be ordered according

to how critical they are where assigning these numbers will preserve the same meaning.

Interval Scale Type:

The interval scale is useful for augmenting the ordinal scale with information about the

size of the intervals that separate the classes. That is, the difference in units between any

two of the ordered classes in the range of the mapping is known, but computing the ratio

of two classes in the range does not make sense. This scale type preserves order, as with

an ordinal scale; however, in an interval scale, addition and subtraction are acceptable

operations. However, multiplication and division are not (Fenton and Pfleeger 1998). For

instance, the Celsius and Fahrenheit scales for temperature have no meaning for ratios.

Ratio Scale Type:

A ratio scale is an interval scale on which there exists an absolute zero. This zero element

represents the smallest scale value, where an object has a null amount of the attribute.

Therefore, the measurement mapping in a ratio scale must start at zero and increase by

equal intervals, known as units. All arithmetic in a ratio scale can be meaningfully

45

applied to the classes in the range of the mapping (Fenton and Pfleeger 1998). Time

interval and length are good examples of ratio scales.

Absolute Scale Type:

The absolute scale represents counts of objects in a specific class. There is only one

possible measurement mapping, namely the actual count, and it has a unique unit. As

with the ratio scale, all arithmetic analysis of the resulting count is meaningful (Fenton

and Pfleeger 1998).

More detail about these scale types can be found in (Fenton and Pfleeger 1998),

(Whitmire 1997) and (Zuse 1991).

Once the main concepts and definitions of software size, entropy measurement, software

testing and reliability, AS-TRM and scale types had been introduced in the software

engineering literature, chapter 3 discusses the proposed thesis and its methodology in

terms of how to investigate the candidate linkages, and candidate contributions, across

the two fields, COSMIC-FFP and FC, in order to extend COSMIC-FFP for purposes such

as testing and reliability assessment, and for formalizing it in the AS-TRM context.

46

CHAPTER III: PROPOSED THESIS

In section 3.1, our thesis objective is introduced. Section 3.2 presents the expected results

and the potential benefits of this thesis. Section 3.3 describes our methodology and is the

starting point for achieving our research objective.

3.1 Objective

This thesis proposes new approaches for obtaining feedback on software functional

complexity and quality, and investigates their applicability to testing and reliability

assessments in the context of the COSMIC-FFP measurement method adopted in 2003 as

the ISO/IEC 19761 standard (Abran, Desharnais et al. 2001), (ISO/IEC19761 2003),

(ISO14143-1 1988).

Functional complexity is quantified in terms of the entropy of an amount of information

exchanged between the environment and the software system, and within the system, in

one usage of the system. As an FSM, COSMIC-FFP measures software functionality in

terms of the data movements across and within the software boundary. There is almost no

cross-referencing in the software engineering literature between these two fields of

knowledge, that is, FSM and the measurement of entropy. With the recent publication of

work on the measurement of functional complexity based on entropy concepts (Abran,

Ormandjieva et al. 2004), there is now an opportunity to investigate the candidate

linkages, and candidate contributions, across the two fields. On the one hand, COSMIC-

FFP measurement concepts and procedures are well documented and, through the

method’s international acceptance as an ISO standard, it has achieved international

47

recognition supported by the international community specializing in software

measurement. However, the field of software functional size by itself has very limited

depth in terms of research and theoretical support on which to draw. Its use is therefore

fairly limited, extending only to productivity studies and estimation, with almost no

reported use in complexity, quality and reliability analysis.

On the other hand, entropy has been used extensively in many fields, including entropy-

based measurement, to measure performance for instance (V. S. Alagar, O. Ormandjieva

and J. Shen 2004), and for reliability estimation (Weiss and Weyuker 1988), both with

very strong theoretical and empirical support.

The thesis directions include the use of entropy measurement for managing the test

adequacy of the scenario-based black-box test cases generated from COMSIC-FFP

models. COSMIC-FFP scenarios are further transformed into state diagrams for

reliability prediction purposes within the COSMIC-FFP context.

Reliability prediction in our work here uses the mapping of the state diagrams to discrete-

time Markov chains to analyze the reliability of a system.

The thesis also includes a formalization of COSMIC-FFP in the AS-TRM (Autonomic

System Timed Reactive Object Model) context (Achthan 1995) – an extension of the

Timed Reactive Object Model (TROM) formalism for real-time reactive systems created

at Concordia University. This formalization targets the modeling of autonomic systems,

48

the architecture, system configuration and continuous quality self-monitoring of which

are to be specified within a single formal framework, and would allow the automatic

measurement of the size and functional complexity of AS-TRM specifications from

several case studies.

The thesis objectives are summarized as follows:

1- Use of COSMIC-FFP in the measurement of complexity.

2- Use of COSMIC-FFP for black-box testing strategies.

3- Use of COSMIC-FFP for the early prediction of reliability.

4- Use of COSMIC-FFP for the early assessment of complexity from formal
specifications, i.e. AS-TRM.

3.2 Expected Results and Benefits

To the best of the researchers’ knowledge, this work is the first extension of COSMIC-

FFP to testing and reliability assessment, and, as such, it would be of benefit to industry

insofar as it is concerned with compliance with the internationally recognized ISO

standards. Early feedback on software quality would allow for effective quality control

earlier in the development process, which would increase the reliability of the final

product and reduce the development and testing cost. The benefits of this work will also

include formalization of the COSMIC-FFP measurement in the AS-TRM formalism for

autonomic system development. The testing quality assessment method introduced here

has been adapted successfully to the ERP methodology (Daneva, Abran, Ormandjieva

and Abu Talib 2006).

49

3.3 Methodology

The following figure summarizes the complete thesis methodology, which consists of 5

phases:

1. Mapping COSMIC-FFP to the measurement of complexity based on entropy
(chapter 5).

2. Validation (chapter 5).

3. Combining COSMIC-FFP procedures with a black-box testing strategy (chapter
6).

4. Extending COSMIC-FFP for reliability assessment purposes (chapter 6).

5. Mapping between COSMIC-FFP and the AS-TRM (chapter 7).

Figure 6: Thesis methodology

50

In the first phase, a study is conducted with the objective of mapping COSMIC-FFP to

the measurement of complexity based on entropy. The results of this study, as will be

detailed in chapter 5, show that there are significant similarities across these two

measures in the way that they view software. This helps in analyzing a mechanism for

generating black-box test cases and prioritizing them, and for obtaining an early

reliability prediction for software. It also helps in formalizing COSMIC-FFP in the AS-

TRM context.

In the second phase, based on expert opinion and related concepts in scale types, three

metrological properties in particular (scale, unit and scale type) are validated in both

these measurement methods. This study is presented in chapter 5.

The third phase of the methodology combines COSMIC-FFP procedures with a black-

box testing strategy based on the results obtained in the first phase and the related work

that has been performed in the area of scenario-based testing and equivalence classes. As

a result, entropy-based testing assessment is achieved in COSMIC-FFP by reducing the

number of test cases, while keeping the highest fault coverage within the budgetary

constraints. The feasibility of this concept is demonstrated by applying the proposed

testing approach in the Hotel Reservation System case study.

Extending COSMIC-FFP for reliability assessment purposes is achieved in the fourth

phase, where early software reliability prediction is illustrated by the Railroad case study

51

based on the Markov model of software components. The third and fourth phases are

presented in greater detail in chapter 6.

Finally, the fifth phase is detailed in chapter 7, where COSMIC-FFP is mapped to the

AS-TRM, and, therefore, clear rules for COSMIC-FFP measurement are defined for use

with AS-TRM specifications. This will complement complexity management in the AS-

TRM, in turn allowing for early complexity assessment from the formal specifications.

The feasibility of this concept is demonstrated by applying these rules in the Steam Boiler

case study.

Before detailing each phase in the following chapters, related work in the fields of

software testing, software reliability and AS-TRM formalization is introduced in the next

chapter.

52

CHAPTER IV: RELATED WORK

This chapter provides a brief overview of the work that has been done so far in related

areas related that is relevant to the proposed research. Section 4.1 presents the related

work that has been done in scenario-based testing and in equivalence classes. Section 4.2

discusses the related work that has been used for software reliability prediction and the

corresponding tools that support it. The work related to AS-TRM formalism is introduced

in section 4.3.

4.1 Software Testing

In the following sections, the work related to scenario-based black-box testing and

equivalence classes is reviewed.

4.1.1 Scenario-based Testing

There are three main testing strategies available: white-box testing, black-box testing and

grey-box testing. In white-box testing, the test suite is generated from the implemented

structures. In black-box testing, the structure of the implementation is not known, and the

test cases are generated and executed from the specification of the required functionality

at defined interfaces. In grey-box testing, the modular structure of the implementation is

known, but the details of the programs within each component are not.

Scenario-based testing is a typical black box testing methodology at the system level, in

which the scenarios depict the sequence of executions of the system, and the test cases

can be derived from the use-case model and its corresponding UML diagrams (Bai, Peng

and Li 2002; Bai, Tsai, Feng and L. Yu 2002). UML is the de facto industrial standard for

modeling object-oriented software systems (Bai, Peng et al. 2002). There are 12 kinds of

53

diagrams in 3 categories in UML: structural diagrams (including class diagrams),

behavioral diagrams (including use-case diagrams, interaction diagrams (e.g. Figure 9),

activity diagrams, collaboration diagrams and state-chart diagrams) and model

management diagrams.

In (Bai, Peng et al. 2002), a use case is defined as a collection of related scenarios

describing the actors and operations in a system, and these use cases can be organized

hierarchically. Specifically, the root of the tree is the main use-case diagram, the middle

branches are the low-level use-case diagrams and the leaves are the sequence diagrams

for each use case in the low-level use-case diagram. However, the main use cases may be

at too high a level to derive test cases. The authors propose transforming a use case into

scenarios, then from a scenario into thin threads, and, finally, from thin threads into test

cases – Figure 7.

Figure 7: Testing with UML

A scenario is a specific sequence of actions and interactions between actors and the

system (Bai, Peng et al. 2002). A thin thread is a minimum-usage scenario in a software

system. It is a complete data/message trace using a minimally representative sample of

external input data transformed through an interconnected set of the system (architecture)

to produce a minimally representative sample of external output data. The execution of a

thin thread demonstrates that a method performs a specified function (Bai, Peng et al.

2002).

Use cases Scenarios Thin threads Test cases

54

The proposed scenario-based testing approach follows the related work in the same way;

however, it is aimed at creating an optimal set of test cases in the context of the

COSMIC-FFP method based on a specified budget, as will be seen in section 5.1.

4.1.2 Equivalence Classes

Weiss and Weyuker (Weiss and Weyuker 1988) partitioned the input domain into some

equivalence classes with respect to the behavior of the system under test. This approach

mainly reduces the number of test cases with respect to the input domain.

Davis and LeBlanc (Davis and Leblanc 1988) discussed the entropy-based software

measures at a higher level by considering chunks of code. For example, a single

statement, a block of code or a module itself can be considered as a chunk of code.

Groups of chunks may form an equivalence class if they have the same number of in-

degrees and out-degrees. In Figure 8, A and C belong to the same equivalence class. The

entropy is therefore computed with respect to the chunks that are in the same equivalence

class, as follows (FC representing the Entropy-based Functional Complexity Measure):

FC = FC1 +FC2 + … + FCp.

Figure 8: Example of an Equivalence Class

B A C

55

One of the problems in identifying equivalence classes in COSMIC-FFP is how to

organize the scenarios into equivalence classes where each equivalence class is

characterized by a distinct functionality. Determination of the equivalences classes

themselves can be a tedious and rather time-consuming process. We propose an

automatic extraction of equivalence classes from the scenario descriptions. The following

research problems have been targeted and addressed by the proposed approach:

1. Defining criteria for partitioning the set of scenarios into equivalence classes

of test cases based on their similarity;

2. Determining the partitioning of the input domain into equivalence classes by

the sets of input events corresponding to the set of scenarios in the

equivalence classes;

3. Prioritizing, within each equivalence class, the corresponding test cases based

on their functional complexity values (in descending order) – see section 3.3

to calculate the functional complexity measurement.

The work we present in this thesis differs from related work in that we target the

optimization of the testing process in the software environment prior to the actual

implementation of the system. The proposed approach would allow the achievement of

better testing results (through including test cases that cover most of the functionality in

software) within a given budget. The approach is easy to implement as an enhancement

to current testing processes.

4.2 Software Reliability

4.2.1 Markov Chains

The industrial applicability of Markov chains derived from state machine diagrams for

reliability purposes, as described in (Relex), (Item-software) and (ISO-graph), is worth

56

mentioning. For instance, the RELEX Markov (Relex) provides fast, accurate reliability

analyses for complex systems with common-cause failures, degradation, induced or

dependent failures, multi-operational state components and other sequence-dependent

events. Once a state transition diagram has been completed, the Markov model

incorporates optimized algorithms to perform calculations accurately and supports both

transient and steady state analysis results. In addition to calculating overall system

results, the RELEX Markov also calculates parameters for each state.

4.2.2 Uncertainty Analysis

K. Goseva-Popstojanova and Sunil Kamavaram explore the notion of entropy in Markov

models in a recent paper (Goˇseva-Popstojanova and Kamavaram 2004). They propose a

methodology for the uncertainty analysis of architecture–based software reliability

models suitable for large, complex, component–based applications and applicable

throughout the software life cycle (Goˇseva–Popstojanova and Kamavaram 2003). Within

this methodology, two methods for uncertainty analysis have been developed: the method

of moments and Monte Carlo simulation. In (Goˇseva–Popstojanova and Kamavaram

2003), the method of moments is used to quantify the uncertainty in software reliability

due to uncertainty in component reliabilities. The expressions derived in (Goˇseva–

Popstojanova and Kamavaram 2003) are valid for independent random variables, but did

not allow the uncertainty in software reliability to be studied due to uncertainty in the

operational profile. Generalizing earlier research work on the method of moments, these

authors then derived expressions for the mean and the variance of system reliability,

which consider both sources of uncertainty in software reliability (the way software is

57

used, i.e. the operational profile) and the component’s failure behavior (i.e. component

reliabilities).

This was illustrated through case studies in which the estimated values of the system

reliability moments provide more information than the traditional point estimate. Thus,

these authors have a higher level of confidence in the reliability predictions for systems

with a reliability having smaller variance. This information is especially useful in making

predictions early in the life cycle, in keeping track of software evolution and in certifying

the reliability of component-based systems.

The reliability assessment method discussed in this work shares the related work methods

in important ways:

1. It focuses on the early reliability prediction of software.

2. It is based on the architecture model of software and the state machine description
of its components.

3. It models the software as a Markov system.

4. The reliability prediction is derived from the steady state of the Markov system.

However, the proposed method enhances the use of COSMIC-FFP, not only for

estimating the functional size of software, but also for testing and reliability assessments,

as this thesis introduces COSMIC-FFP as a package to be used for many purposes to

control and manage the software development process.

58

4.3 Reliability Assessment in the AS-TRM

The TROMLAB reliability assessment is based purely on the architecture model of the

autonomic reactive group and the state machine descriptions of the reactive components.

It is supposed that the transition that will be triggered from one state is the same as a

random walk; based on it, we can use Markov model to analyze the reliability of the state

machine of an autonomic reactive system. Therefore, the reliability prediction is derived

from the steady state of the Markov system.

The work steps in the reliability assessment (Lee 2003) are as follows:

Initialization: Calculation of the transition matrices for the participating objects.

Step 1. Mapping an object to a Markov system

Step 2. Mapping two synchronously interacting objects to a Markov system

Step 3. Mapping a subsystem to a Markov system

For each subsystem, there is a corresponding output file containing all the intermediate

computational results; these include:

- Transition matrix for each GRC specification in the subsystem;

- Transition matrix for synchronous product machines generated from the GRC

specifications;

- Steady vector of each GRC specification;

- Steady vector of the synchronous product machine specification;

59

- Various debugging information on the contents of the internal data structure;

- The reliability of the subsystem.

It will also produce an output file containing the reliability of each subsystem and the

reliability of the overall system.

Now, the reliability measure for a system in TROM-SRMS is the lowest reliability

measure of its m subsystems:

The minimum value is chosen due to the safety-critical character of the real-time reactive

system. The higher the value of the reliability measure, the less uncertainty there is in the

model, and thus the higher the level of software reliability.

H is calculated as a level of uncertainty of the Markov system corresponding to a

subsystem:

where πi is a steady state distribution vector. Hi is a level of uncertainty in a Markov

system corresponding to an object. We also write it as:

H is related exponentially to the number of paths that are “statistically typical” of the

Markov system. The higher the entropy value, the more sequences must be generated in

order to accurately describe the asymptotic behavior of the Markov system.

