
Planning and executing time-bounded projects using
statistically planned incremental deliveries (SPID)

© Eduardo Miranda, Ericsson Research Canada, All rights reserved, March 2000

Abstract

Statistically Planned Incremental Deliveries (SPID) is a practical approach to planning
and executing projects that need to meet hard deadlines. SPID’s objective is to
guarantee that at least a minimum functionality is delivered by a required date.

Keywords

Project planning, incremental deliveries, critical chain, risk management, project
management and control.

Introduction

A time-bound project is a project that is constrained by hard deadlines. Hard deadlines
are those in which the date of delivery is as important as the delivery itself. If the project
delivers after the deadline, the delivery loses much of its value. Meeting the deadline is a
critical success factor for the project. Examples of hard deadlines are exhibition dates,
government regulations, a competitor’s announcement and the customer’s own business
plans.

SPID is not a one-stop solution for all software development problems. It focuses on how
to best organize a project to guarantee that even under the most adverse circumstances
a working product, with an agreed functionality, could be delivered by a required date.

SPID combines ideas from statistics, critical chain planning[1,2] and technical
performance monitoring[3] into a practical method for planning and executing time-
bound projects.

Figure 1 illustrates SPID’s project model. The Increment Planning task uses statistical
techniques to brake the project scope down into a series of Development Increments in
such a way that it is almost certaint that all requirements allocated to the first increment
will be implemented on time; that there is a fair chance to implement those allocated to
the second increment and so on. System Engineering encompasses requirements, value
and trade-off analysis from a user perspective. System Architecting is responsible for the
general form of the solution, interface definitions and the analysis of requirements
dependencies. All three activities take place concurrently as there is a need to balance
what needs to be done from the user perspective with what could be done from a
technical perspective. Each Development Increment is a self-contained mini-project.
SPID does not impose any particular approach beneath this level, so development could
be organized according to a waterfall or an iterative life cycle as deemed appropriate. All
increments, but the last, are isolated from the project delivery date by a buffer whose
purpose is to absorb any overrun in their execution.

Increment Planning

System Engineering

System Architecting

Development Increment
1

Development Increment
2

Development Increment
3

Buffer 1

Buffer 2

During execution, work progress is tracked using non-linear models which more closely
resemble the way people work than a simple extrapolation of last week’s results. As
shown by Figure 2, the models are used to forecast the activities’ completion dates and
to take corrective actions. Work in one increment does not start until the previous one is
completed. This prevents people from wasting time developing things that might never
be finished. To do otherwise, implies either increasing headcount or multitasking the
developers. Both practices have a negative impact on the development time as soon as
the communication overhead among members of the team starts to surpass the
productivity gained by introducing an additional person.

Work Processes
(Syst. Engineering,

Development,
Integration)

Forecast
Completion

Date

Underlying
Process Model
for the activity

Adjust Plan

Figure 2. SPID execution model

Figure 1. SPID project Model

Task statistics

Uncertainty is the reason project management is needed. The estimates on which
project schedules and resource allocations are based are never single numbers;
whether spoken or not, there are many assumptions behind each of them. Some of
these assumptions concern the complexity of the tasks, others our ability to carry them
out. Some of them, if true, will contribute to an early completion of a task, others will add
to the execution time. Intuitively we could see, that for a task to finish at the earliest
possible time, all the “favorable” assumptions must be true and all the “inauspicious”
ones false. The probability of this happening is very low. The same argument could be
made about the latest possible date. The most likely date corresponds then to a situation
in which the most probable “good” assumptions are true and the most probable “bad”
ones are false. Numerically, the situation can be expressed by a triangular probability
distribution such as the one shown by Figure 3.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

duration (days)

f(x
)

Since the actual probability distribution function for the duration of the task is unknown,
the choice of a simple triangular distribution is a sensible one[4]. Its right skewedness
captures the fact that while there is a limited number of things that can be done to
shorten the duration of a task, the number of things that can go wrong is virtually
unlimited.

From the project management point of view, more important than the probability of
finishing on a specific date, is the probability of completing the task on or before a
certain date. This probability, called the on-time probability of the task, can be derived
from the cumulative distribution shown in Figure 4.

0%

20%

40%

60%

80%

100%

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ili

ty

In general, the larger the number of assumptions behind the estimated time duration, the
larger the spread between the earliest and the latest completion dates. The effect of
such an uncertainty results in very different on-time probabilities, as shown by Figure 5.

