
International Workshop on Software Measurement (IWSM'99) | September 8{10, 1999
Mont-Tremblant, Canada

A Generalized Structure for

Function Point Analysis

Thomas Fetcke

Abstract

Since its �rst publication by Albrecht, Function
Point Analysis has been revised and modi�ed sev-
eral times. Today, a number of variants are in use,
which di�er in their respective views on functional
size.

Function Point Analysis relies implicitly on a
model of software. We propose the Function Point
Structure as a formalization of the software model
of Function Point Analysis. The Function Point
count is then de�ned as a function on the Function
Point Structure. Function Point variants di�er in
their abstract models of software as well as in their
measure functions. Therefore, di�erent formaliza-
tions of the Function Point Structure are required
for each variant. We present here a generalized
Function Point Structure for several data oriented
variants of Function Point Analysis. With the gen-
eralized Function Point Structure, we can analyze
the empirical assumptions made by the FPA vari-
ants and the implications on the prediction of other
variables. We can also study the di�erences be-
tween the views and assumptions of the variants.

1 Introduction

Since its �rst publication by Albrecht, Function
Point Analysis (FPA) has been revised and mod-
i�ed several times. Today, a number of variants
are in use, which di�er in their respective views on
functional size. In this paper, we give a characteri-
zation of the measurement process of three variants
of Function Point Analysis. In our view, Function
Point Analysis de�nes both a model of software and
a measure of \functional size" on this model. We
therefore formulate the data oriented model of soft-

ware used implicitly by the FPA variants. The ini-
tial abstraction in Function Point Analysis is thus
made explicit.
Given the data oriented abstraction of Function

Point Analysis, the Function Point measures of the
variants are functions into numbers. In the gener-
alized Function Point Structure, we give a formal-
ization of the data oriented software model. The
Function Point measures can thus be formulated
mathematically as functions. Given this formaliza-
tion, empirical properties and assumptions made
by the di�erent variants of Function Point Analysis
can be analyzed. For this analysis, we present two
additional conditions for the weak orders assumed
by Function Point measures. These conditions can
give us additional insight into the behavior of Func-
tion Point Analysis. We present some experiments
of thought in this paper to illustrate observations
obtained with these criteria based on the general-
ized Function Point Structure.
In the following paragraph, we give a short

overview of the evolution of the FPA variants stud-
ied.

1.1 Evolution of Function Point

Analysis

Function Point Analysis was developed by Al-
brecht in the 1970s, with its �rst presentation to
the public in 1979 [2]. The purpose of Function
Point Analysis was to measure the amount of soft-
ware produced. Albrecht wanted to measure the
functionality of software from the user viewpoint,
independently of the implementation. He therefore
introduced Function Points as a measure of \func-
tional size".
In 1984, the International Function Point Users

Group (IFPUG) was formed to maintain Albrecht's

1980 1990 20001975

Albrecht 1979IBM 1975

Function Point
Analysis 3.4

IFPUG 1990

1985 1995

IFPUG 1994

Mark II FPA

Symons 1988

Mark II FPA 1.3.1

UKSMA 1998

Function Point
Analysis

Albrecht 1984

Function Point
Analysis 4.0

St-Pierre et al. 1997

Full Function
Points 1.0

Full Function
Points 2.0

DRAFT

Function Point
Analysis

Figure 1: The evolution of three variants of Function Point Analysis.

FPA. IFPUG has since then published Counting
Practices Manuals that give standard rules for the
application of Function Point Analysis. IFPUG
has thus both clari�ed the rules and modi�ed Al-
brecht's original method.

Several authors published extensions and alter-
natives to the FPA versions of Albrecht and IF-
PUG. Symons [6] formulated several \concerns and
di�culties" with Albrecht's FPA. His critique led
him to the proposal of a new variant called Mark
II Function Point Analysis. Today, the United
KingdomMetrics Association (UKSMA) maintains
Mark II FPA [7]. In 1997, St-Pierre et al. [5] pro-
posed the Full Function Points approach as an ex-
tension to the IFPUG standard. The purpose of
the extension was to capture the functional size of
real-time applications.