60

Our work differs from the TROMLAB reliability assessment method in the following

ways:

- the number of steps in the reliability calculation is reduced to two;

- the reliability of a system is calculated from the configuration type of the

components in the system.

Now that the related work on testing and reliability fields has been introduced in this

chapter, and having defined the proposed methodology in chapter 3, COSMIC-FFP is

mapped to entropy measurement in chapter 5.

61

CHAPTER V: MAPPING COSMIC-FFP TO ENTROPY

5.1 Introduction

In our work here, a new method is proposed for quantifying functional complexity from

the description of the software’s behavior. The proposed functional complexity measure

characterizes the performance of the system as specified in the scenarios. Functional

complexity is quantified in terms of the entropy of an amount of information based on an

abstraction of the interactions among software components. Assuming that each message

represents an event, therefore, entropy-based software measurement is used to quantify

the complexity of interactions between the software and its environment and within the

software (between software classes) in terms of the information content of the

interactions, based on some abstraction of the interactions (Davis and Leblanc 1988;

Shannon, E. et al. 1969; Harrison 1992).

In OO development, the only vehicle for information interchange between the software

and the environment, and within software modules (classes or packages), is the event,

also called the “message”. The environment is communicating with the OO software via

external messages: input (to communicate a request from the environment for a

service/usage) and output (to communicate the answer from the software to the

environment). In order to fulfill the requested functionality, the objects collaborate via

message exchange. In the Rational Unified Process (RUP) (Kruchten and Philippe 2000)

for OO software development, the interactions (exchange of messages, that is, events,

between the environment and the modules, and between the modules themselves) are

described as scenarios – written stories of a system’s functionality related to one specific

62

usage. In UML, the interchanging of events in one scenario is represented graphically

using standard interaction diagrams.

For the purpose of measuring functional complexity, each scenario is mapped to a timed

sequence of events, where each event is considered as a unit of information. The scenario

described in Figure 9 has the sequence of events (messages) e1.e2.e3.e2.e5. To quantify the

amount of information contained in this scenario, we can apply the entropy formula (1).

Therefore, the set of events and the set of their probabilities are {e1, e2, e3, e5} and {1/5,

2/5, 1/5, 1/5} respectively.

Figure 9: Scenario example

The functional complexity for system implementation (Alagar, Ormandjieva et al. 2000)

is defined as an amount of work output performed in a time slice by the system. The

amount of work performed, in this context, means the quantity of information processed

in that period of time, and the number of functions necessary to perform the work. The

e5

e2

e3

e2

e1

User C1 C2

C3

63

events represent the functions necessary to perform the work in one usage of the system,

i.e. in one scenario.

The concepts of information theory (Alagar, Ormandjieva et al. 2000) are applied to

measure the amount of work output performed in a time slice by the system in terms of

the amount of information in the event sequence. That measure is based on an empirical

distribution of events within a sequence.

The probability of the i
th
 most frequently occurring event is equal to the percentage of the

total number of event occurrences it contributes, and is calculated as
ip = if / NE, where

if is the number of occurrences of the i
th event and NE is the total number of events in

the sequence. The classical entropy calculation quantifies the average amount of

information contributed by each event. Therefore, the functional complexity in a time

slice is defined in (Alagar, Ormandjieva et al. 2000) as an average amount of information

in the corresponding sequence of events, and is computed as follows:

)/(log)/(-
1

2 NEfNEfFC
n

i

ii∑
=

= . . …… (3)

FC represents the quantification of the amount of information exchanged in a given

interaction (scenario). The functional complexity in a period of time with a higher

average information content should, on the whole, be more complex than that of another

with a lower average information content. That is, the FC measure is intended to order

the usages of system in a time period in relation to their functional complexity.

64

5.2 Analysis of Similarities and Differences across COSMIC-FFP and Entropy

Measures

The method used to analyze the compatibility between the Entropy-based Functional

Complexity Measure and COSMIC-FFP consists of comparing the generic software

models, their software model components and their software measurement processes

(Oligny and Abran 1999). For such a comparison, it is necessary to identify the concepts

behind the terms used in the two measures: in fields that are not yet mature and where the

terminology is not fully standardized, such as software engineering, different terms will

sometimes refer to the same concepts, and, at other times, the same term will refer to

different concepts (Oligny and Abran 1999).

1) Models of Software Comparison

In their generic view of software from a functional perspective, the two measures share a

similar generic modeling of how to recognize the functionality of software.

Information theory-based software measurement quantifies functional complexity in

terms of an amount of information based on some abstraction of the interactions between

software modules, and, more specifically, the complexity of interactions between the

software and its environment and within the software itself in terms of the information

content of the interactions.

COSMIC-FFP has a similar generic model of software functionality, which is defined as

the interactions between the software and its environment and within the software itself,

as illustrated in Figure 2. In COSMIC-FFP, the environment is represented by the users

65

interacting with the software, such users being either humans, engineering devices or

other software applications. Within the software, the interactions deal with the data read

from or sent to persistent data storage.

2) Models of Software Components Comparisons

The second step consists in identifying and comparing the software model components

used by each method required for the instantiation of the generic software model of

functionality. In the RUP context, the functional processes used in COSMIC-FFP can

represent the set of scenarios for the software. For example, in the Hotel Reservation

System, the user can create a reservation. This process of allowing the user to add a new

reservation is considered as a functional process, and is triggered by selecting the user for

this option. Similarly, creating the reservation is a scenario containing a sequence of

events between the user and the system, and this scenario contains a sequence of events

within the system. Therefore, for each functional process, its subprocesses and its

triggering events are sequences of events (events).

Within the same RUP context for functional complexity measurement, the entropy

formula can likewise be calculated on one process (scenario).

See Figure 10 for the functional process for creating a reservation that can be the scenario

of a set of events interchanged between software components. The set of alphabets

(events) comprises {1: select “create”, 2: display, 3: type required information, 4: store

66

information, 5: display error message if it occurs} and their probabilities: {1/5, 1/5, 1/5,

1/5, 1/5}.

Figure 10: Create Reservation Sequence diagram

Note next that the measurement unit defined in COSMIC-FFP is a data movement, that

is, a base functional component which moves one or more data attributes belonging to a

single data group. It can now be observed that an event as the unit of the Entropy-based

Functional Complexity Measure has the same meaning as the data movement, which is

the unit of COSMIC-FFP.

A summary of the terms used in both COSMIC-FFP and the Entropy-based Functional

Complexity Measure having similar meanings is presented in Table 6. This table shows

the same conceptual level for both COSMIC-FFP and the Entropy-based Functional

Complexity Measure; however, the terms used in the data movements of COSMIC-FFP

and in the interactions of the Entropy-based Functional Complexity Measure have

different labels. For example, in COSMIC-FFP, data movements are classified in four

5: display error message if it occurs

3: type required information

2: display

1: select "create"

Agent: User
Hotel

System

Reservation

4: store

information

67

categories. The term corresponding to the data movements and its categories that is used

in Entropy-based Functional Complexity Measure is the event, but without classification.

In addition, other terms used in both measurement methods, such as those interacting

with the software, the software boundary and the set of user requirements, have the same

meaning even though some have different labels. For example, software users are actors,

while at the same time they are interacting with the software. As can be seen in Table 6,

the models of software of these measures are compatible. The measurement unit and the

measurement unit symbol for Entropy-based Functional Complexity Measure is analyzed

more extensively in chapter 5 (section 5.3), which is dealing with the scale type issue,

and that work has been published in (Abu Talib, Abran et al. 2005).

Table 6: Similarity between COSMIC-FFP & Entropy-based Functional Complexity Measure

concepts

Concepts COSMIC-FFP (Data

Movement) terms

Entropy-based Functional

Complexity Measure

(Interaction) terms

Humans or things interacting

with the software

Software users Actors

Interactions between the

environment and the

software

Software boundary Software boundary

Set of User Requirements Functional Process Scenario (Sequence of

Events)

Data which are part of the

interaction

Data groups Set of data attributes

External Input (from the

environment)

Triggering event

Event

External Input (from the

environment)

Entry data movement Event

Output (to the environment) Exit data movement Event

Entity being taken into

account in the measurement

Data movement Event

Measurement Unit 1 data movement Bit

Measurement unit symbol Cfsu Bit

68

3) Software Measurement Process Comparison

Even though each type of measure takes into account similar concepts (with different

terms) for the model of the software to be measured, each type of measure, when its

measurement processes are compared, defines different measurement functions (e.g.

formulas) to combine the information into a ‘measure’ for purposes which are obviously

different. For example, the COSMIC-FFP formula is used to measure the functional size

of software, that is, the amount of functionality the software has through the addition of

data movements. COSMIC-FFP recognizes only data movement type subprocesses, and it

contains an approximation assumption that each data movement is associated with an

average amount of data transformation.

By contrast, functional complexity measurement based on entropy is used to measure the

amount of information in the interactions between the software and the environment, and

within the software modules, a formula which associates the functional complexity of

software with the frequency of occurrence of a function through a logarithmic function of

probability distribution of the events (see formula 3). It can be easily observed that the

Entropy-based Functional Complexity Measure extracts more information than does

COSMIC-FFP about events, their frequencies and their probabilities of occurrence.

For illustrative purposes, let us consider two events: e1 and e2. In Figure 11, if either e1or

e2 is certain (p1 =1 or p2 = 1), then FC is zero. The same thing will happen when p = 0 for

either event. However, when p1 = 0.5 or p2= 0.5, the two events are just as probable and

FC is 1, which is the maximum. Therefore, FC is maximum if all probabilities are equal,

and it is minimum if one event has a probability equal to 1. However, in COSMIC-FFP,

69

when two different data movement types are required to perform the functional process,

then the number of Cfsu is 2. That number is also 2 when one data movement is required

twice and the same data group is accessed in order to execute the functional process. Note

that two functional processes may in the end have the same functional size regardless of

the type of data movement.

Figure 11: Entropy-based Functional Complexity Measure

5.3 Theoretical Validation

This section presents a study of the scales, units and scale types of both COSMIC-FFP

and the Entropy-based Functional Complexity Measure. The work for this study has been

published in (Abu Talib, Abran et al. 2005). Previous studies have analyzed the scale

types of many software measures (such as Zuse (Zuse 1991), Fenton (Fenton and

Pfleeger 1998) and Whitemire (Whitmire 1997), but not the concept of scale nor how it is

used in the design of a measurement method.

Well-designed and well-defined measures in the sciences and in engineering should have

most of the many characteristics described in metrology (ISO 1993), including ‘scales’,

‘units’ and ‘etalons’ to which measuring instruments should refer to ensure

meaningfulness of the numbers obtained from measurement. However, some of these

concepts, such as units, scales and etalons, have not yet been addressed and discussed by

70

researchers in terms of empirical validation approaches of software measures (Fenton and

Pfleeger 1998): for instance, researchers in software measurement have, to date, focused

on scale types rather than on the scale embedded within the definitions of these measures.

This could lead to less than optimally designed software measures. Moreover, when these

software measures are analyzed without taking into account metrological concepts, the

result can be improperly stated conclusions about their strengths.

Measurement with COSMIC-FFP is more than counting and adding up the data

movements. To identify the types of scales and analyze their uses in the COSMIC-FFP

measurement process, the measurement process procedure must be broken down into

substeps, and each substep further analyzed in order to understand the transformation

occurring between the steps (Abran and Robillard 1994). As mentioned previously, two

phases (mapping and measurement) are required to measure the functional size of

software in COSMIC-FFP. Basically, the mapping phase is the process of abstracting a

set of FURs, whatever methodology is used to describe them, as a COSMIC-FFP generic

model of the software. This is similar to mapping a distance traveled into meters or

mapping time into a mechanical clock. Only then will the measurer be able to read the

distance on the scale or the position of the hands on the clock face. Therefore, the

mapping phase, mapping the FUR set into a measurement scale, is an important step.

This takes the measurer to the next phase, which is the measurement phase.

More specifically, the mapping phase involves identifying software layers (MAP 1), and

then, for each layer, carrying out the following steps:

71

MAP 1.1: Identify software boundaries.

MAP 1.2: Identify functional processes.

MAP 1.3: Identify data groups.

MAP 1.3.1: Identify data attributes.

For MAP 1, the concept of software layers in COSMIC-FFP is meant as a tool which

identifies both the individual components that have to be sized and their boundaries

(Abran, Desharnais et al. 2001). In a specific measurement exercise, layers can be

distinguished and have an order where, for instance, software in any one layer can be

subordinate to a higher layer for which it provides services. Also, the measurement

method defines a “peer-to-peer” exchange, as two items of software in the same layer

exchanging data (Abran, Desharnais et al. 2001). From this point on, it can be said that a

layer at level 2 is above a layer at level 1, which is itself used by the layer above that, or

we can say that two pieces of software are at the same level or in the same layer.

The next step, MAP 1.1, involves identifying the boundaries between each pair of layers

where one layer is the user of another, and the latter is to be measured. In the same layer,

there is also a boundary between any two distinct pieces of software if they exchange

data in “peer to peer” communications (Abran, Desharnais et al. 2001).

In MAP 1.2, the set of functional processes of the software to be measured is identified.

In each layer, software delivers functionality to its own users. A functional process,

which comprises at least two data movements, an entry and either an exit or a write

(Abran, Desharnais et al. 2001), can be derived from at least one identifiable FUR.

72

Next, in (MAP 1.3), the data groups are identified. A data group is the object of interest

that may or may not survive the functional process using it (Abran, Desharnais et al.

2001). Each data group has a set of data attributes which is non-empty and non-ordered.

MAP 1.3.1 is the last step in the mapping phase. In it, the data attributes for each data

group are identified.

Note that, the steps taken in the mapping phase having been analyzed, steps MAP 1 to

MAP 1.3.1 by themselves are not taken into account in the measurement of COSMIC-

FFP functional size: only ‘data movements’ are considered directly in the measurement

with units of 1 Cfsu, as will be seen later in the measurement phase.

Figure 12 explains the contribution of the mapping phase to the measurement process

(Sellami and Abran 2003). The measurand is basically the textual description of the text

within which the FURs are embedded in any kind of format. Then, the measurement

signal would be basically the elements within the text that are related to the FURs.

Finally, the mapping from the format, whatever it is, into the generic COSMIC model of

software could be the ‘transformed value’. It is to this transformed value (e.g. the

identification of all Functional Processes recognized by COSMIC-FFP) that the

measurement function would be applied with the corresponding measurement unit.

73

Figure 12: Measurement process – detailed topology of subconcepts (Sellami and Abran 2003)

The second phase is the measurement phase, where the measurer applies the

measurement to the required elements of the model produced in the mapping phase. Each

functional process included within the software boundary identified in the mapping phase

(MAP 1.2) undergoes the measurement phase, which is subdivided into three steps:

MSP1: Identify data movements.

MSP2: Apply the measurement function.

MSP3: Aggregate the measurement results.

MSP1 identifies the data movement types (Entry, Exit, Read and Write) of each

functional process (Abran, Desharnais et al. 2001). Note that it is not the subprocesses

that are directly taken into account, but the data movements within a subprocess: in

COSMIC, a subprocess is defined as a combination of a data movement and a data

manipulation.

Then, by convention, only a portion of the subprocess is taken into account in the use of a

measurement scale, that is, only the data movement portion.

Measurement Procedure

Measurand
Result of a

Measurement

Measurement

Signal

Transformed

Value

Operator

Measurement

Method

Influence

Quantity

74

This could be similar to taking a subprocess and comparing it to a scale of an etalon, and,

since the scale of the COSMIC etalon (defined by convention at a conceptual, rather that

at a material level, as is done for the meter or the kilogram etalons) considers only data

movements, taking only this portion as input to the measurement function with its

measurement unit, that is, the Cfsu.

MSP2 is the next substep in the measurement phase, and involves applying the

measurement function by assigning the numerical value of 1 Cfsu to each instance of a

data movement (entry, exit, read or write). The results of this substep in COSMIC-FFP

are interpreted in the following way: once the data movements have been identified, a

measurement scale is used, which is defined as “1 data movement of whichever type”.

The measurer assigns to the data movement being measured a measurement unit of 1 with

respect to that etalon, and then assigns to it a symbol of 1 Cfsu. It is these results that are

taken as the numbers that are counted.

Finally, in the last step, MSP3, the results of assigning 1 to each data movement are

added together using formula 1, taking for granted that the results of MSP2 can be ratio

numbers to be added.

