
An evaluation of the paired comparisons method for
software sizing

By Eduardo Miranda
Ericsson Research Canada
8400 Decarie Blvd., TMR
Quebec H4P 2N2, Canada

eduardo.miranda@lmc.ericsson.se

Abstract

This paper evaluates the accuracy, precision and
robustness of the paired comparisons method for
software sizing and concludes that the results
produced by it are superior to the so called
“expert” approaches.

Keywords: software sizing, estimation methods,

Paired comparisons method, measurement
methods, subjective estimates.

Introduction

Despite the existence of well known software
sizing methods like Function Points [1] or the
more recent Full Function Points [2] and Object
Points [3], just to name a few, many practitioners
and project managers continue to produce
estimates based on ad-hoc or so called “expert”
approaches.

Among the most common explanations given for
not adopting more formal practices, we found:

• The lack of necessary information at the
beginning of the project

• The specificity of the domain addressed by
the method

• The effort and time required to apply them

• The need to introduce a foreign vocabulary
to stakeholders without a software
background

However, as figure 1.a shows, ad-hoc size
estimates have problems of their own. Their
accuracy and precision leave much to be
desired. The problem is not an academic one, as
uncertain size estimates automatically translate
into questionable project budgets and schedules.

This paper presents the results of applying the
paired comparisons method, a method used in
the social sciences to measure soft issues, to
software sizing.

The idea behind the method, is to estimate the
size of “n” entities1 by asking one or more
experts to judge their relative largeness instead
of to provide an absolute size value. By requiring
multiple and explicit decisions about the relative
size of every two entities, rather than a single
comparison to some vague notion of size buried
in the mind of the estimator, the paired
comparisons method is able to improve both, the
accuracy and the precision of the estimates as
shown by Figure 1.b.

Although not new, the idea has received very
little attention in the literature. Earlier work
includes Target Software’s Software Sizing
Method [4], and more recently an article by
Focal Point AB [5] where an instance of the
method, called the Analytic Hierarchical Process,
is used to prioritize requirements relative to their
cost.

Overall Approach

As Figure 2 shows, first the artifacts to be sized
are arranged according to their perceived
largeness. Once this is done, the relative size of
each of them with respect to all the others is
assessed and recorded in a so called “judgement
matrix”. From the judgements made, a ratio scale
is derived using a mathematical procedure. The
absolute size of the entities is then calculated
using the ratio scale and a reference value.
Should the need arises, judgements could be
reviewed for internal consistency. The following
paragraphs briefly explain the steps and
calculations required.

1 These “entities” could be requirements, use cases, modules,
features or objects or any other thing relevant to all
stakeholders and for which it is possible to know the number
of LOC, hours or any other magnitude that could later be
used for planning purposes.

 Artifacts to be sized

This is the list of of things: use cases, features,
requirements, modules, etc., whose size the
organization want to estimate.

It is very important that the size of the entities
being estimated do not differ for more than one
order of magnitude, as our ability ability to
accurately discriminate size diminishes as the
artifacts are further away[6,7].

b. Paired comparisosns

0

50

100

150

200

250

300

350

400

450

500

LO
C

Actual Ad-hoc Paired comparisons

stack queue binary
tree

linked
list (a)

reference
(string)

linked
list (b)

balanced
tree

hash
table

a. Ad-hoc estimation

0

50

100

150

200

250

300

350

400

450

500
LO

C

Actual Ad-hoc

stack queue binary
tree

linked
list (a)

reference
(string)

linked
list (b)

balanced
tree

hash
table

Figure 1 - Accuracy and precision of different estimation approaches

Rank artifacts
from largest
to smallest

Compare the
artifacts pairwise
establishing their

relative size

Review internal
inconsistencies

Calculate ratio
scale and

inconsistency
index

Calculate
absolute sizes

Artifacts to
be sized

Judgement
Matrix

Ratio
Scale

Reference
Value(s)

Verbal Scale
(optional)

Sized
Artifacts

Figure 2 – Estimation process

Judgement Matrices

A judgement matrix, is a square matrix, which
captures the relative size of the artifacts being
compared. The elements of the matrix are
defined by Figure 3.