In this study, we focus on three variants of FPA:

� the IFPUG standard as de�ned in the Count-
ing Practices Manual 4.0 [4],

� Mark II FPA 1.3.1 de�ned in [7], and

� the Full Function Points approach 1.0, formu-
lated in [5].

We will see that these variants share a core view
of the items that determine functional size. Fig-
ure 1 presents a view of the evolution of the three
variants of FPA studied here.

1.2 Related studies

Abran et al. [1] analyze the measurement process
of IFPUG Function Point Analysis. In their view,
FPA constructs the Function Point count1 in a hi-
erarchical process of measurements. The counting
of data elements, e. g., is considered as a mea-
sure on the lowest level of the hierarchy. Based
on the lowest level measurements, higher levels are
constructed, e. g., the assignment of weights to
transaction types. Abran et al. then identify scale
types for the measurements at each level.

In this paper, we view Function Point Analysis
as a measure that assumes an ordinal scale with the
empirical objects in Function Point Analysis. The

1With the term Function Point count, we use the stan-

dard term of IFPUG for the FPA measure here to help read-

ers familiar with this nomenclature. Note, however, that in

our view FPA de�nes a measure function that maps appli-

cations into real numbers, rather than a \count".

2

Identification of FPA items

Software
documentation

Mapping into numbers
Function Points

(numbers)

Data oriented abstraction

User

Transactions

Application

Stored data

Figure 2: Function Point Analysis de�nes two steps of abstraction.

assumed weak order can then be examined with
conditions or axioms that formulate assumptions
of reality [8, Chapter 4]. We present two additional
conditions to the weak order here.

2 Two steps of abstraction

Any measurement can be interpreted as an abstrac-
tion that focuses on some attributes of an object
under study. In measurement theory, we view this
abstraction as a mathematical function that maps
empirical objects onto numerical objects. From
this viewpoint, Function Point Analysis de�nes a
function that assigns numbers to software applica-
tions.

Function Point Analysis has been declared as a
measurement method that is independent of the
technique used for implementation. It is formu-
lated without reference to any particular develop-
ment method. Therefore, instead of using the con-
cepts and models of a development method, FPA
introduces its own concepts for the description of
a software application. FPA thus de�nes its own
abstraction of software that represents the items
deemed relevant for functional size. This abstrac-
tion is data oriented. Function Point Analysis thus
actually de�nes two steps of abstraction:

1. The software documentation is represented in
the data oriented abstraction.

2. The items in the data oriented representation
are mapped into numbers.

The �rst step of abstraction is applied to the
software documentation, regardless of its form.
Thus, Function Point Analysis achieves indepen-
dence of the technology used for implementation.
The result is a representation in the data oriented
abstraction that contains the items deemed rele-
vant for functional size. This step requires the eval-
uation of rules by humans.
The second step is the actual measurement, the

mapping into numbers. Because the source in this
step must be in the form of the data oriented ab-
straction, this step can be automated.
Our view of the two steps of abstraction is illus-

trated in Figure 2. Both steps are de�ned by the
rules in the respective Counting Practices Manu-
als of the FPA variants. Although the rules make
a distinction between the identi�cation of FPA
items on one hand, and the assignment of Function
Points on the other hand, the two steps of abstrac-
tion are not separated clearly. The data oriented
abstraction is not presented explicitly. In the fol-
lowing section, we give a generalized description of
the data oriented abstraction.

3 Data oriented abstraction

IFPUG Function Point Analysis uses a data ori-
ented abstraction of the application measured

3

Data group
Sub-group

Data element

Data element

Data element

Sub-group

Data element

Data element

Data element

Figure 3: A data group type is a set of data elements.

(cf. Fig. 2). The variants of Function Point Anal-
ysis studied here have been proposed as improve-
ments over the original approach. They therefore
di�er both in the items identi�ed and in the mea-
sure function. However, both the Mark II and Full
Function Points approaches rely on the same core
concepts as the IFPUG standard. These core con-
cepts are:

� User concept. The users interact with an ap-
plication. Users are not necessarily restricted
to human users, but may include software and
hardware \users".