This measurement of a functional process is very similar to a classic measurement

exercise: a measurement scale of 1 data movement is used, and this Read on the

measurement scale is the equivalent of the marks (each mark being 1 data movement = 1

Cfsu). The size is then determined in terms of the number of marks – or units – read on

the scale.

75

In conclusion, the COSMIC-FFP measure can at least be considered on the ratio scale.

Moreover, zero is meaningful, which means that when size = 0, the software does not

have a size in terms of the COSMIC-FFP measurement unit.

As also mentioned previously, the FC formula quantifies the amount of information

exchanged in a given scenario. That is done through the following steps:

FC1: Calculate
if for each event in the given scenario.

FC2: Calculate NE for the given scenario.

FC3: Calculate
if /NE for each event in the scenario.

FC4: Calculate 2log of FC3 for each event.

FC5: Multiply FC3 with FC4.

FC6: Add FC5 for all events.

FC7: Multiply FC6 by -1.

FC1 simply counts the frequency of occurrence of the events (that is, it identifies an event

occurrence, and then adds all the occurrences identified, and that is equal to frequency).

We therefore suggest that at least the ratio scale depends on counting the frequency of

events, and, as a result, the unit will be the “event occurrence”.

FC2 adds the total number of event occurrences in a scenario, and we also suggest that it

be defined at least on the ratio scale. The unit is the “event occurrence”.

FC3 is a derived measure dividing FC1 (ratio scale) by FC2 (ratio scale). Its scale type

will be the weakest, according to (Henderson-Sellers 1996), and it can therefore be on the

ratio scale. Division is done through the unified unit, event occurrence. Now, according

to the analysis proposed in (Khoshgoftaar and Allen), because a ratio of quantities with

76

the same dimensions is itself dimensionless, the end-result is a dimensionless number and

is expressed as a percentage. Note that FC3 represents the probability of the ith event

occurring in the scenario.

FC4 applies the logarithmic function to FC3. The ratio of the logarithmic function

n2log is exactly the number of binary digits (bits) required to represent the probability n

of the event occurring. For instance, the number of combinations of a three-digit binary

number can be 8 (n=8). Thus, this step transforms the dimensionless probability value

into the number of digits required to represent it in bits.

In FC5, the representation size for the probability in bits is multiplied by the probability

of occurrence of events of the same type. Each bit is a designator of the probability of one

event’s occurrence. The result is the total number of bits required to represent the

probability of all the occurrences of one event in the sequence. Such a multiplication

would normally produce a number with the bit as the measurement unit. We suggest that

the scale type be at least on the ratio scale.

In FC6, the representational size for the probability of all occurrences of all events is

calculated.

The resulting number in FC6 is negative because of the nature of the logarithmic function

(it is negative on values less than one), but the amount of information will be non-

negative. In FC7, multiplication by –1 is required in order to obtain the non-negative

value for the amount of information. It is a simple transformation that does not change

the scale type, since -1 has no unit.

77

In conclusion, the FC measure quantifies the representational size of the probabilities of

all event occurrences in bits, and can be considered at least on the ratio scale. Also, the

absolute zero is meaningful, since (theoretically) one scenario may have zero

functionality, thus requiring 0 bits to represent it.

Once the linkage across COSMIC-FFP and functional complexity measures has been

defined and their scale types investigated, it would be of interest to investigate the use of

COSMIC-FFP in both testing effort and reliability prediction. This is accomplished in the

following chapter.

78

CHAPTER VI: TESTING AND RELIABILITY PREDICTION APPROACH

This chapter describes the proposed testing and reliability assessment approaches applied

to the COSMIC-FFP models. The subsections are organized around the sequence of

activities to be performed during the research process.

6.1 Scenario-based Testing Assessment in COSMIC-FFP

Prior to explaining the proposed testing approach in COSMIC-FFP, the links between the

concepts used in COSMIC-FFP models and the scenarios need to be identified.

As with all FSM methods, the design and rules for these methods are independent of

technologies and development approaches. When measuring the functional size of

software documented using a specific notation such as UML, it is necessary to establish

how the generic measurement concepts are mapped to any notation. The mapping of

COSMIC-FFP concepts to UML has been documented in (Jenner 2002). Six COSMIC-

FFP concepts (boundary, user, functional process, data movement, data group and data

attribute) have direct UML equivalents (use-case diagram, actor, use case, operation,

class and data attribute) – see Table 7.

Table 7: COSMIC-FFP concepts and their UML equivalents

COSMIC-FFP Concepts UML Equivalents

Boundary Use-case diagram

User Actor

Functional process Use case

Data movement Operation (message)

Data group Class

Data attribute Class attribute

79

One of the greatest benefits of the use-case technique is that it provides testers with a set

of assets which can directly drive the testing process. An instance of a use case – a

scenario – can be seen as a use-case execution that can be tested. Therefore, use cases are

sources of potential test cases.

In black-box testing, the details concerning the way in which the data are transformed

and manipulated in the scenarios are dropped, since this is a detail design issue (in the

design phase, the detailed information related to how the data are transformed

corresponds to the data structures and algorithms). This data transformation information

is equivalent to the data transformation information in COSMIC-FFP. The COSMIC-FFP

measurement method recognizes only the data movement type of subprocess, and

includes an approximation assumption whereby each data movement is associated with

an average quantity of data transformed (and whereby its true value does not deviate

significantly from such an average).

6.1.1 Test-Case Generation

The procedure for generating test cases takes the use-case model as an input. For each

scenario identified in the use-case model, we derive a test case by mapping the scenarios

to a sequence of events in time (or data movements in COSMIC-FFP), as described in the

scenarios. Next, the specific conditions that would cause the test case to execute are

identified, and real data values are supplied.

One of the most significant challenges in system testing is the large number of specific

scenarios that must be tested to ensure that the system behaves in accordance with its

80

requirements. Our testing approach targets this problem by reducing the number of test

cases while keeping the highest test coverage within given budgetary constraints.

Effective management of the test coverage is the biggest challenge in the testing activity.

For the application domains to which the COSMIC-FFP method is applicable, such as

real-time, embedded and MIS software, the use cases can drive a significant number of

test cases, although testing all of them may not be feasible. In our work here, we propose

to manage test coverage by partitioning the generated set of test cases into equivalence

classes, prioritizing the test cases within those classes based on the amount of information

they process and selecting the most critical test cases based on a balance between cost

and priority.

6.1.2 Partitioning into Equivalence Classes

We have adopted a strategy similar to that used in (Alagar, Chen, Ormandjieva and

Zheng 2006), with some changes. Our approach is summarized in Figure 13. This

approach would allow the use of a metric-based algorithm to partition the set of generated

test cases, STC, from the test selection domain V, where “metric” means the distance

between two elements in a set of test cases, defined in terms of their similarity and

dissimilarity. Before applying such an algorithm, the test set STC is generated from V by

using the test case generation algorithm. This algorithm is simply applied so that each

scenario constitutes one test case, as described in section 5.1.1.

81

V

Test Selection Domain

STC

Generated Test Set

Test Case Generation Algorithm

Metric-Based Test Set Partition Algorithm

Equivalence Classes TS1, ..., TSi, ...

Figure 13: Test set partitioning strategy

Next, in order to select the subset of test cases to be included in one equivalence class,

the following constraint must be satisfied to execute the second algorithm:

The distance ε between any two selected test cases should not be greater than a given

constant value εmax.

The metric-based test set partitioning algorithm described in Figure 14 will be executed

to create the equivalence classes until STC = ∅. This algorithm divides STC into

equivalence classes, where each equivalence class TSi will include test cases with similar

functionality and be based on having short distances between the test cases in one

equivalence class. Every time the algorithm is executed, one equivalence class TSi will be

created. We stop executing the algorithm when STC contains no more test cases. It should

be noted that we do not choose the final set of test cases here, we only partition STC.

82

Figure 14: Metric-based Test Case Partitioning Algorithm

Now, we explain how the distance between the two test cases, t1 and t2, is calculated. The

same formula that was used in (Alagar, Chen et al. 2006) is also used here:

td (t1, t2) = Similarity (t1 , t2) * Dissimilarity (t1 , t2) * e
l

Remember that t2 is the test case that will be chosen for the second algorithm. l can be

calculated as follows: -(length (t1)/length (t2)).

The Similarity (t1 , t2) = 2 (- length (LCP (t1, t2)

), where LCP is the longest common

prefix of the two test cases. The range of the Similarity measure is between 0 and 1.

Precondition :{

STC ≠ ∅ ∧

εmax > 0 ∧

∀ i • TSi =
∅}

- sets εmax (predefined value based on experimental work)

While STC ≠ ∅
 {

- selects the longest test case t in set STC

- sets ε to 0
- moves t from the set STC to the set TSi

While (STC ≠ ∅ ∧ (ε < εmax) {
- chooses a test case t in set STC whose distance from the set

TSi is minimal in order to put similar test cases into one

equivalence class

- sets ε to the distance between t and TSi

- if ε < εmax, then t moves from STC to set TSi

 } // equivalence class TSi is created

i=i+1;

 }

83

The Dissimilarity measure between the two test cases, t1 and t2, is calculated as the

number of elementary transformations minimally needed to transform the string (t1/LCP (

t1, t2)) into the string (t2/ (LCP (t1, t2)). For example, the distance between the following

two test cases: e1.e2.e3.e4.e1 and e1.e1.e1.e2.e1 = ½ * 3 * e
-1
. The distance formula td (t1, t2)

indicates that the more distance there is between two test cases, the more they will differ.

It is to be noted that to generate a set of test cases from software product and its own

specification, in our case from COSMIC-FFP model, a testing method should be defined

using a test case selection criterion. The level of test case adequacy, which is the degree

to which the software is tested, is to be evaluated as well. The degree of adequacy of

testing related to the test adequacy criterion is estimated by the test adequacy

measurement. Theoretically valid coverage measures evaluate how well the test suite

approximates its target. The measurement of the quality of coverage of the test suite

would increase (or decrease) the confidence in tested components. Applying that in our

testing approach, we can define the test case selection criterion in terms of number of

scenarios that has been taken from COSMIC-FFP model and the most important and risk

laden scenarios, which can be determined during the specification phase where the

project typically undergoes multiple iterations.

6.1.3 Priority of Test Cases

For large systems, there may be a very large number of test cases, and a priority has to be

assigned to them to help increase the testing coverage within the given budgetary

84

constraints. Prioritization of test cases is an important issue in software engineering

because of limited testing budgets, and is usually performed manually.

In our approach, the FC, which was described in section 5.1, is used to prioritize test

cases (Abran, Ormandjieva et al.). Intuitively, more, and diverse, functionality of the

system would lead to a larger portion of the system being involved in that usage. The

entropy calculated on a sequence of events abstracting a scenario quantifies the average

information exchange for a given usage of the system. Therefore, it should correlate with

the error spans during testing. The formula used to calculate functional complexity is as

follows (Abran, Ormandjieva et al. 2004):

)/(log)/(-
1

2 NEfNEfFC
n

i

ii∑
=

=

The probability of the i
th
 most frequently occurring event is equal to the percentage of

total event occurrences it contributes, and is calculated as
ip = if / NE, where if is the

number of occurrences of the i
th
 event and NE is the total number of events in the

sequence. The priority assignment should be performed automatically.

6.1.4 Test Selection Algorithm

Note that total resource consumption is directly proportional to the number of test cases

selected. As a result, the total cost of the test set is calculated by multiplying the number

of selected test cases by C, where C is a positive constant scalar denoting the cost of one

test case. In order to select the optimal subset of test cases that will be characterized by

85

the highest test coverage, we balance the budget and the priority of the test cases, as

follows:

For all non-empty equivalence classes TSi

 Step 1. Choose the highest-priority test case from the equivalence class TSi;

Step 2. Add the chosen test case to the Optimal Set and remove it from the

equivalence class TSi;

 Step 3. Increase the total testing cost in C.

 If (the total testing cost exceeds a given budget Cmax)

 End the algorithm

 End For

The final result of our testing approach is a set of selected test cases affording the best

possible coverage (i.e. the test case with the highest FC value, from each equivalence

class). However, we cannot claim full fault coverage, since this algorithm maximized the

test coverage within the limits of a given budget. That is the limitation of the proposed

testing method.

Moreover, we can use the Rational Rose utility, as seen in section 6.1.6, which proposes

tools such as Robot, TestManager and the Test Plan for executing our selected test cases.

Using these tools may enable us to arrive at a complete testing process that will be ready

for interested companies to use, and will be useful to them. In the following section, we

apply our testing strategy to a real case study obtained from ISO 14143-4: 2000 Set RUR

A.1.

86

6.1.5 Case Study: Hotel Accommodation System (Reservation)

The feasibility of our testing approach is demonstrated with the following case study. The

Hotel Accommodation System (Reservation) is documented in the ISO technical report:

ISO/IEC TR 14143-4 (Version 2000). This ISO document provides various sets of FURs,

usually described in a textual format. The purpose of this ISO document is to provide

researchers and practitioners with sets of requirements to be used as publicly available

documents for measuring the functional size of software.

The main menu of the hotel system offers two choices: accommodation and invoice &

payment. The reservation system is part of the accommodation system. It has the

following functions:

Function (1): RES Create Reservation

A reservation request can be entered using the RES screen. All data except the

reservation number are entered. When changing the reservation data using the RES

screen, the reservation number can be found by name, or by part of a name. All data,

except the reservation number, can be changed. If there is more than one reservation with

the same name, the selection screen (SEL-RES) is shown.

The system further checks whether or not the stated quantity of rooms of the desired

room type is available for the desired period (not occupied or not reserved). “Being

occupied” is checked on the basis of the data: room type, start date, number of days and

quantity of reserved rooms. If necessary, more room types can be stored for the same

period. Only room type and quantity of rooms can be entered.

87

If the request can be met, the acceptance screen ACP-RES stores the reservation and a

confirmation of the reservation (CON-RES) is produced for the billing address. If the

request cannot be met, a room type report (RT-REP) is called up to look up an alternative

choice.

Screens used: RES (request for reservation), SEL-RES (selection of reservation), ACP-

RES (accept reservation), RT-REP (room type report), CON-RES (confirmation of

reservation).

Function (2): ACP-RES Accept Reservation

This function is performed by the RES function when a reservation request can be met. It

displays the reservation details and the assigned reservation number. An accepted

reservation can then be confirmed.

Function (3): SEL-RES Select Reservation

This function is performed by the RES function when a reservation request can be met. It

displays the reservation details and the assigned reservation number. An accepted

reservation can then be confirmed.

Function (4): RT-REP Room Type Report

This report is provided when a requested room type is not available. The Room Type

Report shows the number of rooms which:

- are not occupied, and

- are not reserved

88

Function (5): CON-RES Confirm Reservation

This function is performed when an accepted reservation is confirmed. The confirmation

can be made in four languages (EN, FR, GE or NL).

The Use Case (Figure 15) and the Sequence Diagrams (Figure 16-22) have been prepared

to facilitate the identification of the data movements, and to ensure that all data

movements have been identified.