Figure 3. If all the favorable
assumptions are true and all the
gloomy are false, the task will be
completed in 10 days, this is the
Earliest Completion Date. The Most
Likely duration is 20 days. If
everything that can go wrong, short of
abandoning the task, goes wrong the
task could be completed in 40 days.
This is the Latest Completion Date.

Figure 4. Cumulative probabilities.
The Most Likely completion date
has an on-time probability of less
than 40%. The Expected
completion date is of around 23
days. If we want to be 75% sure of
completing the task on time we
would have to schedule 27 days.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

f(x
)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
duration (days)

pr
ob

ab
ili

ty

From tasks to projects

A common approach used to assess uncertainty in projects, is to calculate the expected
duration of the project as the sum of the expected duration of the tasks along the critical
path, with an standard deviation equal to the square root of the sum of the squares of
the standard deviation of the same tasks, and then to use a normal distribution to
calculate the on-time probabilty for the project. This approach, is based on the central
limit theorem which states that the distribution of the sum of independent random
variables approaches a normal distribution as the number of variables (tasks) grows
larger.

The assumption of independent tasks durations, as required by the central limit theorem,
although one of the most common assumptions in project management, is one of the
most dangerous a project manager can make. In practical terms, this assumption
expresses the belief that the lateness of some tasks is compensated by the early
completion of others and in the end everything balances out. This may be a valid
assumption in the construction industry and when dealing with events such as rain, but
not in a software development project where an underestimation of the system’s
complexity will affect the duration of most tasks in the same direction. Thus, if there is an
underlying cause that could shift the duration of several tasks in the same direction the
tasks are not independent but correlated. The practical consequence of dealing with
correlated task durations is an increase in the project’s standard deviation which
translates into higher risks.

As an example of the effect of correlated task durations on the project risk consider the
simple project of Figure 6 which has an expected duration of 112 days. The probability
of being late by more than 7 days is around 22% under the assumption of independent
task durations and 32% when the durations are assumed to be correlated; a 45%
increase in a project with only four tasks!

Figure 5. Two tasks with the
same Earliest and Most
Likely, but different Latest
Completion dates have
different levels of risk. The
Expected completion dates
for the less risky task is 17
days, while for the other is 23
days. By the same token, the
on-time probability of the Most
likely date is around 37% in
the first case and under 20%
in the second.

a = 20, 25, 50

d = 40, 45, 60

c = 5, 15, 25

b = 20, 30, 45

Figure 6 - A simple project. The first number indicates the minimum task duration, the second the most likely and the third
the maximum.

A simpler approach, described in the boxed note at the end of the article, is to use
simulation to calculate the project on-time probabilities.

Measuring Progress Using Rate of Changes
When measuring the progress of a task in terms of its main output, i.e requirements
defined, LOC, errors found, pages of documentation written, etc, it is possible to observe
that the rate of growth of the output is not constant throughout its life and that it more
closely resembles the shape of Figure 7. This “S” pattern[5,6,7,8], typical of many
intellectual activities could be explained by the existence of a number of actions and
thought processes at the beginning and end of the task which, although value adding
and enabling, do not contribute directly to the quantity being measured. Examples of
such actions and thought processes are: learning, team formation and re-examination of
work already done, which despite never being explicitly included in the planning of a
task, are nonetheless very real and time consuming. It is also possible to argue that the
marginal productivity of one hour of effort tends to dimish towards the end of the task as
it becomes necessary to deal with a myriad of details, or that there are less errors to be
found as is the case during testing. Whatever the true reasons for this effect are, it is so
common and noticeable that has a name of its own: “the 90% complete syndrome”.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

week

pe
rc

en
ta

ge
 c

om
pl

et
e

The forecasting method does not require the total output of the task to be known in
advance. Looking at Figure 7 it is easy to see, that the completion of a task coincides
with a leveling-off of the percentage complete curve, so one could choose an arbitrary
level of the production forecasted, let’s say 95% or 97%, and derive a completion date
from it.

Figure 7. The “S” curve.
Production does not grow
at a constant rate. At the
peak of productivity,
between weeks 3 and 5,
the percentage complete
soars 20% in just one
week. Towards the end of
the task it takes three
more times to go from 80
to 100% complete.