� Application concept. The application is the
object of the measurement. Applications pro-
vide functions to the users. These functions
are the attribute of interest.

� Transaction concept. Transactions are pro-
cesses of interaction of the user with the ap-
plication from a \logical" or \functional" per-
spective. Transactions

{ are the smallest unit of activity meaning-
ful to the user,

{ are \self-contained", i. e., logically com-
plete,

{ leave the application in a consistent state.

� Data concept. Data is stored by the appli-
cation. Data elements represent the small-
est data items meaningful to the user. Data
elements are structured in logically related
groups similar to tables in a database.

While these core concepts are common to the
three variants studied here, the detailed de�nitions

and names for these concepts and the identi�cation
procedures di�er signi�cantly. However, we do not
present a discussion of these di�erences here. In-
stead, we will give a characterization of the core
concepts that can serve as a basis for all three vari-
ants.
At the highest level of the data oriented abstrac-

tion, all three variants identify transaction types
and data group types. The term type refers here
to the principle that multiple instances of the same
logical function are identi�ed only once. The term
function type refers both to transaction types and
data group types.
A data group type is a set of data elements stored

by the application. Sub-groups may be de�ned on
the data elements of a data group type. This char-
acterization applies directly to IFPUG FPA and
the Full Function Points approach. In Mark II
FPA, the data elements in a data group may be
ignored.
Transaction types are represented very di�er-

ently in the variants. The IFPUG standard de-
�nes three classes of transaction types with four at-
tributes, Mark II FPA uses a single representation
with three attributes, and the Full Function Points
approach de�nes a transaction type as a collection
of sub-processes. The spectrum of logical activi-
ties associated with transaction types, however, is
nearly the same in the three variants. Similarly to
the sub-process concept in the Full Function Points
approach, we represent transaction types here with
six classes of logical activities:

1. Entry activity. The user enters data ele-
ments into the application.

2. Exit activity. Data elements are output to
the user.

4

Calculate

Write Read

Entry

Confirm

Exit

Stored data

Transaction

Figure 4: Transaction types are represented with activities.

3. Con�rm activity. Con�rmation data ele-
ments are output to the user.

4. Read activity. Data elements are read from
a data group type.

5. Write activity. Data elements are written
to a data group type.

6. Calculate activity. New data elements are
calculated from some data elements.

Given the concept of logical activities, a trans-
action type can be characterized as a collection of
logical activities. IFPUG Function Point Analysis,
e. g., requires that an \external input":

� receives data from the user (Entry),

� maintains data in a data group type (Write),

� may read data from other data group types
(Read),

� may output con�rmation or error messages
(Con�rm).

Mark II FPA views transaction types as a unit of
input (Entry), processing (Read and Write) and
output (Exit and Con�rm). In the Full Func-
tion Points approach, the �rst �ve classes of log-
ical activities correspond to the four classes of sub-
processes.

With the concepts described before, we can rep-
resent the items identi�ed by the di�erent FPA
variants in a uniform way. Thus, we have a general-
ized representation of the data oriented abstraction
that is applicable to any of the three variants. Note
that we do not require that all variants arrive at
the same items for a given set of user requirements.

In terms of the two step mapping approach, the
�rst step of abstraction is now a mapping into the
generalized abstraction. This does, however, not
present a change to any of the variants, as the
logical activities of the generalized representation
appear in all three variants. The same identi�ca-
tion rules are used as before, merely the representa-
tion is more explicit. The resulting Function Point
counts will not be a�ected.

4 Generalized Function Point

Structure

As mentioned before, in measurement theory we
view a measure as a function that assigns numbers
to empirical objects. In FPA, the empirical ob-
jects are applications, characterized by functional
user requirements. These requirements are repre-
sented in the data oriented abstraction discussed in
the previous section. We will give a formalization
of this representation in the generalized Function
Point Structure in this section. The Function Point

5

count of each variant can then be de�ned as func-
tion on the generalized Function Point Structure.