Select Reservation

User

Create Reservation

Update Reservation

Accept Reservation

Confirm Reservation

Cancel Reservation

Room Type Report

Figure 15: Hotel Reservation System – Use-Case diagram

89

Reservation
Interface

Reservation SystemUser : User

1: Create a Reservation

6: Write the Billing address

7: Write the Reservation details

2: Read the Reservation number

3: Display the Reservation number

4: Read Rooms information

5: Display Rooms information

8: Display messages

Figure 16: Create Reservation Sequence diagram

User : User Reservation
interface

Resevation
System

1: Select Reservation for update

2: Read Reservation detail

3: Display Reservation detail

10: Write Billing Address

11: Write Reservation detail

4: Read Hotel information

5: Display Hotel information

6: Read Billing Address

7: Display Billing Address

8: Read Room information

9: Display Room information

12: Display messages

Figure 17: Update Reservation Sequence diagram

90

User : User
Reservation
Interface

Reservation
System

1: Press F2

2: Read Hotel information

3: Display Hotel information

4: Read Reservation detail

5: Display Reservation detail

6: Read Billing address

7: Display Billing Address

8: Read Room information

9: Display Room information

10: Display messages

Figure 18: Confirm Reservation Sequence diagram

User : User
Reservation
Interface

1: Press F2

Reservation
System

2: Read Hotel information

4: Read Reservation detail

6: Read Billing address

3: Display Hotel information

5: Display Reservation detail

7: Display Billing address

8: Display messages

Figure 19: Accept Reservation Sequence diagram

91

User : User
Reservation
interface

Reservation
System

1: Request for cancel

8: Display Cancel Confirmation

2: Read Reservation detail

3: Display Reservation detail

4: Read Hotel information

5: Display Hotel information

6: Read Billing Address

7: Display Billing Address

Figure 20: Cancel Reservation Sequence diagram

User : User
Reservation
interface

Reservation
System

1: Enter name

2: Read Hotel information

3: Display Hotel information

4: Read Reservation detail

5: Display Reservation detail

6: Read Billing address

7: Display Billing address

8: Display messages

Figure 21: Select Reservation Sequence diagram

92

Reservation
interface

Reservation
System

System

1: Rooms Occupied

2: Read Hotel information

3: Display Hotel information

4: Read Reservation detail

5: Display Reservation detail

6: Read Room information

7: Display Room information

8: Display messages

Figure 22: Room Type Report Sequence diagram

Applying the Proposed Testing Approach

1) Test-Case Generation

According to the sequence diagrams, we have the following events for the whole Hotel

Reservation System:

e1: Create a reservation

e2: Read the reservation number

e3: Display the reservation number

e4: Read rooms information

e5: Display rooms information

e6: Write the billing address

e7: Write the reservation details

e8: Display messages

e9: Select reservation for update

93

e10: Read reservation details

e11: Display reservation details

e12: Read hotel information

e13: Display hotel information

e14: Read billing address

e15: Display billing address

e16: Request for cancel

e17: Display Cancel Confirmation

e18: Rooms occupied

e19: Press F2

e20: Enter name

According to the proposed test case generation algorithm, shown in Figure 13 and

discussed in sections 5.1.1 & 5.1.2, the generated test set STC = {t1, t2, t3, t4, t5, t6, t7},

where Table 8 shows the detailed descriptions of the test cases generated from the

scenarios (sequence diagrams).

Table 8: Test-case descriptions

Test case

number

Test case description Sequence

Diagram that a

test case is

obtained from

Length of

test case

t1 e1.e2.e3.e4.e5.e6.e7.e8 Create

Reservation

8

t2 e9.e10.e11.e12.e13.e14.e15.e4.e5.e6.e7.e8 Update

Reservation

12

t3 e19.e12.e13. e10.e11. e14.e15.e4.e5.e8 Confirm

Reservation

10

t4 e19.e12.e13. e10.e11. e14.e15.e8 Accept

Reservation

8

t5 e16.e10.e11.e12.e13.e14.e15.e17 Cancel

Reservation

8

t6 e20.e12.e13. e10.e11. e14.e15.e8 Select

Reservation

8

t7 e18.e12.e13. e10.e11. e4.e5.e8 Room Type

Report

8

94

Test Case Partitioning Algorithm

The metric-based test case partitioning algorithm, which is shown in Figure 14, is applied

now to the test cases generated so that we put similar test cases into one equivalence

class.

We assume that εmax =1. We start with t2, which is the longest test case (length = 12).

STC = {t1, t3, t4, t5, t6, t7} and the first element in the first equivalence class is t2 (TS1 =

{t2}). The distance between t2 and the remaining test cases in STC is calculated, as shown

in the following table, so that the test case with the minimal distance will be included in

the same equivalence class TS1.

Table 9: Distance calculated between t2 and the remaining test cases

ti Similarity (t2 , ti) Dissimilarity (t2 , ti)
e
l
 td (t2, ti)

t1 2
(-5)
 = 0.03125 7 e

(-12/8)
 0.0488

t3 2
(-2)
 = 0.25 5 e

(-12/10)
 0.3765

t4 2(-2) = 0.25 7 e (-12/8) 0.3905

t5 2
(-4)
 = 0.0625 6 e

(-12/8)
 0.0837

t6 2
(-2)
 = 0.25 7 e

(-12/8)
 0.3905

t7 2
(-2)
 = 0.25 7 e

(-12/8)
 0.3905

Note that, while calculating Similarity, we tried another approach: take the largest

common subsequence starting from an input external event (i.e. e4.e5.e6.e7.e8 for t1 and t2).

This is because the use cases might include common behavior, described as requests from

the environment (input events) and the system’s answers to these requests. This common

behavior can occur anywhere in the scenario, not only at the beginning, and we shall take

it into account. Such behavior might indicate low cohesion in the use case, and thus the

95

need to factor it out as a function-level use case included in, or extending, the user-level

use cases.

Table 10 explains in greater detail how we obtained the results shown in the Dissimilarity

column.

Table 10: How to calculate the dissimilarity between two test cases

ti Dissimilarity

(t2 , ti)

Dissimilarity (t2 , ti) descriptions Minimal & elementary

transformations

t1 7 Change: e1.e2.e3.e4.e5.e6.e7.e8

To:

e9.e10.e11.e12.e13.e14.e15.e4.e5.e6.e7.e8

- Change e1.e2.e3 by

e9.e10.e11

- insert e12.e13.e14.e15

t3 5 Change:

e19.e12.e13. e10.e11. e14.e15.e4.e5.e8

To:

e9.e10.e11.e12.e13.e14.e15.e4.e5.e6.e7.e8

- insert e6.e7 to t3

- move e10.e11 ahead

- change e19 by e9

t4 7 Change: e19.e12.e13. e10.e11. e14.e15.e8

To:

e9.e10.e11.e12.e13.e14.e15.e4.e5.e6.e7.e8

- insert e4.e5.e6.e7

- move e10.e11 ahead

- change e19 by e9

t5 6 Change: e16.e10.e11.e12.e13.e14.e15.e17

To:

e9.e10.e11.e12.e13.e14.e15.e4.e5.e6.e7.e8

- change e16 by e9

- change e17 by e4

- insert e5.e6.e7.e8

t6 7 Change: e20.e12.e13. e10.e11. e14.e15.e8

To:

e9.e10.e11.e12.e13.e14.e15.e4.e5.e6.e7.e8

- change e20 by e9

- move e10.e11 ahead

- insert e4.e5.e6.e7

t7 7 Change: e18.e12.e13. e10.e11. e4.e5.e8

To:

e9.e10.e11.e12.e13.e14.e15.e4.e5.e6.e7.e8

- insert e6.e7

- insert e14.e15

- move e10.e11 ahead

- change e18 by e9

As a result, t2 is a minimal distance from t1 and both are in the same equivalence class,

where TS1 = {t2, t1}, STC = {t3, t4, t5, t6, t7} and ε is set to 0.0488.

96

Now, we must proceed with the following steps:

1. Calculate the distances between all the elements in STC and t1.

2. For each element t in STC, set td (t,TS1) to the min between (t,t2) and (t,t1).

3. Find an element t in STC, with td(t,TS1) < ε.

a. If one exists, add it to TS1, change ε, STC, and calculate the distances
between the remaining elements in STC and the new element in TS1, and

so on (similar to steps 1 and 2 above).

b. Otherwise, start the process of creating TS2.

The distance between t1 and the remaining test cases in STC is calculated, as shown in

Table 11, so that the test cases with the distance < ε will be included in the same

equivalence class TS1.

Table 11: Distance calculated between t1 and the remaining test cases

ti Similarity (t1 , ti) Dissimilarity (t1, ti)
e
 l
 td (t1, ti)

t3 2
(-2)
 = 0.25 9 e

(-10/8)
 0.6446

t4 2
(-1)
 = 0.5 7 e

(-1)
 1.2875

t5 2
0
 = 1 8 e

(-1)
 2.943

t6 2(-1) = 0.5 7 e (-1) 1.2876

t7 2
(-1)
 = 0.5 7 e

(-1)
 1.2876

Table 12 explains in greater detail how we obtained the results shown in the Dissimilarity

column.

97

Table 12: How to calculate the dissimilarity between two test cases

ti Dissimilarity (t1 , ti) Dissimilarity (t1, ti)

descriptions

Minimal & elementary

transformations

t3 9 Change: e1.e2.e3.e4.e5.e6.e7.e8

To:

e19.e12.e13.e10.e11.e14.e15.e4.e5.e8

- remove e6.e7

- change e1.e2.e3 by

e19.e12.e13

- insert e10.e11.e14.e15

t4 7 Change: e1.e2.e3.e4.e5.e6.e7.e8

To:

e19.e12.e13.e10.e11.e14.e15.e8

Change e1.e2.e3.e4.e5.e6.e7 by

e19.e12.e13.e10.e11.e14.e15

t5 8 Change: e1.e2.e3.e4.e5.e6.e7.e8

To:

e19.e12.e13.e10.e11.e14.e15.e8

Change: e1.e2.e3.e4.e5.e6.e7.e8

by

e19.e12.e13.e10.e11.e14.e15.e8

t6 7 Change:

e20.e12.e13.e10.e11. e14.e15.e8

To:

e1.e2.e3.e4.e5.e6.e7.e8

Change

e20.e12.e13.e10.e11.e14.e15 by

e1.e2.e3.e4.e5.e6.e7

t7 7 Change:

e18.e12.e13.e10.e11. e4.e5.e8

To:

e1.e2.e3.e4.e5.e6.e7.e8

- insert e6.e7

- change

e20.e12.e13.e10.e11 by

e1.e2.e3

As a result, TS1 = {t2, t1} stays the same, and we start generating TS2 to include the first

element which is t3, the second longest test case. STC = {t4, t5, t6, t7} and Table 13

calculates the distance between t3 and the remaining test cases in STC.

Table 13: Distance calculated between t3 and the remaining test cases

ti Similarity (t3 , ti) Dissimilarity (t3, ti)
e l td (t3, ti)

t4 2
(-7)
 = 1/128 2 e

(-10/8)
 .00448

t5 2
(-2)
 = 0.25 6 e

(-10/8)
 0.4297

t6 2
(-6)
 = 1/64 3 e

(-10/8)
 0.0134

t7 2
(-4)
 = 1/16 3 e

(-10/8)
 0.0537

98

Table 14 explains more how we obtained the results shown in the Dissimilarity column.

Table 14: How to calculate the dissimilarity between two test cases

ti Dissimilarity

(t3 , ti)

Dissimilarity (t3, ti) descriptions Minimal & elementary

transformations

t4 2 Change: e19.e12.e13. e10.e11. e14.e15.e8

To:

e19.e12.e13. e10.e11. e14.e15.e4.e5.e8

- insert e4.e5

t5 6 Change: e16.e10.e11.e12.e13.e14.e15.e17

To:

e19.e12.e13. e10.e11. e14.e15.e4.e5.e8

- change e16 by

e19.e12.e13

- change e17 by

e4.e5.e8

t6 3 Change: e20.e12.e13. e10.e11. e14.e15.e8

To:

e19.e12.e13. e10.e11. e14.e15.e4.e5.e8

- change e20 by e19

- insert e4.e5

t7 3 Change: e18.e12.e13. e10.e11. e4.e5.e8

To:

e19.e12.e13. e10.e11. e14.e15.e4.e5.e8

- insert e14.e15

- change e18 by e19

As a result, t4 is a minimal distance from t3 and both are in the same equivalence class,

where TS2 = {t3, t4}. Now STC = {t5, t6, t7} and ε is set to 0.00448.

Now, we have to do the following:

1. Calculate the distances between all the elements in STC and t4.

2. For each element t in STC, set td (t,TS2) to the minimal distance between (t,t3) and

(t,t4).

3. Find an element t in STC with td(t,TS2) < ε.

a. If one exists, add it to TS2, change ε, STC, and calculate the distances
between the remaining elements in STC and the new element in TS1, and so

on (similar to steps 1 and 2 above).

b. Otherwise, start the process of creating TS3.

99

The distance between t4 and the remaining test cases in STC is calculated as shown in

Table 15, so that the test case with the distance < ε will be included in the same

equivalence class TS2.

Table 15: Distance calculated between t4 and the remaining test cases

ti Similarity (t4 , ti) Dissimilarity (t4 , ti)
e l td (t4, ti)

t5 2(-2) = 0.25 4 e (-1) 0.3679

t6 2
(-7)
 = 1/128 1 e

(-1)
 0.00287

t7 2
(-4)
 = 1/16 3 e

(-1)
 0.06898

Table 16 explains in greater detail how we obtained the results shown in the Dissimilarity

column.

Table 16: How to calculate the dissimilarity between two test cases

ti Dissimilarity

(t4 , ti)

Dissimilarity (t4 , ti) descriptions Minimal & elementary

transformations

t5 4 Change: e16.e10.e11.e12.e13.e14.e15.e17

To:

e19.e12.e13. e10.e11. e14.e15.e8

- change e16 by e19

- change e17 by e8

- move e12.e13

ahead

t6 1 Change: e20.e12.e13. e10.e11. e14.e15.e8

To:

e19.e12.e13. e10.e11. e14.e15.e8

- change e20 by e19

t7 3 Change: e18.e12.e13. e10.e11. e4.e5.e8

To:

e19.e12.e13. e10.e11. e14.e15.e8

- change e18 by e19

- change e4.e5 by

e14.e15

As a result, TS2 = {t3, t4, t6}, since the distance between t4 and t6 < ε and therefore t6 will

be included in TS2. STC = {t5, t7} and ε is set to 0.00287. The distances between all the

elements in STC and t6 will be calculated in Table 17, in order to see whether or not we

may include another test case in TS2.

100

Table 17: Distance calculated between t6 and the remaining test cases

ti Similarity (t6 , ti) Dissimilarity (t6 , ti)
e l td (t6 , ti)

t5 2
(-2)
= 0.25 4 e

(-1)
 0.36788

t7 2
(-4)
= 1/16 3 e

(-1)
 0.06898

Table 18 explains in greater detail how we obtained the results shown in the Dissimilarity

column.

Table 18: How to calculate the dissimilarity between two test cases

ti Dissimilarity

(t6 , ti)

Dissimilarity (t6 , ti) descriptions Minimal & elementary

transformations

t5 4 Change: e16.e10.e11.e12.e13.e14.e15.e17

To:

e20.e12.e13. e10.e11. e14.e15.e8

- change e16 by e20

- change e17 by e8

- move e12.e13 ahead

t7 3 Change: e18.e12.e13.e10.e11. e4.e5.e8

To:

e20.e12.e13. e10.e11. e14.e15.e8

- change e4.e5 by

e14.e15

- change e18 by e20

As a result, TS2 = {t3, t4, t6} stays the same and we start generating TS3 to include the

first element which is t5. STC = {t7} and Table 19 calculates the distance between t5 and

t7.

Table 19: Distance calculated between t5 and the remaining test cases

ti Similarity (t5 , ti) Dissimilarity (t5 , ti)
e l td (t5 , ti)

t7 2
(-2)
 = 0.25 6 e

(-1)
 0.5518

Table 20 explains more how we obtained the results shown in the Dissimilarity column.

101

Table 20: How to calculate the dissimilarity between two test cases

ti Dissimilarity

(t5 , ti)

Dissimilarity (t5 , ti) descriptions Minimal & elementary

transformations

t7 6 Change: e18.e12.e13.e10.e11. e4.e5.e8

To:

e16.e10.e11.e12.e13.e14.e15.e17

- change e18 by e16

- change e4.e5.e8 by

e14.e15.e17

- move e10.e11 ahead

As a result, t5 is a minimal distance from t7, which is less than εmax (1), and both test

cases will be in the same equivalence class where TS3 = {t5, t7}.

2) Priority of Test Cases

Once the generated test cases have been partitioned into three equivalence classes, it is

better to prioritize them within each equivalence class according to their functional

complexity (FC). More, and diverse, functionality in the system would lead to a larger

portion of the system being involved in that usage, and therefore it will have higher

priority than other test cases since it would cover more failures.

The functional complexity for each test case is shown in the following table:

Table 21: The functional complexities for the test cases.

TS1

t1 - 1/8

t2 - 1/12

TS2

t3 - 1/10

t4 - 1/8

t6 - 1/8

TS3

t5 - 1/8

t7 - 1/8

2log

2log

2log

2log

2log

2log

2log

102

Note that in TS1 the FC for t2 is greater than the FC for t1, and therefore it will have a

higher priority than t1. The new TS1 = {t2, t1} as an ordered set. In TS2, the FC for t3 is

greater than the FCs for t4 and t6. Therefore, t3 has a higher priority than t4 and t6;

however, t4 and t6 have the same FC. The new TS2 = {t3, t4, t6} or {t3, t6, t4}. Finally, t5

and t7 have the same FC in TS3. The new TS3 can either be {t5, t7} or {t7, t5} as an

ordered set.