Despite the non-linearity of the production process, it is common practice to extrapolate
completion dates from the rates of progress observed during the half life of the task
using a straight line. The practical consequence of this, is the announcement of
optimistic completion dates which are never met. Figure 8 shows the error incurred by
using a linear forecast instead of the “S” curve paradigm.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

week

pr
od

uc
tio

n
un

its

"S" curve Linear

Project Planning

Once the feasibility of the project has been established, the first step in SPID is to define
the duration of the development tasks in terms of its Best, Most Likely and Worst case
scenarios as functions of the increment’s scope. Second, the content of the increment is
adjusted so it will have a high probability, i.e. 95%, of being completed in the allotted
time. Third, the tasks are re-scheduled using the duration that corresponds to a 50% on-
time probability, allocating the difference between the high and the lower confidence
dates to a buffer. The next increment is then planned using the length of the buffer as
the time allotted. Figure 9 illustrates the overall process and the boxed note at the end of
the paper, the probability calculations.

Figure 8. Assuming that the task
output is 250 units of production
(Requirements, FP, Errors detected,
etc) a linear projection would forecast
its completion by week 7.5 while the
“S” curve will put it at week 9.
Assuming the task duration was
originally estimated to be 7 weeks,
according to the linear projection it will
be completed almost on time, but
according to the “S” curve it will be 2
weeks late.

Requirements

Select priority n
requirements

Plan increment n at
95% confidence

Time Alloted

Does it fit the
time alloted

Reduce scope
increment n

Schedule task
increments at 50%

confidence

Set Buffer Size and Time
Alloted to:

Project Target Date - Increment
Completion Date

Buffer n

No

Yes

Plan next increment

Table 1 shows the the approximate1 probabilities of delivering the content of each
increment when planned according to SPID. Compare this to a conventional plan, in
which every requirement has the same probability, let’s say 50% irrespective of its
importance to the user.

Table 1 - Success Probabiliies

Increment Calculation On-time
probability

1 As planned 95%

1 + 2 0.50 * 0.95 ˜ 47.5%

1 + 2 + 3 0.50 * 0.50 * 0.50 ˜ 12.5%

1 These calculations assume that the time it takes to develop each increment are independent from one another. As was
said earlier this is seldom the case, nontheless these numbers offer a reasonable approximation.

Figure 9 - SPID planning process

Project Control

In a time-bound project there is very little room for recovery, so once a problem
manifests itself, it is almost too late. Controlling a project under these circumstances
requires a mechanism that:

1. Identifies the early the signs of a delay;

2. Minimizes false alarms;

3. Minimizes disturbances to ongoing work;

4. Provides a clear definition of what will be delivered and by when.

While the first three properties are important to the people working and managing the
project, the fourth is of utmost importance to the customer who depends on the project’s
deliverables to execute his own business plan.

The early identification of a delay is achieved by updating the buffers, not with the
actuals but with the estimates at completion (EAC) of the individual tasks. The estimates
are computed by fitting a Rayleigh curve to the progress reported, and then projecting it
into the future.

False alarms and disturbances to on-going work are prevented by the use of buffers
which isolate workers from overreactions to small variations, by absorbing up to a 25%
variance before sending a signal.

Figure 10 describes the SPID control approach. Depending on the specific task being
monitored, the units in which the work performed is measured will be Requirements
Defined, LOC produced per week, number of errors detected, etc.

Work
performed

Forecast Task
Completion

Date

Performance
Baseline

Buffer
n

overun
+ 25%

Replan
next

increment

Replan
current

increment

overun
+ 50%

Units depend on
task being
monitored

Adjust Buffer
Size

Rewards, recognition and price incentives
How can all project stakeholders be sure that the best effort will be applied towards
implementing all requirements and that people will not just get by implementing those in
the first increment? The answer could be found in the reward and recognition system.

Figure 10 - SPID control process

Whether employee’s rewards or price incentives in contracts, the incremental model
provides a clear criteria by which performance can be evaluated and rewarded. The
delivery of the first increment has no reward associated with it: everybody is just doing
their job; subsequent increments result in increased recognition of the extra effort put
into the task.

The On-time probabilities shown in Table 1 can be used to calculate the expected value
of the reward. This calculation is important because a large amount, with a very small
probability will result in a low expected value and could be perceived as a lottery by the
employees, thus failing to act as motivator.