4.1 Portfolio concept

The universe of applications de�ned by some user
requirements is virtually unlimited. However, at
any given point in time, we will study only a �nite
set of applications. Such a set of applications may
contain related applications, e. g., several applica-
tions that share one database. As an experiment of
thought, a set of applications may also contain dif-
ferent versions of an application. The functions of
the applications may overlap, i. e., we may �nd the
same function types in more than one application.

We call such a set of applications a software port-
folio. In the data oriented approach of Function
Point Analysis, a software portfolio is formed by
a �nite set of transaction types and a �nite set of
data group types. We assume that these function
types have been identi�ed and that they are �xed
for the study. In any given situation, we thus have
a �nite set of empirical objects measured. This no-
tion simpli�es the formalization without limiting
the area of application, as no limit on the number
of function types is imposed.

4.2 Function Point structure

In the Function Point structure, the function types
in a software portfolio are represented in the appli-
cation closure. The application closure consists in
principle of a collection of transaction types and a
collection of data group types.

Function types are associated with some inter-
pretation, e. g., addition of a customer record to a
database. Any two function types di�er in respect
to their logical function. This distinction is made
in the �rst step of abstraction, i. e., it is given by
the detailed rules de�ning the respective Function
Point Analysis variant. In the representation of the
items and their attributes, we represent this logical
distinction with an index in a vector. Hence, the
application closure is a vector of function types, the
position in the vector identi�es the interpretation
given to that function type. The order of indices
in the application closure has no other meaning.

We de�ne the application closure as a vector of
� transaction types Ti and � data group types Fj .

De�nition 4.1 (Application closure)
An application closure H is de�ned as the vector

H = (T1; : : : ;T� ;F1; : : : ;F�):

Transaction types consist of a number of activi-
ties. The interpretation associated with an activity
is represented as an index as well.

De�nition 4.2 (Transaction type)
The transaction type Ti is a vector of activities

Ti = (Pi1; : : : ;Pini
):

An activity is characterized by four attributes:

� its class �ik 2 fEntry;Exit;Con�rm;Read;
Write;Calculateg,

� for Read and Write activities, the data group
type referenced rik ,

� the set of data elements Dik handled,

� for Calculate activities, the set of data ele-
ments calculated Cik.

De�nition 4.3 (Activity)
An activity Pik is a quadruplet

Pik = (�ik ; rik;Dik ;Cik):

Data group types are a collection of data ele-
ments. Each data element belongs to exactly one
sub-group. A data group type is represented as
a set of pairs, where each pair represents a data
element and its sub-group.

De�nition 4.4 (Data group type)
The data group type Fj is a set

Fj = f(dj1; gj1); : : : ; (djrj ; gjrj)g:

where the djk are data elements and the gjk desig-

nate sub-groups.

4.3 Applications in a software port-

folio

Given a software portfolio, we can perform exper-
iments of thought. An application is formed by a

6

subset of the function types in the portfolio. Fur-
thermore, the function types in an application may
be subsets of the function types in the portfolio.
In the generalized Function Point Structure, we
de�ne an instance relation, such that applications
are instances of the application closure. We write
a vA H, if application a is an instance of the clo-
sure H.

De�nition 4.5 (Application instances)
An application a = (t1; : : : ; t� ; f1; : : : ; f�) is an in-
stance of the application closure a vA H, with

H = (T1; : : : ;T� ;F1; : : : ;F�), if the ti are in-

stances of Ti and the fj are instances of Fj .

The instance relation can be extended to appli-
cations in general. An application a is then an in-
stance of a0 if all function types of a are instances
of the corresponding function types in a0, written
as a vA a0.