6.1.6 Test-Case Execution (Update Reservation)

In our work here, we elected to use a tool suite for the Update Reservation function to

illustrate the proposed testing strategy. In order to offer a complete package for testing

software, we used the Rational Suite to execute the test cases generated and selected by

the proposed testing strategy. Test-case execution comprises four main steps in the

Rational Suite.

First, the system requirements have to be created in a Rational RequisitePro project

(Shukla 2005). Any mistake in capturing the requirements of the system will cost a great

deal in later stages of the system development life cycle. Through tool integration,

requirements are made accessible to guide and define the system architecture, the testing

and the documentation activities (Shukla 2005).

Then, Rational Administrator, which is also included in the Rational Suite, is responsible

for creating what are called “Rational Centralized” projects, and configuring them for

software development teams. It is used to integrate the Rational tools, which are

RequisitePro, TestManager and Robot (Cammarano 2001).

103

After creating the project with Rational Administrator, a Test Plan is defined by Rational

TestManager, which organizes the manual testing workflow, logs the steps and results of

manual scripts as they are performed, and generates automated reports of manual test

results and measures (IBM 2004).

The last step in test case execution is the automation of functional testing through

Rational Robot. This kind of automatic testing should be carried out individually for each

function, but it can be executed for all the functions together through TestManager.

Figure 23 illustrates the introduction of the Hotel Reservation System requirements in a

Rational RequisitePro project for testing and tracing by TestManager.

Figure 23: Hotel reservation system requirements management

104

Figure 24 introduces a part of the test plan we adopted here to assess the progress of the

Hotel Reservation System.

Figure 24: Rational TestManager for the Hotel Reservation System

105

The script presented in Figure 25 is the result of the automatic function testing produced

by Robot. Tested here is the Update a Reservation function of the Hotel Reservation

System.

This automatic function testing is linked to its corresponding test case in the Test Plan

presented above by TestManager, and will be automatically executed when the tester runs

the Test Plan.

Figure 25: Results of Automatic Function Testing produced by Robot

The screen in Figure 26 provides the Actual Result and the Interpreted Result of the

Update Reservation function test.

106

Figure 26: Results produced by the proposed testing procedure

Note that the Rational Suite is a useful product for executing these test cases, which are

generated and selected through the proposed testing algorithms; however, it does not

specify the details of the test cases (IBM 2004). For testing purposes, it classifies test

requirements as black-box and test-case requirements as white-box. Rational Suite is only

concerned with test requirements. This means that the test requirements are organized in

Requisite Pro and linked by TestManager, where the development team can track test

requirement revisions. It is the task of the tester to use his or her skill and experience to

introduce and address the details required for test script design, test data design and test

result verification purposes from the existing test requirements information.

6.2 Entropy-based Reliability Assessment in COSMIC-FFP

To assess reliability prior to implementation, it is important to understand the complex

interactions among entities in software: this can be achieved by modeling their designs

107

(the entities, their interactions and the probabilities of the interactions) as a Markov

system, and assessing the level of reliability by calculating the probabilities of their

interaction. Such an approach yields results for both the time-dependent evolution of the

system and the steady state of the system.

The research reported in this thesis extends the COSMIC-FFP and reliability assessment

model (Ormandjieva 2002) to the component-based system context. In essence, each

component of the system is modeled by a discrete time Markov chain and visualized

through a finite-state machine. Then, a probabilistic analysis by Markov chains can be

performed to analyze the component’s entropy based on its behavior specification with

extended state machines. The approach presented here of applying the Markov model in

the COSMIC-FFP context will be illustrated with the Railroad Crossing case study. The

reliability of the whole system is computed from the system’s architectural configuration

and the reliability of the individual components. The purpose of the reliability assessment

is to compare alternative component-based system designs, and to assist in making the

architectural changes to the evolving system.

6.2.1 Markov Model and State Machine Diagrams

A state-machine diagram (Primer 2004), referred to as a state diagram in UML 2, is a

UML behavioral diagram. It is used to model the dynamic behavior of individual objects

and depict the various states that an object may be in and the transitions between those

states.

108

A state (Primer 2004) represents a stage in the behavior pattern of an object, and it is

possible to have initial states and final states. A transition (Primer 2004) is a progression

from one state to another and will be triggered by an event that is either internal or

external to the object. See Figure 27 for an example of a state-machine diagram that

models the behavior of the object “Train” for the following railroad system case study

(Alur 1999), (Vangalur, Alagar and Periyasamy 1998), where more than one train can

cross a gate simultaneously, through multiple parallel tracks. According to the train’s

destination, it can independently choose the gate it will cross. Each gate is controlled by

one controller which must be active all the time to close and open the gate for the railroad

crossing. A train enters the crossing within an interval of time units after informing the

controller that it is approaching. It also informs the controller that it is leaving the

crossing within some time units of sending the approaching message. In response, the

controller commands the gate to close when it receives a message from the first train

entering the crossing to make sure that no other train can cross the railroad at the same

time. It also instructs the gate to reopen when it receives a message from the last train

when it is leaving the crossing.

The state machine in Figure 27 models the behavior of the train at a point where it has

five states: an initial state (the black circle), “idle”, “toCross”, “cross”, “leave” and no

final state, since this is a continuous operation. Note that “Near” is a triggering event that

makes the train move from the “idle” state to the “toCross” state. Some of the transitions

have conditions, such as (time units> entrance time > 0), which have to be satisfied in

order for the object to move to other states. The general description for the following

109

state machine diagram is that, as the train approaches a gate, it sends a “Near” message to

the gate controller. Once the train leaves the gate, it sends an “Exit” message to the gate

controller. It is to be noted that the proposed reliability prediction approach is done in the

specification level, where the visible states are specified. We are not drawing the detailed

state machine diagrams which usually are included in the design level.

Figure 27: Train state machine

Which transition will be triggered from one state is the same as in a random walk; based

on this, the Markov model can be used to analyze the reliability of state machine software

(Ormandjieva 2002). Therefore, the prediction of reliability is derived from the steady

state of the Markov system. The mapping of the Train object to a Markov system is

shown in Figure 28, with a probability of 1 for each event, since there is only one event

from each state. In a case where there are two events from one state, then each event

would have a probability of ½. P12 represents the transition probability that the event will

be triggered, and the move is accordingly made from state S1 to state S2..

idle

cross

leave

Exit [time units >exit time>0]

toCross

Out

In[time units >entrance time>0]

Near

110

Figure 28: Train state diagram with its transition probabilities Pij

Now, the transition matrix P (see Table 22) can be built from this state-machine diagram,

and it is a matrix P, the ij
th
 entry of which is Pij. Note that the entries in each row add up

to 1.

Table 22: Transition matrix P for Train object

 S1 S2 S3 S4

S1 0 1 0 0

S2 0 0 1 0

S3 0 0 0 1

S4 1 0 0 0

6.2.2 COSMIC-FFP and Sequence Diagrams

A sequence diagram (Primer 2004) is a UML structural diagram that models the flow of

logic within the system in a visual manner, enabling both the documentation and

validation of the user’s logic, and is commonly used for both analysis and design

purposes. The sequence diagram is the most popular UML artifact for dynamic modeling,

and focuses on identifying the behavior within the system (Primer 2004). It consists of a

group of instances (represented by life lines or dashed lines) and the messages they

exchange during the interaction (see Figures 29 and 30) that are the sequence diagrams

derived from the Railroad Crossing case study for FSM purposes. Both have three

S1

S3 S4

P41 = 1

S2

P34 = 1
P23 = 1

P12 = 1

111

objects, namely Train, Controller and Gate, which interact by sending messages to each

other. While measuring the functional size of software using COSMIC-FFP, the sequence

diagrams are drawn to define the interactions between the software and its environment

and within the software, as illustrated in Figure 2. In COSMIC-FFP, the environment is

represented by the users interacting with the software, such users being humans,

engineering devices or other software applications. Within the software, the interactions

deal with the data read from, or send the data to, persistent storage. Going back to the

railroad case study, the controller is the software that has a boundary where the trains

interact with the controllers through sensors (many-to-many relationships) and the

controllers communicate with the gates through actuators (one-to-one relationships).

In the RUP context (Kruchten and Philippe 2000), the functional processes used in

COSMIC-FFP can represent the set of scenarios for the software. For example, in the

railroad system, the first sequence diagram (Figure 29) shows that, when a train arrives, a

Near message is sent to the controller. The controller then instructs the gate to lower, and,

in return, the gate goes down and the train enters the crossing. This process of allowing

the train to cross the railroad is considered as a functional process, and is triggered by

sending a “Near” message. Similarly, “train leaves crossing” (Figure 30) is a scenario

containing a sequence of events between the train and the controller, and this scenario

also contains a sequence of events within the system (controller, in this case). Therefore,

for each functional process, its subprocesses and its triggering events are sequences of

events (or data movements).

112

Figure 29: Train Enters Crossing sequence diagram

Figure 30: Train Leaves Crossing sequence diagram

6.2.3 Analysis of Linkages across Models

The FSM method COSMIC-FFP can be linked to UML 2.0 state diagrams for modeling

behavior. This allows for probabilistic reliability modeling based on discrete Markov

chains, since a Markov model is based on state diagram descriptions. The linkages

between COSMIC-FFP and the Markov model can be analyzed, since the two have

something in common: UML diagrams.

The correspondence of COSMIC-FFP to UML state diagrams requires a mapping of

COSMIC-FFP concepts (such as boundary, layer, functional process, triggering event,

In

Down

Lower
Near

:Train :Controller

:Gate

Out

Up

Raise

Exit

:Train :Controller

:Gate

113

data group, data movement and attributes) to state diagram notation. The reliability

requirements for autonomic elements and component-based systems have to be specified

formally and mapped to system behavior, so that the achievement of reliability can be

monitored automatically.

Analysis of Table 23 reveals that the same conceptual level is used for both COSMIC-

FFP and UML 2 state-machine diagrams; however, the terms used in the data movements

of COSMIC-FFP and in the events of state-machine diagrams have different labels. A

summary of the terms used in COSMIC-FFP and state-machine diagrams that have

similar meanings is presented in Table 23. For example, in COSMIC-FFP, data

movements are classified in four categories: Entry, Exit, Read and Write. The term

corresponding to the data movement and its categories that is used in state-machine

diagrams is “event”, with two classifications: internal and external.

In addition, the architecture of the system corresponds to the layers in the COSMIC-FFP

context where a layer is a result of the functional partitioning of the software environment

such that all included functional processes perform at the same level of abstraction. One

layer may contain one or more objects, or more than one component, that interact with

one another in one layer. Also, data groups, which represent the set of data attributes in

COSMIC-FFP, correspond to the term “objects” that is used in state-machine diagrams.

These diagrams explore the detailed transitions between states as the result of events

(either external or internal) for only one object (Primer 2004). Some additional

expressiveness of the state-machine diagrams could be taken into account. For instance,

an external event can produce a set of internal events, and this relationship (between

114

internal and external events) can probably affect the software functional size and should

be described in the sequence diagrams in terms of Entry and/or Exit data movements,

which may in turn produce a set of Read and/or Write data movements. Another issue

which can be carefully analyzed is the possible additional readings that may arise as a

result of pre- and/or post-conditions, where their operands can refer to other objects

associated with the events of a sequence or state diagram. This may affect the reliability

prediction calculations based on Markov chains and its probabilities where conditional

probabilities can be applied. Other terms used in both models, such as those interacting

with the software, the software boundary and the set of user requirements, have the same

labels.

Table 23: Similarity between COSMIC-FFP and the state machine diagram concepts

From Table 23, it can be seen that COSMIC-FFP and UML state-machine diagrams have

similar concepts, and this has motivated further investigation into the possibility of

Concepts COSMIC-FFP (Data Movement)

terms

 State Machine Diagrams

(Events) terms

System Architecture Layer One or more objects

Humans or things interacting with the

software

Software users Software users

Between the environment and the software Software boundary Software boundary

Set of User Requirements Functional Process Sequence of Events (Scenario)

Data which are part of the interaction Data groups Objects

External Input (from the environment) Triggering event External event

External Input (from the environment) Entry data movement External event

Output (to the environment) Exit data movement External event

Internal Input (within the software) Read data movement Internal event

Internal Input (within the software) Write data movement Internal event

115

deriving state-machine diagrams from COSMIC-FFP notations. Note that, while

sequence diagrams have been used in the COSMIC-FFP measurement method to explore

the behaviors of one or more objects over a given period of time, the state-machine

diagrams for each object in COSMIC-FFP can be used to explore all their details (Primer

2004).

According to the COSMIC-FFP definitions given in its measurement manual and the

sequence diagrams drawn based on it, state-machine diagrams can be derived from these

sequence diagrams. COSMIC-FFP measurements can be mapped to UML 2.0 state

diagrams using the technique proposed in (Vasilache and Tanaka 2004) and illustrated

with state-machine diagrams from multiple interrelated scenarios (or sequence diagrams).

A number of authors have discussed the way to transform a set of scenarios (or sequence

diagrams) into state-machine diagrams, for example (Koskimies, Mannisto, Systa and

Tuomi 1998), (Whittle and Schumann 2000) and (Ryser and Glinz 2000). However, the

work proposed in (Vasilache and Tanaka 2004) includes the steps and rules for deriving

state-machine diagrams from multiple scenarios with regard to the relationships between

them. These rules are summarized as follows:

Step 1. Identify and represent all single scenarios as sequence diagrams.

Step 2. Identify and represent the relationships among all scenarios as dependency

diagrams based on the time dependencies between scenarios, their cause-effect

dependencies and their generalization dependencies. The dependency diagram must have

a single start point, which is the initial scenario, but it can have several end points.

Step 3. Synthesize the state-machine diagrams based on the information acquired in the

previous two steps.

116

Step 4. Refine the final state machines and approve the consistency between scenarios

and state machines in order to make sure that the behavior of the final state-machine

diagrams reflects the information contained in the scenarios.

Now that the linkage between COSMIC-FFP and the UML 2.0 state diagrams has been

identified, the state-machine diagrams can be derived accordingly. Going back to the

Railroad Crossing case study, step 1 has already been performed in section 6.2.2, where

the sequence diagrams are drawn for COSMIC-FFP purposes. Figure 31 shows the

dependency diagram needed in step 2, i.e. the relationships among the scenarios (or

sequence diagrams) and the order of execution.

Figure 31: Dependency diagram

One scenario is represented as a rounded rectangle, with connectors for the start point and

end point. The initial scenario is “Scenario train enters crossing”. At that point, the train

crosses the railroad, and the next scenario starts to be executed, which is “Scenario train

leaves crossing”. This is simply a dependency diagram, where there are no alternative

scenarios.

Step 3 uses the information obtained in the previous steps to derive the corresponding

state-machine diagrams. Note that each sequence diagram shows the sequence of events

Scenario

T ra in enters crossing

Scenario

T ra in leaves crossing

117

(or data movements in the COSMIC-FFP context). Each event is a tuple: (Oi, Oj, Mijk),

where Oi and Oj belong to the set of objects involved in the software and Mijk is the

message that is exchanged between them. Therefore, the sequence diagram in Figure 29

has the following set of tuples = {(Train, Controller, Near), (Train, Train, In), (Controller,

Gate, Lower), (Gate, Gate, Down)}, and the sequence diagram in Figure 30 has the

following set of tuples = {(Train, Train, Out), (Train, Controller, Exit), (Controller, Gate,

Raise), (Gate, Gate, Up)}. There are three objects involved in each scenario, and we can

therefore synthesize three state-machine diagrams (one for each object).

For each object, one initial state-machine diagram can be created for each scenario, and

the final state-machine diagram can then be synthesized from all the state-machine

diagrams, based on the information in the dependency diagrams. The state-machine

diagram for the Train object in Figure 27 is obtained from the two initial state-machine

diagrams shown in Figures 32 and 33.

Figure 32: Initial state-machine diagram from Figure 29

Figure 33: Initial state-machine diagram from Figure 30

id le cross toC ross
In [tim e units >entrance tim e>0]

Near

Exit [time units >exit time>0]

leave

 cross idle

118

Similarly, state-machine diagrams for the objects Controller and Gate are created as

shown in Figures 34 and 35.

Figure 34: Controller state-machine diagram

Figure 35: Gate state-machine diagram

The COSMIC-FFP method recognizes that a component-based system can be measured

accurately only when the sizes of the components are measured separately, especially

when they are in different layers or are different peer items. To size the total functionality

to be delivered by a component-based system, guidance is needed to help decide if FURs

or the component comprises one or more layers or peer items. The measurement analyst

has to identify the requirements of each component that will be created or modified,

activate

deactivate monitor

idle

Lower[same train ==true] Raise [same train == true]

Near[other train ==true]
Near

Near[other train == true]

Exit [same train == true]

[same train == true] Exit

opened toClose

toOpen closed

Down[time units > closing time > 0]

Raise

Lower

Up [time units > opening time > 0]

119

identify the functional processes involved for each, identify and count the data movement

types.