In practice, as shown by Table 1, all the judges
need to do is provide estimates of the relative

size of the
2

)1(* −nn
 upper elements of matrix.

As all the other values could be derived from
them.

[]

 Entity than (bigger)smaller times1/a is

 Entity then ,Entity than (smaller)bigger timesa isEntity If ,

itself as size same thehasentity Every ,

Entity respect to with is Entity (smaller)bigger much How ,

1

1

iij

jjij i

j i

=

=

=

==

ij
ji

ii

j

i
ij

ij
nxn

a
a

a

s
s

a

aA

Figure 3 - Judgement matrix definition

Artifacts D B C A

D 4 6 7.5

B 1.5 2

C 2

A

Element aij shows the relative size of entity i
with respect to entity j. For example, a12 = 4
express the fact, that entity D has been judged
four times bigger than B.

Table 1 – Judgement matrix example

Ranking according to size

Although not a mandatory step, arranging the
artifacts in descending order according to their
sizes, makes the rest of the process much easier.

As illustrated by Table 1, when the rows of a
judgement matrix are sorted in descending order,
the comparisons flow in one direction only, for
example artifact “D” will be either equal or
larger than any of the other entities against which
is compared, it will never be smaller. Notice

also, that within a row, the values to the left of
any given column are always smaller or equal
than those to the right.

While these properties are irrelevant from the
mathematical point of view, they diminished the
strain put on the judges by the large number of
decisions required from them by the method.

The Reference Value(s)

The paired comparison method, requires the
existence of at least one reference value whose
size is known, for example from a previous
development.

The reference value is first ranked and compared
to every other artifact as would any of the
entities to be sized. Later it is used to calculate
the absolute size of elements.

The choice of a reference value is an important
decision, as values in either extreme of the scale
tend to amplify any bias that might affect the
judgements. To minimize this risk, is better to
choose as reference, an artifact that will divide
the population being estimated in halves, or to
use two references instead of one.

The Verbal Scale, How small is smaller, how big
is bigger?

Although not an essential part of the
methodology, having a shared understanding of
how small is smaller and how big is bigger, helps
reach consensus among participants in the sizing
process.

A predefined value scale, keeps us from wasting
time discussing values down to the second
decimal, when our judgement error is one or two
orders of magnitude bigger than that.

Quoting an earlier work from Ernest H. Weber,
Saaty proposes to use a scale from 1 to 9 and
their reciprocals, to pass judgment on the entities
been evaluated. The equivalence between verbal
expresions and relative sizes is depicted by Table
2.

A survey ran among some colleagues2, suggests
that the correspondence between size and verbal
description in the software domain, is closer to
the one provided by Table 3, rather than Saaty’s.

The use of the verbal scale simplifies and
speeds-up the estimation process without
jeopardizing the accuracy of the results.

2 Thirty people from different industries, countries and
academia provided their input for this scale. This table might
need to be reformulated if the entities being compared are
further apart from each other.

Calculating a ratio scale and an inconsistency
index

A ratio scale is a vector [r1, r2,…, rn] in which
each number ri, is proportional to the size of
entity i. An Inconsistency Index is a number
which measures how far away are our
judgements from being perfectly consistent3.

There are many ways to calculate ratio scales
and inconsistency indexes. In this paper we will
use the Crawford & Williams’ Geometric Mean
Procedure [4] because of its simplicity and good
results.

Calculating absolute sizes

Giving a ratio scale [r1, r2,…, rn], the absolute
sizes of the artifacts being estimated are
calculated using the expression in Figure 5.