4.4 Uni�cation of applications

Two applications a and a0 can be combined to
form a single new application that comprises the
function types of both a and a0. We assume that
the two applications may contain both distinct and
overlapping function types. In the combined ap-
plication, all function types of both applications
will be present. However, those function types that
overlap will be present only once in the form that
comprises all their functionality, as required by the
function type concept. Therefore, similar to the
operations introduced in the analysis of measures
for object-oriented software in [3, 8, Chapter 6], the
combination of two applications into a single appli-
cation can be expressed with a uni�cation opera-
tion. In the generalized Function Point Structure,
we de�ne the uni�cation of application instances
as follows:

De�nition 4.6 (Instance uni�cation)
Let a; a0 vA H be two applications. The uni�ca-
tion of applications a; a0 is de�ned as

a [A a
0 := (t1 [T t

0

1; : : : ; t� [T t
0

� ;

f1 [F f
0

1; : : : ; f� [F f
0

�):

The uni�ed application is thus a vector of the
uni�ed function types of the two applications. For

brevity, we do not present the detailed de�nitions
of the uni�cation of transaction types [T nor that
of the uni�cation of data group types [F here.

5 Empirical observations

In the preceding section, we have characterized the
empirical model of Function Point Analysis for-
mally. With this characterization, we can study
the empirical assumptions made by the di�erent
variants, and the di�erences between them.

Independent of the algorithm used to obtain the
measurement values, any FPA variant de�nes an
order on applications. The interpretation of this
order in Function Point Analysis is that whenever
the Function Point count FPC of an application
a is greater than the Function Point count of an-
other application a0, then a is larger in functional
size than a0. We assume that the Function Point
count de�nes an ordinal scale on applications, i.
e., that the axioms of the weak order (transitivity
and completeness) hold (cf. [8, Chapter 4]). We
will now discuss conditions additional to the weak
order.

5.1 Dominance

The axiom of dominance (cf. [8, pp. 318]) is a con-
dition related to the instance relation. As an ex-
periment of thought, let us assume that we make
an extension to the function types of a given appli-
cation. As the function types represent the notion
of functional size, there is an empirical meaning to
this extension, i. e., we have an expectation of the
e�ect of such an extension on functional size.

A reasonable assumptions would be that an ex-
tension of the functionality of an application should
increase its functional size. If we relate this empir-
ical assumption to other variables, e. g., the e�ort
required to implement the functionality, this is a
reasonable assumption.

The axiom of dominance requires that the weak
order assumed by a Function Point measure agrees
with the application instance relation, i. e., if ap-
plication a is an instance of application a0, writ-
ten as a vA a0, then a0 must be at least as large
in functional size as a. With the Function Point

7

ABC ComputersCustomer

1999-03-05Begin

OK

Query orders per customer

1999-04-10End

pending

MonitorsCategory

Status
Part no. Part Quantity

56074

56087

ABC Computers

CTX 19"

20

5

59327

59103

Eizo 17"

Eizo 19"

10

2

Customer

CTX 17"

Figure 5: Input and output of the order query (tQ).

count FPC, we formulate the axiom of dominance
as follows:

a vA a0 =) FPC(a) � FPC(a0): (1)

Consider the following example. An order pro-
cessing application maintains three data group
types for customers, stored parts and orders. A
query allows to view orders for a customer issued
between a start and an end date. The user can also
choose the status of the order and the category of
the parts ordered. The output list is retrieved from
the three data group types, the �elds are customer
name, part id, part description and quantity. Fig-
ure 5 illustrates input and output screens of this
transaction type.
Suppose the query has been identi�ed as a trans-

action type tQ. According to IFPUG FPA rules,
this transaction type is an \external inquiry", rated
with six Function Points

FPCIFPUGT (tQ) = 6:

Now, an additional data element is added to the
output, the total value of the order, the rest of the
transaction type remains unchanged. We identify
this as the transaction type t0

Q. We therefore have
tQ vT t0

Q. The extension is illustrated in Figure
6.
According to IFPUG FPA, the total value data

element must be calculated and hence the class of
t0

Q is \external output". Now, we have

FPCIFPUGT (t0

Q) = 4 < 6 = FPCIFPUGT (tQ)

although tQ vT t0

Q, i. e., IFPUG Function Point
Analysis violates the axiom of dominance (1).