6.2.4 Reliability Model for a Component-based System

The research reported in this thesis extends the COSMIC-FFP and reliability assessment

model (Ormandjieva 2002) to the component-based system context. In essence, each

component of the system is modeled by a discrete-time Markov chain and visualized

through a finite-state machine. Next, the reliability of the whole system is computed from

the system’s architectural configuration and the reliability of the individual components,

as stated in (Peters and Pedrycz 2000). The purpose of this computation is to compare

alternative component-based system designs, and to assist in making the architectural

changes to the evolving system.

The ability to take into account the functionality measures early on where sequence

diagrams are derived, such as with COSMIC-FFP, makes it possible to consider the

uncertainty in the operational profile (i.e. the uncertainty of environmental events) in

addition to the uncertainty in component failure behavior, based on:

• Knowledge of the software architecture requirements (corresponds to the layers in

COSMIC-FFP where the behavior of software objects can be modeled with state

diagrams within a layer, and then the Markov model is applied in each layer).

• Prediction of component reliability, where a component is a group of interacting

software objects whose behaviors are modeled in the extended state machine.

• Probabilities of state transitions of an object due to events (environmental or internal

to the object) are calculated as shown in (Ormandjieva 2002), where the environmental

events are considered random and not controlled by system laws.

120

6.2.4.1 Reliability of a Component

The state-machine diagrams of the objects are graphical representations of the

corresponding extended-state machines, and they are synthesized from the interrelated

sequence diagrams that are drawn in the COSMIC-FFP context. The product machine of

the objects’ state machines belonging to one component results in an extended-state

machine describing the behavior of the component. The states of each state-machine

diagram (object/component), their transitions and the probabilities for the transitions are

formalized as a Markov system. The theoretical foundation for the proposed reliability

prediction model is the property of Markov processes stating that, given the current state

of the object/component, the future state of the object/component is independent of its

history. The analysis of Markov models yields results for both the time-dependent

evolution of the object/component and the steady-state properties of the

object/component. An algebraic representation of a Markov model is a matrix, called a

transition matrix, in which the rows and columns correspond to the states, and the entry

pij in the i
th
 row, j

th
 column is the transition probability for being in state j at the stage

following state i. The initial probabilities pij for all the transitions in the state machine of

an object in one component are calculated. The algorithm for calculating such

probabilities for a state is based on the following assumptions: 1) all external events that

can occur in that state have identical and independent probability distributions; 2) all

internal events that can occur in that state have the same probability of occurring; and (3)

these external and internal events are, in general, different. We assume the most common

stochastic queuing model for the arrival time of the external events, namely a Poisson

distribution.

121

Let Exti be the set of external events and Inti the set of internal events which can trigger a

change of statei to another state. The transition probabilities are calculated as follows:

• If Exti is empty, then the probability of a transition due to an internal event is
pij =1/| Inti|.

• Similarly, the probability of transition due to an external event is pij =1/| Exti|

when Inti is empty.

• If both Exti and Inti are non-empty, the probability of a transition due to an
external event is calculated first as follows: p

ext
ij =Σ i (1/n) / |Exti| (where n is

the total number of external events for the component, and 1/n is the equal
probability of each external event occurring). Next, the probability of an
internal event is calculated: p

int
ij = (1- Σ i (p

ext
ij) / |Inti|.

• When there is more than one transition with identical source and destination

states, the above transitions are substituted in the Markov model by one whose
probability pij is equal to the sum of the probabilities of the corresponding
transitions.

Note: The following property holds for the calculated probabilities:

Σ j pij = 1

We construct the Markov model of a component in two steps. In the first step, we

construct the Markov models for its objects. In the second step, we construct the Markov

model for the whole component consisting of synchronously interacting objects. The

synchronous product machine dynamically changes as and when …? joins or leaves the

component, and hence the transition probability matrices also change, and should be

recomputed. The detailed description of the algorithms for constructing Markov matrices

is given in (Ormandjieva 2002).

The reliability prediction for a component composed of n objects can be defined as the

level of certainty quantified by excess entropy, as follows (Alagar and Ormandjieva

2002):

122

Reliability (Component) = Σ i=1,k Hi - H

H = - Σ i v i Σ j pij log 2 (pij)

where H is an entropy which quantifies the level of uncertainty in the Markov chain

corresponding to the whole component; Hi is a level of uncertainty in a Markov chain

corresponding to an object; v is a steady state distribution vector for the corresponding

Markov chain; and the pij values are the transition probabilities in the extended-state

machines modeling the behaviors of the i
th
 object. For a transition matrix P, the steady

state distribution vector v satisfies the property v*P = v, and the sum of its components vi

is equal to 1. A steady state or equilibrium state is one in which the probability of being

in a state before and after transitions is the same as time progresses. It must be mentioned

that the steady-state vector does not always exist. The theorem for this purpose states

that, if P is a positive transition matrix (no zero entries) and p0 is any initial probability

vector, then Pkp0 approaches the steady-state vector as k approaches infinity (Strook

2005).

H is related exponentially to the number of paths that are “statistically typical” of the

Markov system. The higher the entropy value, the more sequences must be generated to

accurately describe the asymptotic behavior of the Markov system. A higher value of the

reliability measure implies that there is less uncertainty in the model, and thus a higher

level of software reliability. In consequence, the analysis of Markov chains yields results

for both the time-dependent evolution of the system and the steady-state properties of the

system.

123

6.2.4.2 Reliability of a System

The reliability measures of the components are used to determine the reliability of the

whole component-based system measured in the COSMIC-FFP context, based on the

configuration of its n components.

There are two interesting limit cases of the p-out-of-n configuration, namely, parallel and

serial structures (Peters and Pedrycz 2000). We have a parallel configuration when there

is at least one component is necessary to ensure that the entire component-based system

functions. Assuming the independence of failures of the corresponding components, the

reliability is calculated as follows: R(t) = 1 - Π k=1,n (1 – Rk(t))

In a serial reliability structure the functioning of the system is ensured while all the

components are functioning properly. In this case, the reliability is given by the following

formula: R(t) = Π k=1,n Rk(t)

In this reliability analysis, all the components are considered to function independently,

and therefore it is assumed that there is independence of failures of the corresponding

components.

6.2.5 Case Study: Railroad System

The feasibility of our reliability prediction approach is demonstrated now, with the

following case study. Referring back to the Railroad Crossing case study (Train-Gate-

Controller), in order to predict the reliability of the component-based system, the

Controller and Gate objects must be mapped to their corresponding Markov systems, as

124

was done previously with the Train object (Figure 27). The mapping of the Controller

object to a Markov system is shown in Figure 36, with a probability of 1 for two events,

since there is only one event coming from the C1 and C4 states and with a probability of

½ for each of the two external events causing transitions from state C2, and a probability

of 1/3 for each of the external three events coming from C3 (See Figure 34). The mapping

of the Gate object to a Markov system is shown in Figure 37, and is similar to the Train

object mapping.

Figure 36: Controller state diagram with its transition probabilities Pij

Figure 37: Gate state diagram with its transition probabilities Pij

Now the corresponding transition matrices P (see Tables 24, 25) can be built from these

state-machine diagrams, and each is a matrix P whose ijth entry is Pij. Note that the entries

in each row add up to 1.

C2

C4 C3

C1

P23 P41

P22
P12

P33

 P34

G1

G3

G4

P41 = 1

G2

P34 = 1

P23 = 1

P12 = 1

125

Table 24: Transition matrix P for the Controller object

 C1 C2 C3 C4

C1 0 1 0 0

C2 0 ½ ½ 0

C3 0 0 2/3 1/3

C4 1 0 0 0

Table 25: Transition matrix P for the Gate object

 G1 G2 G3 G4

G1 0 1 0 0

G2 0 0 1 0

G3 0 0 0 1

G4 1 0 0 0

In order to calculate H, the level of uncertainty of the Markov system corresponding to a

subsystem or component, the synchronous product of Train, Controller and Gate is built.

The interaction between two objects is due to shared events. The interaction behavior of

the objects is completely described by their synchronous product machine M (see Figure

38).

Figure 38: Synchronous product of Train, Controller and Gate

S2, C3, G3

S3,C3, G3

S1,C1, G1
 P89:Up

S2,C2, G1

S1,C1, G4

S1,C4, G4

S4,C3, G3 S2,C3, G2

P78: Raise P12: Near

P67: Exit P23: Lower

P34: Down P56: Out

P45: In

126

The corresponding transition matrix P of a synchronous product (see Table 26) can be

built from the above state-machine diagram. Note also that the entries in each row add up

to 1.

Table 26: Synchronous product of Train, Controller and Gate

The next step will be to calculate H for each object and for the synchronous product

based on their steady vectors. For a transition matrix P, the steady state distribution

vector v satisfies the property v*P = v.

|[wxyz]| = |[wxyz]|

where w = 0.25, x = 0.25, y = 0.25 and z = 0.25

So, the steady-state vector of the Train object is [0.25, 0.25, 0.25, 0.25] and its H =

 -((0.25 * (0log0 + 1log1 + 0log0 + 0log0) +

(0.25 * (0log0 + 0log0 + 1log1 + 0log0) +

(0.25 * (0log0 + 0log0 + 0log0 + 1log1) +

(0.25 * (1log1 + 0log0 + 0log0 + 0log0))

= 0

 S1C1G1 S2C2G1 S2C3G2 S2C3G3 S3C3G3 S4C3G3 S1C4G3 S1C1G4

S1C1G1 0 1 0 0 0 0 0 0

S2C2G1 0 0 1 0 0 0 0 0

S2C3G2 0 0 0 1 0 0 0 0

S2C3G3 0 0 0 0 1 0 0 0

S3C3G3 0 0 0 0 0 1 0 0

S4C3G3 0 0 0 0 0 0 0 0

S1C4G3 0 0 0 0 0 0 0 1

S1C1G4 1 0 0 0 0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

127

It is the same calculation for the Gate object, where its steady-state vector is [0.25, 0.25,

0.25, 0.25] and its H = 0. Having an entropy value of 0 means that there is no level of

uncertainty in a Markov system for that object, and therefore its behavior is not

complicated and does not require the generation of more sequences to describe it.

[wxyz] = |[wxyz]|

where w = 0.25, x = 0.25, y = 0.25 and z = 0.25

So, the steady-state vector of the Controller object is [0.182, 0.364, 0.273, 0.182] and its

H =

 - ((0.182 * (0log0 + 1log1 + 0log0 + 0log0) +

(0.364*(0log0 + ½ log½ + ½log½ + 0log0) +

(0.273*(0log0+0log0+1/3log1/3+2/3log2/3) +

(0.182 * (1log1 + 0log0 + 0log0 + 0log0))

= 0.615

Finally the steady-state vector for the synchronous product machine of the Train-

Controller-Gate component is 0 and its H = 0.

The reliability for the Railroad Crossing (Train-Controller-Gate) case study is therefore:

(HTrain + HController+ HGate) - HTrain-Controller-Gate

= (0 + 0.615+ 0) – 0

= 0.615

Another component-based system configuration for the same case study can be two trains

– and one controller and one gate – where there are two railroad tracks and one controller

to monitor the gate. The synchronous product of Train, Gate and Controller would differ

0 1 0 0

0 ½ ½ 0

0 0 2/3 1/3

1 0 0 0

128

from that in the previous case (Figure 38). Figures 39 and 40 show the result of the

synchronous products of the objects in this configuration.

Figure 39: Synchronous product of Train and Controller (second configuration)

Figure 40: Synchronous product of Train, Controller and Gate (second configuration)

The corresponding transition matrix P of a synchronous product (see Table 27) can be

built from the above state-machine diagram. Note, too, that the entries in each row add up

to 1.

S2, C3, G3 S3,C3, G3

S1,C1, G1
P91:Up

S2,C2, G1

S1,C1, G4

S1,C3, G3

S2,C3, G2

P12: Near

P67: Exit P23: Lower

P34: Down P56: Out

P45: In

S1,C4, G3

P68: Exit

P89: Raise

P74: Near

S4,C3, G3

Near
Exit

S1, C3
C3C

S1,C1

S3, C3

S1, C4

Raise

S2,C3

Exit

In

Near

Lower

Out
S4, C3

S2,C2

129

Table 27: Transition matrix P for a synchronous product

HTrain , HController and HGate stay the same as in the previous system configuration; however,

HTrain-Controller-Gate is equal to the following:

- ((0.083 * (0 + 1log1 + 0) +

 (0.083 * (0 + 1log1 + 0) +

 (0.083 * (0 + 1log1 + 0) +

 (0.167 * (0 + 1log1 + 0) +

(0.167 * (0 + 1log1 + 0) +

(0.167 * (0 + ½ log½ + ½log½ + 0) +

 (0.083 * (0 + 1log1 + 0) +

 (0.083 * (0 +1 log1) +

 (0.083 * (1log1 + 0)

= 0 + 0.167 + 0

= 0.167

Therefore, the reliability for the second Train-Controller-Gate configuration is:

= (HTrain + HController+ HGate) - HTrain-Controller-Gate

= (0 + 0.615+ 0) – 0.167

= 0.448

As a result, the reliability for the first configuration is greater than the reliability for the

second configuration for the case study given above. A higher reliability value implies

that there is less uncertainty present in the model, and thus a higher level of software

S1
C1

G1

S2
C2

G1

S2
C3

G2

S2
C3

G3

S3
C3

G3

S4
C3

G3

S1
C3

G3

S1
C4

G3

S1
C1

G4

S1C1G1 0 1 0 0 0 0 0 0 0
S2C2G1 0 0 1 0 0 0 0 0 0
S2C3G2 0 0 0 1 0 0 0 0 0
S2C3G3 0 0 0 0 1 0 0 0 0
S3C3G3 0 0 0 0 0 1 0 0 0
S4C3G3 0 0 0 0 0 0 ½ ½ 0
S1C3G3 0 0 0 1 0 0 0 0 0
S1C4G3 0 0 0 0 0 0 0 0 1
S1C1G4 1 0 0 0 0 0 0 0 0

130

reliability. Controlling one train means that there is a lower level of uncertainty in a

Markov system for the Controller object, and therefore its behavior is not complicated,

i.e. it does not require the generation of more sequences to describe it, which is not the

case for one controller controlling two trains.

To conclude this chapter, we can state that, as COSMIC-FFP is applicable in the early

development phase where we only know about the specifications of the software,

COSMIC-FFP measurement details have been used in the scenario-based black-box

testing strategy and for reliability prediction purposes. In the next chapter, we discuss the

methodology for formalizing COSMIC-FFP in a specific context, the AS-TRM model,

which allows early complexity assessment from the formal specifications.

131

CHAPTER VII: FORMALIZING COSMIC-FFP IN THE AS-TRM

The COSMIC-FFP method can complement complexity management in the AS-TRM,

which would allow early complexity assessment from the formal specifications. The

formalization of COSMIC-FFP in the AS-TRM context requires mapping the COSMIC-

FFP concepts (such as boundary, layer, functional process, triggering event, data group,

movement and attributes) to the AS-TRM notation. Clear rules of COSMIC-FFP

measurement shall be defined for AS-TRM specifications according to the COSMIC-FFP

informal textual definitions given in (Abran, Desharnais et al. 2001). The reliability

requirements for autonomic elements and systems have to be specified formally and

mapped to system behavior so that the achievement of the reliability can be monitored

automatically.

7.1 Mapping between COSMIC-FFP and the AS-TRM

Table 28 displays the starting point of the mapping analysis between COSMIC-FFP and

the AS-TRM formalism.

Table 28: Mapping COSMIC-FFP concepts to AS-TRM notations

COSMIC-FFP concepts AS-TRM formalism notations

Boundary Reactive Component interface

Layer Tier in the formal model

Functional process Reactive task or self-management task

Triggering event Shared input event

Data Group LSL trait

Data Movement Internal & External event (input & output)

Data Attribute Operation in the LSL trait

132

The boundary concept in COSMIC-FFP corresponds physically to the Reactive

Component interface notation in the AS-TRM formalism. The Reactive Component

interface is considered rather than the ports that model the interfaces of the generic

reactive classes (GRCs) at the design phase, since we are only considering the

specification level here. In the specification activity, the user (either a human or an

engineered device) wants to communicate with the software in order to receive/enter

information. For example, a user communicates with an elevator through buttons in order

to go up or down, and, at the specification level, the design details of the elvevator are not

of interest. As is also shown in Table 28, the layer concept in COSMIC-FFP corresponds

to the tier in the formal model in the AS-TRM formalism, where each upper tier

communicates only with the tier immediately below it. The tier structure describes the

system configuration, the autonomic group of synchronously interacting reactive

components (ACG), the autonomic reactive component (AC), the generic reactive classes

(GRCs) and their relative Abstract Data Types used to model attributes in the AS-TRM.