Accuracy and precision

In the theory of measurements, accuracy is
defined as how close the measurements are to the
true value or known input, and precision as the
ability to reproduce a set of measurements with a
given accuracy. The closer the individual
measurements are to one another, the higher the
precision.

As with any other measurement instrument, it is
important to understand the accuracy and
precision that could be expected when using the
paired comparison method.

In order to evaluate the method’s performance I
ran four experiments with the results illustrated
by Figures 6, 7, 8 and 9. on them, the area of the
circles corresponds to the standard deviation of
the observations.

The purpose of the first experiment was to
evaluate the robustness of the method under the
conditions described bellow using controlled
inputs.

1. Reference4 values, Ei, in KSLOC: [50, 30
,25, 24, 24,10, 9, 8, 5, 5];

2. Estimation with simulated judgements (Ei /
Ej)+ ε, where ε is a random variable with
normal distribution, µ = 0 and σ = .15 (Ei /
Ej). In other words, assuming that 68% of
the time, the judgements are within 15% of
their true value;

3 A perfectly consistent judgement matrix is one in which all

its elements satisfy the condition ikjkij aaa = for all i,

j, k.
4 In a real situation, these are the values we want to estimate.

3. Idem 2, but assuming the judgements are
within 30% of their true value;

4. Estimation resulting from mapping the
judgements in 3 above onto the verbal scale
for the software domain; and

5. Estimation resulting from mapping the
judgements in 3 above onto Saaty’s verbal
scale.

The results of this experiment show that the
method produces consistent results even on the
presence of large judgement errors, as long as
they are not biased.

Definition Explanation Relative
Value

Reciprocal

Equal size The two entities are roughly the same
size.

1 1

Slightly bigger
(smaller)

Experience and/or judgement recognize
one entity as being somehow bigger
(smaller)

3 .33

Bigger (smaller) Experience and/or judgement recognize
one entity as being definitely bigger
(smaller)

5 .2

Much Bigger (smaller) The dominance of one entity over the
other is self-evident. Very strong
difference in size (smaller)

7 .14

Extremely bigger
(smaller)

The difference between the entities
being compared is of an order of
magnitude

9 .11

Intermediate values
between adjacent
scales

When compromise is needed 2, 4, 6, 8 .5, .25, .16,
.12

Table 2 - Saaty's verbal scale

Definition Explanation Relative
Value

Reciprocal

Equal size Ei / Ej ≤ 1.25

(0~25%)

1 1

Slightly bigger
(smaller)

1.25< Ei / Ej ≤ 1.75

(25 ∼ 75%)

1.15 .87

Bigger (smaller) 1.75 < Ei / Ej ≤ 2.275

(75 ∼ 275%)

1.5 .66

Much Bigger (smaller) 2.275 < Ei / Ej ≤ 5.75

(275 ∼ 575%)

3 .33

Extremely bigger
(smaller)

5.75 < Ei / Ej ≤ 10

(575 ∼ 1000%)

6 .16

Table 3 - Verbal scale for the software domain

()()

2
21

lnln

 (c)

 (b) (a)

1

2

1

1

−−

−

=

==

∑∑

∑
∏

= >

=

=

nn

a

ncyIndexInconsiste

ra

n

i

n

ij j

i
ij

n

l
l

i
in

n

j
iji

ν
ν

ν

ν
ν

Figure 4 - Crawford & Williams procedure, (a) geometric mean, (b) ratio scale, (c) inconsistency Index

 *

reference
reference

i
i Size

r
r

Size =

Figure 5 – Entity i absolute size

Figure 6 – Results using simulated inputs

The second experiment was based on a survey of
30 professionals and graduate students, who
were asked to assess the absolute or relative size
of the data structures5 mentioned in the chart,
using one of three methods:

5 Judges were provided with a brief specification, and
assumptions about the language to use, amount of error
checking and comments, in order to have a common
understanding for the estimation. The actuals are an average
of actual programs extracted from libraries written in C, Ada
and C++ and adjusted for the functionality defined in the
questionnaire.