In other cases, however, an additional data el-
ement may increase the IFPUG Function Point
count. Therefore, we cannot predict in general the
in
uence an extension of the function types has on
the Function Point count according to IFPUG FPA
rules. The consequence is that if we use the Func-
tion Point count for the prediction of development
e�ort, for example, an extension to the functional-
ity requested by the user may increase or decrease
the predicted e�ort, which may be unexpected.

The Mark II and Full Function Points variants,
on the other hand, assume the axiom of dominance
(1), i. e., an extension cannot decrease the func-
tional size measured. The extension does, however,
not necessarily increase the Function Point count.
This is due to the fact that all FPA variants ab-
stract from some items identi�ed in the generalized
Function Point structure. In Mark II FPA, e. g.,
an extra data element in a data group referenced
by an application would not change the result of
the measurement. Nevertheless, an extension to
the functionality requested by the user cannot de-
crease an e�ort estimate that is based on Mark II
FPA or the Full Function Points approach.

With the dominance axiom (1), we have thus
found a signi�cant di�erence between the three
FPA variants.

5.2 Monotonicity

We now consider another condition called mono-
tonicity (cf. [8, p. 321]). The axiom of monotonic-
ity requires that for any three applications a; a0; a00,

8

ABC ComputersCustomer

1999-03-05Begin

OK

Query orders per customer

1999-04-10End

pending

MonitorsCategory

Status
Part no. Part Quantity

56074

56087

ABC Computers

CTX 19"

20

5

59327

59103

Eizo 17"

Eizo 19"

10

2

Customer

CTX 17"

Total value $31,000

Figure 6: Input and output of the extended order query (t0

Q).

it holds

FPC(a) � FPC(a0)()

FPC(a [A a
00) � FPC(a0 [A a

00): (2)

Hence, if application a is smaller in functional size
than a0 according to the Function Point count, then
an extension of both applications with the same
function types a00 cannot have the result that the
extended application a[A a

00 is larger than the ex-
tended a0 [A a

00.

Suppose, for example, that two applications a; a0

are given which are almost equal in their functional
size. Both operate on similar yet di�erent instances
of a data group type FE holding employee data.
Let us assume that application a merely references
its data group type instance fE vF FE , while ap-
plication a0 also updates its data group type in-
stance f 0

E vF FE . The functional size of both ap-
plications has been calculated according to IFPUG
FPA and the results are equal except for the respec-
tive instances of FE . For fE , the data elements of
Table 1 have been identi�ed. fE is classi�ed as an
\external interface �le" in application a.

In application a0, the data group type f 0

E has
the data elements listed in Table 2. It has been
classi�ed as an \internal logical �le".

We assume that the other function types of both
a and a0 contribute c Function Points to the mea-

surement value. Thus,

FPC(a) = c+ FPCF (fE) =

c+ 5 < c+ 7

= c+ FPCF (f
0

E) = FPC(a0):

Now, let us assume that we extend both ap-
plications with the same application functionality
a00 that comprises an additional group of data ele-
ments f 00

E in the instances of FE listed in Table 3
and an additional transaction type tE for admin-
istrator edit of FE instances.
Now, both extended applications maintain the

extended instances of FE , which are therefore both
classi�ed as \internal logical �les". With the new
function types, we have

FPC(a [A a
00) =

c+ FPCT (tE) + FPCF (fE [F f
00

E) =

c0 + 10 > c0 + 7

= c+ FPCT (tE) + FPCF (f
0

E [F f
00

E) =

FPC(a0 [A a
00):

Hence, although application a is clearly less
in functional size then a0 according to IFPUG
FPA rules, the extension with an identical, known
amount of functionality reversed the relation be-
tween the extended applications. Therefore, IF-
PUG Function Point Analysis violates the axiom
of monotonicity (2). A consequence of this obser-
vation is that if an application has been developed
in parts and the functional sizes of these parts have

9

Sub-

group

Personal

data

Job de-

scription

Hourly

payment

data

Data

ele-

ments

Name Job name Hourly

rate

Birth date Job level Standard

hourly

rate

Social

security

number

Department

Address Group

Number

of depen-

dents

Supervisor

Dependent

name

Location

Dependent

birth date

Dependent

social

security

no.