The functional process and the subfunctional process concepts in COSMIC-FFP are

mapped to the Reactive task or self-management task notation in the AS-TRM

formalism. A reactive task is performed during the synchronous communication among

the ACs belonging to one Autonomic Component Group, and these cooperate in

completing a group task. Each ACG can accomplish a complete real-time reactive task

independently. A transition specification describes the computational step associated with

the occurrence of an event. A transaction is triggered by an event, and it causes a reaction

in the form of an occurrence of either an internal event or an output event. There may be

a timing constraint on the occurrence of the reaction. The triggering event and data

133

movement (i.e. Entry) concepts in COSMIC-FFP correspond to the external (input) event

that occurs at a port and represent message transmission in the AS-TRM formalism. Also,

a data movement corresponds to an internal (Read from internal storage, Write) or output

(Exit) event in the AS-TRM formalism. Finally, a data group corresponds to an LSL trait,

the lowest tier and the basic specification unit that represents the Abstract Data Type used

in modeling the attributes of the system and of the generic reactive classes. The operation

in this LSL trait corresponds to a Read or a Write, the data movement in COSMIC-FFP;

an LSL trait included in a given class corresponds to a data attribute in COSMIC-FFP.

The above mapping between the COSMIC-FFP and AS-TRM concepts conforms to the

AS-TRM event-driven modeling paradigm, where the components communicate through

events, and these events carry information.

Once the work detailed in Table 28 has been completed, COSMIC-FFP can be formalized

in the specified context, which is the AS-TRM. It is then possible to apply the rules of the

COSMIC-FFP FSM method to AS-TRM specifications, as will be seen in the case study

presented in the following section. It will also be relevant to obtain feedback about the

functional complexity and the reliability prediction of such software specifications.

Moreover, by applying the testing approach proposed in previous chapter, it is also

possible to generate and execute the test cases in order to estimate the reliability of the

AS-TRM specification activity.

7.2 Case Study: Steam Boiler

The Steam Boiler Control specification problem of J. R. Abrial and E. Brger (Abrial

1991) was derived from an original text written by Lt. Col. J. C. Bauer for the Institute

134

for Risk Research at the University of Waterloo, Ontario, Canada. The original text has

been submitted as a competition problem to be solved by the participants of the

International Software Safety Symposium organized by the Institute. It provides the

specification design that ensures the safe operation of a steam boiler by maintaining the

ratio of the water level in the boiler and the amount of steam emanating from it with the

help of the corresponding measuring devices. The Steam Boiler System consists of the

following physical units:

• Steam Boiler: the container holding the water.

• Pump: for pouring water into the steam boiler.

• Valve: for evacuating water from the steam boiler.

• Water Level Measuring Device: a sensor to measure the quantity of water q (in

liters) and inform the system whenever the minimum or maximum amounts

allowed are reached.

Figure 41 shows the Steam Boiler and the relationships between its components. The

Steam Boiler is assumed to start up with a safe amount of water, and the Controller runs a

control cycle every 5 minutes to check on the current amount of water. It triggers the

Water Level Measuring Device to measure the level and sends the result to the

Controller. Then, the Controller receives the current level and checks whether or not it is

normal, or above or below normal: if the water level is normal, the Controller will do

nothing; if there is a risk that the water level will exceed the minimum safe level, it will

trigger the Pump to pour water into the Steam Boiler; and, if there is a risk that the water

will exceed the maximum safe limit, it will trigger the Valve to evacuate water.

135

The way the specification problem is written is ambiguous from a software viewpoint: it

talks about a single controller which is the ‘system controller’, but when the text is read,

there is in practice two controllers (a hardware part and a software part). The

specifications about the interactions between the hardware and the software are

sometimes ill-defined in real time applications: what is really done by hardware, and

what is really done by software? For instance, in this case study, the requirements above

are at the 'system level', not at the 'software level'. For this case study, an assumption is

made that it is the hardware part of the controller that reads the water level and it makes

the decision (calculation) about the min-max (and the risk of getting close to the min-

max), and then sends the outcome (min-max-normal) to the software part of the

controller. The software is then only responsible of sending close-open messages to the

valve and the pump.

Figure 41: Steam Boiler Controller

136

It is of interest here to measure the Steam Boiler Controller software (Figure 42), which

is located in the AC tier. The Steam Boiler Controller is bounded by its interface, which

separates it from the other components.

Figure 42: Steam Boiler Controller and its interface

The Steam Boiler Controller has two reactive tasks (or self-management tasks) to

perform. These are shown in the following two figures as a sequence of events to be

considered in the FSM process. The total number of these events in one sequence

diagram corresponds to the total functional size for one reactive task. In other words, one

event corresponds to one data movement, the basic elementary unit used in the COSMIC-

FFP measurement method.

Reactive component interface

Steam

Boiler

Controller
Sensor

Pump

Valve

137

Figure 43: Controller reactive task (1)

Figure 44: Controller reactive task (2)

Software
Controller

 Sensor

1: Data received

2: send “Open”

3: send “close”

Pump Valve

Software
Controller

 Sensor

1: Data received

2: send “Close”

3: send “Open”

Pump Valve

138

Figure 43 shows the first reactive task to be performed through the interaction of the

Controller with the other components; that is, when the level of water is below the

minimum level. The Controller sends the message “open” to the pump and the Pump

reacts accordingly. It also sends the message “close” to the Valve. That reactive task is

triggered by a shared input event which is the “cycle” that is received on request of the

Controller to check the measuring level every 5 minutes. The second reactive task shown

in Figure 44 is also triggered with the “cycle” event. It checks whether or not the

measuring level is approaching the maximum safe level, and sends a “close” message to

the Pump component and an “open” message to the Valve component. Pump and Valve

react accordingly. The total functional size for both tasks is shown in the following table:

Table 29: Total Functional Size for the Steam Boiler using AS-TRM terms

Tier Reactive task Sequence of events Type of event Corresponding

functional size
AC Maintain Water Level

(see Figures 7 & 8)

1. Obtain the water level

measurement (value =

below normal, normal or

above normal)

2. (Logic) Check if any

action is needed; if not,

terminate the cycle

3. Send message to

Pump (value = open or

close)

4. Send message to

Valve (value = open or

close)

Shared input

event

External output

event

External output

event

1

1

1

Total Functional size of Steam Boiler Controller software 3 Cfsu

139

Once the rules of COSMIC-FFP measurement have been clearly defined for the AS-TRM

specifications in this chapter, we conclude our work using the Basili framework, and

present future work in the next chapter.

140

CHAPTER VIII: CONCLUSIONS AND FUTURE WORK

8.1 Summary of Significant Results

COSMIC-FFP and the Entropy-based Functional Complexity Measure are both measures

of software functionality, but their purposes are different, one measuring size and the

other the complexity of one usage (functionality) of the software. This thesis has explored

the similarities and differences between the two measures. Even though the two measures

use very different terminology, a comparative analysis of the concepts behind these

distinct terminologies reveals important similarities in terms of how they view and

represent software from a functional perspective. Our findings include, in particular,

significant similarities in the way both measures view software, and in their generic

model of software functionality when the interactions of the software with its

environment, and the interactions within the software itself, are considered. There are

also important similarities, but not full equivalence, within the software components that

they take into account in their respective measurement processes. Finally, each measure

obviously has different measurement functions (that is, the formulas they use to

transform information into numbers are different): while COSMIC-FFP strictly involves

an additive aggregation of data movements, our functional complexity measure is much

more complex and is based on the concept of entropy, itself derived from information

theory.

COSMIC-FFP measurement concepts and procedures are well documented, and, through

its international acceptance as an ISO standard, the method has achieved international

recognition as a measurement method supported by the international community

141

specializing in measurement of any kind. However, the field of software functional size

itself has very limited depth in terms of research and theoretical support on which to

draw. Its use has therefore been fairly limited, extending only to productivity studies and

estimation, with almost no reported use in quality and reliability analysis.

By contrast, entropy has been used extensively in many fields, such as in entropy-based

measures, which have been used, for instance, for performance and reliability estimation,

both with very strong theoretical and empirical support. The reliability of software can, as

a result, be estimated using an input reliability model in a particular input domain.

This is why studying the similarities between these two measures has also enabled us to

explore an interesting link between COSMIC-FFP and testing, and between COSMIC-

FFP and reliability prediction. As well, we have seen how the concept of scale is used in

the COSMIC-FFP method to ensure the meaningfulness of the numbers obtained from its

measurement process. We have also defined the measurement unit for the FC measure.

This thesis has described the development of a model for scenario-based black-box

testing, in which the scenarios are derived using the COSMIC-FFP method for

identifying functionality. Based on that model, the mechanisms of both test-case

generation and the prioritization of those test cases, have been elaborated to ensure good

fault coverage in black-box testing. First, the set of scenarios in the COSMIC-FFP

context represents the set of test cases required to form the generated test set. Second, this

set of test cases was partitioned into equivalence classes. Third, the test-selection

142

algorithm was run on the set of non-empty equivalence classes. The result is a set of

selected test cases affording the best possible coverage (i.e. the test case with the highest

FC value in each equivalence class). However, we cannot claim full fault coverage, since

this algorithm maximizes test coverage within given budgetary constraints. This could be

a limitation of the proposed testing method.

Moreover, the candidate linkages between the Markov models and the COSMIC-FFP

functional size measurement method were investigated in this thesis for the prediction of

software reliability based on Markov concepts in a COSMIC-FFP context. This was

achieved as follows: First, the state-machine diagrams were synthesized from the

corresponding COSMIC-FFP sequence diagrams. Second, a Markov system was

formalized by using the derived COSMIC-FFP state-machine diagrams. Third, the steady

state distribution vector for the corresponding Markov system was calculated. The

reliability prediction for a component composed of n objects can be defined as the level

of certainty quantified by a level of uncertainty in a Markov system corresponding to an

object, and a level of uncertainty of a Markov system corresponding to a component. The

reliability of the component-based system was calculated from the reliability of the

components and the topology of the system.

Finally, we drew the basic lines for formalizing COSMIC-FFP in the AS-TRM context

by mapping the COSMIC-FFP concepts (such as boundary, layer, functional process,

triggering event, and data group, movement and attributes) to the AS-TRM notation.

Clear rules of COSMIC-FFP measurement shall be defined for AS-TRM specifications

according to the informal COSMIC-FFP definitions. Current AS-TRM research includes

143

modeling the non-functional requirements (NFRs) and functional requirements (FRs)

within the same formal framework, which would, in future, allow for complexity and

testing assessment of both FRs and NFRs with COSMIC-FFP.

The summary of significant results is shown in the following table using the Basili et al.

framework described in the first chapter.

144

Table 30: Summary of Significant Results

I Definition

Motivation
Extend the use of

COSMIC-FFP, the

software FSM method,

for testing and

reliability prediction

purposes

Object
- Information

theory-based

measures

- Functional size

measures

Purpose
- Characterize the

link between these

two types of

measures in order

to extend the use of

functional

measures for

scenario-based

black-box testing

and for reliability

prediction purposes

- Formalize

COSMIC-FFP in

the AS-TRM

context

Perspective
Researcher

Domain
- Software

researcher

- 3 case studies

Scope
3 case studies – 1 software researcher

II Planning

Design
Three case studies selected:

1. Hotel Accommodation System for the

testing approach

2. Railroad System for the reliability

prediction approach

3. Boiler Controller for formalizing

COSMIC-FFP

Criteria
Direct criteria:

- length of the test case

- length of the longest common prefix of two

test cases

- selected test cases

- test set

- number of occurrences of an event

- total number of events in a sequence

- transition matrix

Measurement
For direct criteria:

length(t)

LCP (t1, t2)

STC

TSi

f

NE

P

145

Indirect criteria:

- distance between two test cases

- similarity between two test cases

- dissimilarity between two test cases

- functional complexity

- probability of occurrence of the most

frequent event

- steady vector

- entropy of the whole component and an

object

- reliability of a component and a system

For indirect criteria:

td (t1, t2)

similarity (t1, t2)

dissimilarity (t1, t2)

FC

pi

Vi

H, Hi

Ri, R(t)

III Operation

Preparation
Training period of a few months for the

measures

Execution
Data Collection:

1. Set of scenarios containing the

sequence of events

2. Set of state diagrams for each object

Data Validation:

- The formulas and steps stated in the

design step must be applied correctly.

- Revisions are performed by experts

and the technical reviewers of

conferences and journals.

- Theoretical validation is carried out

to test the meaningfulness of the

numbers obtained using scales, units

and scale-type concepts.

- The case studies by themselves

demonstrate feasibility.

- The tools available in the TROM lab

are used to validate the numbers

obtained in the reliability prediction

approach.

Conclusion: No errors were found.

Data Analysis
- Scenarios were created subjectively,

according to the case study specifications.

- Scenarios were converted to state

diagrams using the steps described in

chapter 6.

- The formulas needed in both approaches

using the scenarios created and the

converted state diagrams were applied,

and numbers were obtained to be

interpreted in next phase in this

framework; for example, the numbers

obtained for FC, H, R(t), etc.

- The correlation between these numbers

and the overall behavior of either a

component or a system in terms of

functional complexity and reliability was

studied; for example, what happens to the

system when numbers increase/decrease,

and under what conditions do this happen?

146

IV Interpretation

Interpretation context
Technique Framework:

- The greater the number and variety of events contained in a test

case, the higher the functional complexity will be.

- The higher the value of the reliability measure, the less

uncertainty there will be in the model, and thus a higher level of

software reliability.

Study Purpose:

The purpose was achieved, in spite of the difficulties encountered.

Field of research:

- The metric-based test case partitioning approach and test case

technique together generate the most highly recommended test

cases which cover the most functionality, given budgetary

constraints. This is better than the outcome with other models

which use test cases randomly.

- Both the testing and reliability prediction approaches developed

in this thesis need to be carefully compared with other models

proposed in the literature.

Extrapolation
Positive factors:

- The proposed testing approach cannot test all the possibilities, but

it can at least test the maximum number of test cases which cover

the most functionality, given budgetary constraints.

- There are clearly stated steps and well-defined rules in both

approaches.

- The existing tools in the TROM lab can be used to validate the

results obtained in the reliability approach.

Negative factors

- The number of case studies was small. What about the scalability

problem, and how do these approaches behave with a large amount

of data?

- More specific templates are needed to generate the scenarios and to

convert this set of scenarios into state diagrams.

147

8.2 Future Work

Future work could include implementing a testing tool following the proposed testing

approach, applied to a large number of study cases with more scenarios and carrying out

an analysis to compare the results on all these cases. The Rational Unified Process (RUP)

case studies would be a good choice to begin with, since they provide a clear description

of some software specifications, along with their corresponding detailed use cases and

scenarios. Moreover, there are more testing issues that can be enhanced in the proposed

testing approach such as:

- improving the overall system testability, which is based on simplifying the

complexity of use cases, for example, use cases can be related to each other

through “include” and “extend” relationships,

- reducing the number of equivalent classes if they are large by finding a specific

selection criteria that defines how many equivalence classes should be considered,

- defining a priority strategy when two test cases have the same size.

Research in progress is also looking into exploring the use of predictions to compare

alternative component-based system designs, and to gather data from empirical studies to

access the effectiveness of the reliability model and the degree of confidence of the

predicted values. Moreover, a comparison (if available) can be performed with the results

obtained using alternative methodologies to support the validity of the application of the

proposed methodology. In addition, there are more reliability issues that can be enhanced

in the proposed reliability prediction approach such as improving the assumptions for

assigning the probabilities for the transitions. For example, the probabilities for the

148

external and the internal events where we can’t control the input, but we control the

output and the output depends on the inputs.

The application of the metric-based scenario-driven black-box testing method has been

adapted to a specific class of projects, namely Enterprise Resource Planning (ERP). ERP

projects are perceived as mission-critical initiatives in many organizations. They form

parts of business transformation programs and are instrumental in improving

organizational performance. In ERP implementations, testing enterprise-wide solutions

based on ERP systems is an activity that is critical to ensure that the functionality

embedded in the solution matches the business users’ requirements. However, little is

known about the way to make the testing process more predictable and to increase its

chances of success. In (Daneva, Abran et al. 2006), a first attempt was made towards

improving the testing process in ERP projects by using the metric-based approach we

have proposed here. This paper reports on how this approach was adapted to an ERP

package-specific project context, how it was applied to five settings in a mid-sized

project, and what was learned by using it.