1. By providing the absolute size of the data
structures based on the judge’s best
knowledge, this is referred as the Ad-hoc
method;

2. Using paired comparisons and rating the
relative largeness of one data structure with
respect to the others using a number; and

3. Using paired comparisons but this time
rating the relative largeness of one data
structure with respect to the others using the
verbal scale for the software domain.

0

20

40

60

80

100

Inputs (Ei)

LO
C

actual 15% error 30% error software scale Saaty scale

0

50

100

150

200

250

300

350

400

450

500

LO
C

Actual Ad-hoc Paired comparisons (numeric scale) Paired comparisons (verbal scale)

stack queue binary
tree

linked
list (a)

reference
(string)

linked
list (b)

balanced
tree

hash
table

Figure 7 – Estimation results

From the results we can conclude, that there are
significant6 differences between the results
obtained using paired comparisons versus the ad-
hoc approach. They also show, that there are not
significant differences between the use of the
numeric and the verbal scales.

The third experiment consisted on the estimation
of the area enclosed by different geometrical
figures, the purpose this time was to study the
performance of the method when applied to other
kind of subjective estimations. In this case, as the
ratio of the largest to the smallest shape
exceeded an order of magnitude, the Saaty’s
scale was preferred to the verbal scale for the
software domain, as this last one tended to
understimate the largest figures.

By looking at Figure 8, it is possible to observe
the individual estimates for each geometrical
figure. The precision of the different estimation
methods is reflected by the closeness of the
points, the closer they are the more precise the
method. The accuracy is shown by the position
of the estimates relative to their respective
reference point, shown with a cross in the chart.
It is interesting to notice that in all the methods,
accuracy and precision tend to deteriorate as the
points being estimated are further away in terms
of their relative magnitude. This seems to
confirm Saaty’s assertion, that comparing items
whose size differ by more than 10 is
meaningless.

6 In order to avoid making assumptions about the underlying
distribution of the answers to the questionnaire, a non-
parametric t-Test for samples with unequal variance was used
with the results showing significance at the 95% level of
confidence.

Conclusions

The paired comparisons method for software
sizing is specially well suited for the early stages
of a development project or during feasibility
studies, when the knowledge available to the
members of the project team, is mostly
qualitative.

The results observed so far show that the method
is robust and perform consistently. Further
experimentation is necessary to establish the
validity of the verbal scale for the software
domain and to verify that the potential
application to the method to other software
engineering problems requiring subjective
estimates.

0

20

40

60

80

100

120

Geometric figures

In
d

iv
id

u
al

 e
st

im
at

io
n

s
(a

re
a)

Figure's actual area Ad-hoc paired comparison verbal scale

Figure 8 – Estimating the area of geometrical figures

References

1. Albrecht, A & Gaffney, J., 1983, Software
Function, Source Lines of Code, and
Development Effort Prediction: A Software
Science Validation, IEEE Transactions on
Software Engineering, Vol. SE-9, No. 6,pp
639-648

2. COSMIC-Full Function Points - Release
2.0, September 1999

3. Object Points, Arlene F. Minkiewicz,
PRICE Systems, Lockheed Martin
Corporation,
http://www.pricesystems.com/foresight/arle
pops.htm

4. G. Bozoki, An expert judgement based
software sizing model, Lockheed Missiles &
Space Company and Target Software

5. J. Karlsson & K. Ryan, A Cost-Value
Approach for Prioritizing Requirements,
IEEE Software, September/October 1997

6. E. Miranda, Sizing Software Using The
Paired Comparisons Method, Proceedings of
the 9th International Software Measurement
Workshop, 1999

7. T. Saaty, Multicreteria Decision Making:
The Analytic Hierarchy Process, RWS
Publications, 1996

8. G. Crawford and C. Williams, The Analysis
of subjective judgement matrices, Rand
Corporation, 1985