Tax class

Bene�ts

plan

Health

care plan

Total 11 6 2

Table 1: The data group type fE has 19 data ele-
ments and three sub-groups.

been measured with IFPUG FPA, one can in gen-
eral not predict the functional size of the whole ap-
plication from the measurement values of the parts.
Mark II FPA, on the other hand, assumes mono-

tonicity (2). An increase in the functional size of
one part of an application | from a to a0 in (2) |
has a predictable in
uence on the functional size
of the whole application | extended from a[A a

00

to a0 [A a
00.

The Full Function Points approach, version 1.0,
also violates the axiom of monotonicity (2), be-
cause data group types are measured with the same
rules as in IFPUG FPA. With the changes made
in version 2.0, which is currently in draft status,
however, the Full Function Points approach does
assume monotonicity.

Sub-group Personal

data

Job descrip-

tion

Data elements Name Job name

Birth date Job level

Social secu-

rity number

Department

Address Group

Number of

dependents

Supervisor

Dependent

name

Location

Dependent

birth date

Dependent

social secu-

rity no.

Tax class

Bene�ts

plan

Health care

plan

Total 11 6

Table 2: The data group type f 0

E has 17 data ele-
ments and two sub-groups.

Sub-group Salary data

Data elements Salary

Hours per

week

Total 2

Table 3: Two additional data elements in a new
sub-group are de�ned in f 00

E .

We thus have characterized another property
that gives us insight in the di�erences between the
three FPA variants.

6 Conclusion

In this paper, we have characterized Function Point
Analysis as a two step measurement process, de�n-
ing both a data oriented abstraction of software
applications and a measure function on this ab-
straction. We have proposed a generalized repre-
sentation of this abstraction that applies to three
variants of Function Point Analysis. A formaliza-
tion of this generalized view has been proposed in

10

the generalized Function Point Structure.

We have thus introduced a new point of view on
Function Point Analysis. Our characterization en-
ables us to study the empirical assumptions made
by the variants of Function Point Analysis and the
properties of the di�erent measures. We have pre-
sented two additional conditions to the weak or-
der. These conditions have been used to gain new
insights in the behavior of the FPA variants.

The generalized representation of the data ori-
ented abstraction and its formalization in the gen-
eralized Function Point Structure can also serve
as a basis for the comparison of the di�erent FPA
variants under controlled circumstances.

References

[1] Alain Abran and Pierre N. Robillard. Function
points: A study of their measurement processes
and scale transformations. Journal of Systems
and Software, 25(2):171{184, May 1994.

[2] A. J. Albrecht. Measuring application devel-
opement productivity. In IBM Applications

Development Symposium, pages 83{92, Octo-
ber 14{17 1979.

[3] Thomas Fetcke. Softwaremetriken bei objek-
torientierter Programmierung. Diploma thesis,
Techn. Univ. Berlin, April 1995.

[4] Function Point Counting Practices Manual. In-
ternational Function Point Users Group, West-
erville, Ohio, 1994. Release 4.0.

[5] Denis St-Pierre, Marcela Maya, Alain Abran,
Jean-Marc Desharnais, and Pierre Bourque.
Full function points: Counting practices man-
ual. Technical Report 1997-04, Software Engi-
neering Management Research Laboratory and
Software Engineering Laboratory in Applied
Metrics, September 1997.

[6] Charles R. Symons. Function point analysis:
Di�culties and improvements. IEEE Trans-

actions on Software Engineering, 14(1):2{11,
1988.

[7] Mk II Function Point Analysis Counting Prac-

tices Manual. United Kingdom Software Met-
rics Association, September 1998. Version
1.3.1.

[8] Horst Zuse. A Framework of Software Measure-

ment. de Gruyter, 1998.

11