The original requirements-based ERP approach complements test-case derivation by

finding partitions in the input and output data sets and by suggesting that testers perform

ERP transactions with values derived from these partitions. The reported study revealed

that this method has the potential to complement traditional ERP testing approaches, such

as the ones built into and assumed in the ERP packages. The study also revealed two

issues:

149

• The business process documentation should be up to date and valid, so that testers

are sure they are testing the most recently required functionality;

• The transactions should be mapped to the scenario processes from the business

requirements.

Also recommended, however, is a replicated follow-up case study to be carried out to

conduct a deeper investigation into the validity threats associated with the testing method.

More case studies will also help promote the use of the proposed method.

Further research efforts are planned to focus on adapting and applying the COSMIC FFP

technique (for testing and reliability prediction purposes) to a variety of ERP project

contexts characterizing new ERP implementations, upgrades and cross-organizational

alignments.

150

REFERENCES

Abran, A., J.-M. Desharnais, S. Oligny, D. St-Pierre and C. Symons (2001).

COSMIC-FFP - Manuel de mesures - version 2.2. Montreal, Université du Québec à

Montréal.

Abran, A., O. Ormandjieva and M. Abu Talib (2004). Information Theory-based

Functional Complexity Measures and Functional Size with COSMIC-FFP.

Proceedings of the 14th International Workshop on Software Measurement

(IWSM2004), Germany.

Abran, A. and P. N. Robillard (1994). "Function Points: A study of Their

Measurement Processes and Scale Transformations." Journal of Systems and

Software 25(2): 171-184.

Abrial, J. R. (1991). Steam Boiler Control Specification Problem. In J. R. Abrial, E.

Borger, and H. Langmaack, editors, Formal Methods for Industrial Applications:

Specifying and programming the Steam Boiler Control, volume 1165 of LNCS.

Springer, October 1996.

Abu Talib, M., A. Abran and O. Ormandjieva (2006). Markov Model and Functional

Size with COSMIC-FFP. IEEE International Symposium on Industrial Electronics:

Special session on Software Measurement (ISIE2006), Montreal, Canada.

Abu Talib, M., O. Ormandjieva and A. Abran (2007). "Reliability Model for

Component-Based Systems in COSMIC-FFP: A Case Study." Submitted to

International Journal of Software Engineering and Knowledge Engineering: Testing

and Quality Assurance for Component-Based Systems.

Abu Talib, M., O. Ormandjieva, A. Abran, A. Khelifi and L. Buglione (2006).

"Scenario-based Black-Box Testing in COSMIC-FFP: A Case Study." Software

Quality (ASQ) Journal.

Achthan, R. (1995). A formal Model for Object-Oriented Development of Real-Time

Reactive Systems. Montreal, Canada, Concordia University. Ph.D. thesis.

Alagar, V. S., R. Achuthan and D. Muthiayen (1996). TROMLAB: A Software

Development Environment for Real-Time Reactive Systems. Montreal, Canada,

Concordia University.

Alagar, V. S., M. Chen, O. Ormandjieva and M. Zheng (2006). "Automated

Generation of Test Suits from Formal Specifications of Real-Time Reactive

Systems." IEEE Transactions on Software Engineering Journal.

151

Alagar, V. S. and O. Ormandjieva (2002). "Reliability assessment of Web

applications." Proceedings 26th Annual International Computer Software and

Applications Conference (COMPSAC 2002), pp: 405 - 412.

Alagar, V. S., O. Ormandjieva and M. Zheng (2000). Managing Complexity in Real-

Time Reactive Systems. Sixth IEEE International Conference on Engineering of

Complex Computer Systems, Japan.

Alur, R. (1999). Lecture Notes in Computer Science. Computer-Aided Verification:

11th International Conference (CAV'99) Trento, Italy, Springer-Verlag GmbH.

Bai, X., L. C. Peng and H. Li (2002). An Approach to Generate Thin Threads from

UML Diagrams. S. E. R. Group, School of Computer and Information Science, Edit

Cowan University.

Bai, X., W. T. Tsai, K. Feng and L. Yu (2002). Scenario-based Modeling and Its

Applications to Object-Oriented Analysis Design and Testing. IEEE Workshop on

Object-Oriented Real-Time Dependable Systems (WORDS 2002), San Diego, USA.

Basili, V. R., R. W. Selby and D. H. Hutchens (1986). Experimentation in Software

Engineering. IEEE Transactions on Software Engineering.

Beizer, B. (1990). Software Testing Techniques, second edition, Van Nostrand

Reinhold, ISBN: 1850328803.

Bertolino, A. (2004). Knowledge Area Description of Software Testing Guide to the

SWEBOK, http://www.swebok.org.

Boehm, B. (2002). Software Cost Estimation with COCOMO II. COCOMO II

manuals.

Cammarano, B. (2001). Leveraging points of integration in rational suite: An

introduction, http://www-

128.ibm.com/developerworks/rational/library/content/RationalEdge/jul01/Leveraging

PointsofIntegrationinRationalSuiteJuly01.pdf.

Chen, M. (2002). The Implementation of Specification-based Testing System for

Real-time Reactive System in TROMLIB Framework. Department of Computer

Science. Montreal, Canada, Concordia University. Master Major Report.

Chow, T. S. (1978). Testing Software Design Modeled by Finite State Machines.

IEEE Transactions on Software Engineering.

UK Software Metrics Association – Metrics Practices Committee. (1998). "MkII FPA

Counting Practices Manual - version 1.3.1."

152

Daneva, M., A. Abran, O. Ormandjieva and M. Abu Talib (2006). A case study of

metric-based and scenario-driven black-box testing for SAP projects. International

Workshop of Software Measurement.

Davis, J. S. and R. J. Leblanc (1988). A Study of the Applicability of Complexity

Measures. IEEE Transactions on Software Engineering.

DeMarco, T. (1982). Controlling Software Projects. New York, Yourdon.

EnNouaary, A., R. Dssouli and F. Khendek (2002). Timed Wp-Method: Testing Real-

Time Systems. IEEE Transactions on Software Engineering.

Institute of Electrical and Electronics Engineers (1991). ANSI/IEEE Standard

Glossary of Software Terminology, IEEE Std: 729-1992.

Fenton, N. E. and S. L. Pfleeger (1998). Software Metrics: A Rigorous and Practical

Approach, PWS Publishing Company.

Goˇseva-Popstojanova, K. and S. Kamavaram (2004). Software Reliability Estimation

under Uncertainty: Generalization of the Method of Moments. the Eighth IEEE

International Symposium on High Assurance Systems Engineering (HASE 2004).

Goˇseva–Popstojanova and S. Kamavaram (2003). Assessing Uncertainty in

Reliability of Component-Based Software Systems. 14th International Symptoms

Software Reliability Engineering,.

Haidar, G. (1999). Reasoning System for Real-Time Reactive Systems. Department

of Computer Science. Montreal, Canada, Concordia University. Master's thesis.

Hamming, R. (1980). Coding and Information Theory. Englewood Cliffs, NJ:

Prentice-Hall.

Harrison, W. (1992). An Entropy-Based Measure of Software Complexity. IEEE

Transactions on Software Engineering.

Henderson-Sellers, B. (1996). Object-Oriented Metrics: Measures of Complexity.

New Jersey, Prentice-Hall.

IBM (2004). IBM rational system testing family,

http://www.squadra.com.br/novosite/sitetest/ibm/RationalFunctional%20testing.pdf.

IFPUG (2005). The International Function Point Users’ Group (IFPUG),

http://www.ifpug.org/default.htm.

ISO14143-1 (1988). Functional size measurement - Definitions of concepts. Geneva,

International Organization for Standardization - ISO.

153

ISO-graph, http://www.isograph-software.com/index.htm.

ISO (1993). International Vocabulary of Basic and General Terms in Metrology

(VIM). Geneva, International Organization for Standardization.

ISO (2002). ISO 15939:2002 Software Engineering - Software Measurement Process.

Geneva, International Organization for Standardization.

ISO/IEC19761 (2003). Software Engineering - COSMIC-FFP - A functional size

measurement method. Geneva, International Organization for Standardization - ISO.

Item-software "Item software", http://www.itemsoft.com.

Jenner, M. (2002). Automation of Counting of Functional Size Using COSMIC-FFP

in UML. 12th International Workshop on Software Measurement (IWSM 2002),

Magdeburg, Germany.

Khoshgoftaar, T. M. and E. B. Allen "Applications of information theory to software

engineering measurement." Software Quality Journal 3 (2): 79 -103.

Koskimies, K., T. Mannisto, T. Systa and J. Tuomi (1998). "Automatic support for

dynamic modeling of object-oriented software." IEEE Software 15(1): 87-94.

Kruchten and Philippe (2000). The Rational Unified Process: An Introduction,

Addison-Wesley Pub. Co.

Lee, F.-A. (2003). Reliability Measurement Based on the Markov Model for Real-

time Reactive Systems: Design and Implementation. Department of Computer

Science. Montreal, Canada, Concordia University. Major report.

Martin, N. F. G. and J. W. England (1981). Mathematical Theory of Entropy,

Addison-Wesley Pub. Co.

Musa, J. D. and K. Okumoto (1982). Software reliability models: concepts,

classification, comparisons, and practice. The Electronic Systems Effectiveness and

Life Cycle Costing Conference, Norwich, U.K., Springer-Verlag, Heidelberg.

Muthiayen, D. (1996). Animation and Formal Verification of Real-Time Reactive

Systems in an Object-Oriented Environment. Department of Computer Science.

Montreal, Canada, Concordia University. Master's thesis.

Muthiayen, D. (2000). Real-Time Reactive System Development: A Formal approach

based on UML and PVS. Department of Computer Science. Montreal, Canada,

Concordia University. Ph.D. Thesis.

154

NESMA. (2004). "Differences between NESMA & IFPUG." From

http://www.nesma.nl.

Oligny, S. and A. Abran (1999). On The Compatibility Between Full Function Points

And IFPUG Function Points. The 10th European Software Control and Metrics

Conference (ESCOM SCOPE 99), Herstmonceux Castle, England.

Ormandjieva, O. (2002). Deriving New Measurement for Real Time Reactive

Systems. Computer Science & Software Engineering Department. Montreal,

Concordia University.

Peters, J. F. and W. Pedrycz (2000). Software Measures in Software Engineering: An

Engineering Approach, J. Wiley.

Pham, H. (1999). Software Reliability. New York, Springer-Verlag, ISBN:
9813083840.

Pompeo, F. (1999). A Formal Verification Assistant for TROMLIB environment.

Department of Computer Science. Montreal, Canada, Concordia University. Master's

thesis.

Popistas, O. (1999). Rose-GRC Translator: Mapping UML Visual Models onto

Formal Specifications. Department of Computer Science. Montreal, Canada,

Concordia University. Master's thesis.

The Object Primer (2004). Agile Model-Driven Development with UML 2,

Cambridge University Press, third edition, ISBN: 0-521-54018-6.

Relex Software, http://www.relexsoftware.com.

Ryser, J. and M. Glinz (2000). Using dependency charts to improve scenario-based

testing. The 17th International Conference on Testing Computer Software

(TCS2000), Washington, D.C.

Sellami, A. and A. Abran (2003). The contribution of metrology concepts to

understanding and clarifying a proposed framework for software measurement

validation. International Workshop on Software Measurement (IWSM), Montreal,

Shaker-Verlag.

Shannon, C. E., Weaver and Warren (1969). The Mathematical Theory of

Communication. Chicago, University of Illinois Press.

Shukla, S. (2005). Lecture 04: Team Organization, Tools & Case Tools. School of

Information Technology and Engineering, University of Ottawa.

155

Srinivasan, V. (1999). Graphical User Interface for TROMLIB Environment.

Department of Computer Science. Montreal, Canada, Concordia University. Master's

thesis.

Strook, D. W. (2005). An Introduction to Markov Processes. Berlin, Heielberg,

Springer-Verlag.

Symons, C. (1999). Conversion between IFPUG 4.0 and MK II Function Points -

version 3.0, http://www.gifpa.co.uk/library/Papers/Symons/AlbvMkII_v3b.pdf.

Abu Talib, M., A. Abran and O. Ormandjieva (2005). COSMIC-FFP & Entropy: A

Study of Their Scale Transformations. Proceedings of the 15th International

Workshop of Software Measurement (IWSM2005).

Abu Talib, M., O. Ormandjieva, A. Abran and L. Buglione (2005). Scenario-based

Black-Box Testing in COSMIC-FFP. Proceedings of the 2nd Software Measurement

European Forum 2005 (SMEF 2005), Italy.

Tao, H. (1996). Static Analyzer: A Design Tool for TROM. Department of Computer

Science. Montreal, Canada, Concordia University. Master's thesis.

Trvedi, A. K. (1975). Computer Software Reliability: Many-State Markov Modeling

Techniques, Polytechnic Institute of Brooklyn. Ph.D. dissertation.

V. S. Alagar, O.Ormadjieva and J. Shen (2004). Scenario-Based Performance

Modeling and Validation in Real-Time Reactive Systems. the First Software

Measurement European Forum (SMEF 2004), Rome, Italy.

Vangalur, S., V. S. Alagar and K. Periyasamy (1998). Specification of Software

Systems, Springer Verlag.

Vasilache, S. and J. Tanaka (2004). Synthesis of state machines from multiple

interrelated scenarios using dependency diagrams. Proceedings of the 8th World

Multiconference on Systemics, Cybernetics and Informatics (SCI 2004), Orlando,

Florida, USA.

Vassev, E., H. Kuang, O. Ormandjieva and E. Paquet (2006). Reactive, Distributed

and Autonomic Computing Aspects of AS-TRM. 1st International Conference on

Software and Data Technologies-ICSOFT2006, Setubal, Portugal.

Weiss, S. N. and E. J. Weyuker (1988). An Extended Domain-Based Model of

Software Reliability. IEEE Transactions Software Engineering.

Whitmire, S. A. (1997). Object Oriented Design Measurement, John Wiley & Sons.

156

Whittle, J. and J. Schumann (2000). Generating Statechart Designs from Scenarios.

Proceedings of International Conference on Software Engineering (ICSE2000),

Limerick, Ireland.

Wikipedia-Encyclopedia, http://en.wikipedia.org/wiki/Main_Page.

Zheng, M. (2002). Automated Generation of Test Suits from Formal Specifications of

Real-Time Reactive Systems. Department of Computer Science. Montreal, Canada,

Concordia University. Ph.D. thesis.

Zuse, H. (1991). Software Complexity Measures and Methods. Berlin, New York,

Walter de Gruyter.

157

 ABBREVIATIONS

This thesis has used many abbreviations. The list for the whole abbreviations is shown as

following:

FSM: Functional Size Measurement

COSMIC-FFP: Common Software Measurement International Consortium – Full

Function Point.

Cfsu: Cosmic Functional Size Unit.

FUR: Functional User Requirements.

FP: Function Point.

UFC: Unadjusted Fucntion Point.

TDI: Total Degree of Influence.

GSC: General System Characteristics.

EI: External Input.

EO: External Output.

EQ: External Inquiry.

ILF: Internal Logical Files.

EIF: External Interface Files.

LT: Logical Transaction.

DET: Data Element Type.

UML: Unified Modeling Language.

RUP: Rational Unified Process.

OO: Object Oriented.

MTTF: Mean Time to Failure.

MTBF: Mean Time Between Failures.

158

MIS: Management Information System.

IFPUG: International Function Point Users Group.

NESMA: Netherlands Software Metrics Users Association.

MK2: Mark 2.

LOC: Lines of Codes.

V: Test Selection Domain.

STC: Generated Test Set.

TS: Equivalence Class.

LCP: Longest Common Prefix.

FC: Functional Complexity based entropy.

TROM: Timed Reactive Object Model.

TROM-SRMS: TROM System Reliability Measure.

AS-TRM: Autonomic Systems Timed Reactive Object Model.

AC: Timed Reactive Autonomic Component.

ACG: Group of synchronously interacting AC.

AS: Autonomic System.

AGM: ACG Manager.

GM: Global Manager.

LSL: Larch Shared Language.

NFR: Non Functional Requirements.

FR: Functional Requirements.

ERP: Enterprise Resource Planning.