As an example, a $5,000 reward for “Increment 2” has an expected value of $2,375. The
same amount applied to “Increment 3” has an expected value of $625. Clearly, the
motivational value of the reward is not the same in both cases.

Summary

When faced with uncertainty there are two things that can be done: one is to pretend it
does not exist, the other is to acknowledge it and devise the means to deal with it. SPID
recognizes that in any development project there are hundreds of things that can go right
and thousands that can go wrong and makes them an intrinsic part of the planning and
control processes while putting emphasis on delivery precision.

The basic premise in SPID is that businesses are better off when they know what
realistically could be expected than when they are promised the moon but no
assurances are given with respect as to when they could get it. As software and
business development grow more entangled, being more predictable in our development
projects becomes an obvious need: advertising campaigns could be planned and
launched in the confidence that a product will be available, government regulations could
be met on time and windows of opportunity respected.

Acknowledgements

Thanks to Tamara Keating, Ericsson Research Canada; Alain Abran, Université du
Québec à Montréal; and Raul Martinez, RMyA, for their comments and insight.

References

1. Critical Chain, E. Goldratt, The North River Press, 1997

2. Project Management in the Fast Lane, R. Newbold, St. Lucie Press, 1998

3. Technical Performance Measurement, Earned Value and Risk Management: An
Integrated Diagnostic Tool for Program Management, N. Pisano,
http://www.acq.osd.mil/pm/paperpres/nickp/nickpaso.htm

4. Practical Risk Assessment for Project Management, S. Grey, John Willey & Sons,
1995

5. A Model for Software Development Effort and Cost Estimation, K. Pillai and S. Nair,
IEEE Transactions on Software Engineering, Vol. 23, No.8, 1997

6. Measures for Excellence – Reliable Software On Time, Within Budget, Prentice-Hall,
1992

7. A Learning Model for Forecasting the Future of Information Technology, B. Gaines &
M. Shaw, http://spuds.cpsc.ucalgary.ca/articles/BRETAM/FCS_IT/FCS_IT1.html

8. Technological Forecasting for Decision Making, J. Martino, McGraw-Hill, 1993

9. The Use of Reliability Growth Models in Project Management, E. Miranda, 9th

International Simposium in Software Reliability, IEEE, 1998

10. On Predicting Software Related Performance of Large-Scale Systems, J. Gaffney,
CMG XV, San Francisco 1984

Calculating Project Probabilities

The most common way of calculating project probabilities is using the PERT approach:

1. For each activity i, produce best, most likely and worst case estimates.

2. Compute the mean, di and standard deviation, si of each task using the following
formulas2:

() () ()
18

3
2 WorstMostLikelyMostLikelyBestWorstWorstMostLikelyBestBest

s

WorstMostLikelyBest
d

i

i

−+−+−
=

++
=

3. Determine the critical path based on the dI , i = 1,2,…,n

4. Once the critical activities are identified, sum their means and variances to find the
mean and standard deviation of the project length using the following formulas:

22
2

2
1 ... p

p

i i

sssDevProjectStd

dgthProjectLen

+++=

= ∑

5. Calculate the probability of finishing before a given date T using the formula below
and a table of normal probabilities:

() 






 −
≤=≤

DevProjectStd
gthProjectLenT

tPTtP

The approach described above works well as long as the duration of the tasks is
independent, however as mentioned before this is hardly the case in most software
development projects. The calculation of the variance of a project on the presence of
correlated variables is a complicated process, which requires the calculation of the task’s
covariances, so a better approach is to use a method called Monte Carlo simulation. A
single simulation run would consist of the following steps:

1. Generate a random value for the duration of each activity, using their distribution and
a random number. If the tasks are correlated use the same random number if not,
use a different one.

2. Determine the project critical path

3. Record the results

After executing these step a sufficiently large number of times, the probability of finishing
the project within T days can be estimated using the following expression:

()
Runs ofNumber Total

 WeeksT toEqualor Than Lessin FinishedProject Times ofNumber
=≤ TtP

2 These formulas assume a triangular distribution. Other approximations, like the traditional PERT calculations based on
the beta distribution, could be also used.

At Ericsson a home grown tool called MinimumTime (see Figure 2), implements all
necessary calculations. More sophisticated packages could be obtained from specialized
vendors such as Primavera, Palisade or Cristal Ball.

