
0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 1 I E E E J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 87

estimation practices are the lack of necessary
information at the beginningof the project,
the specificity of the domain addressed, the
effort and time required, and the need to in-
troduce a vocabulary foreign to stakeholders
without a software background.

However, as Figure 1 shows, ad hoc size
estimates have problems of their own. Their
accuracy (the closeness of a measured value
to the true one) and precision (indicating
how repeatable a measurement is) leave
much to be desired. The problem is not ac-
ademic: inaccurate size estimates automati-
cally translate into questionable project
budgets and schedules.

This article presents a method based on
paired comparisons, which social science re-
searchers use for measuring when there is no
accepted measurement scale or when a
measurement instrument does not exist. Al-
though not new, the idea has received little
attention in the literature. Earlier work in-

cludes Target Software’s software sizing
method4 and more recent articles by Focal
Point AB5 and by Bournemouth University’s
Empirical Software Engineering Research
Group,6 which uses the analytic hierarchical
process to prioritize requirements relative to
their cost and estimate effort respectively.7

Overall approach
The idea behind paired comparisons is to

estimate the size of n entities by asking one
or more experts to judge the entities’ relative
largeness rather than to provide absolute size
values. (Entities can be requirements, use
cases, modules, features, objects, or anything
else relevant to all stakeholders and for
which it is possible to know the number of
lines of code, hours, or any other magnitude
that could later be used for planning pur-
poses.) By requiring multiple and explicit de-
cisions about the relative size of every two en-
tities and by using easily available historical

feature
Improving Subjective
Estimates Using
Paired Comparisons

Eduardo Miranda, Ericsson Research Canada

Despite the
existence of
structured
methods for
software sizing
and effort
estimation,
the so-called
“expert”
approach
seems to be
the prevalent
way to produce
estimates in
the software
industry.
The paired-
comparisons
method offers
a more accurate
and precise
alternative to
“guesstimating.”

M
ost practitioners and project managers still produce estimates
based on ad hoc or so-called “expert” approaches, even though
several software sizing methods—counting source lines of
code,1 function points,2 full function points,3 and object points,

to name a few—are well known and have been available for a long time.
Among the most common explanations given for not adopting more formal

estimation

data—rather than a single comparison to
some vague notion of size buried in the es-
timator’s mind—the paired-comparisons
method improves both the accuracy and the
precision of estimates, as shown in Figure 1.
These findings are consistent with the con-
clusions of Albert L. Lederer and Jayesh
Prasad’s study, which shows that using his-
torical data and documented comparisons
produce better estimates than those based on
intuition and guessing.8

As Figure 2 shows, with the proposed ap-
proach we start by arranging the entities to
be sized according to their perceived large-
ness. We then assess the relative size of each
one with respect to all the others and record
this information in what is called a judg-
ment matrix. From the judgments made, we
derive a ratio scale using a simple mathe-

matical procedure and then calculate the ab-
solute size of the entities using the ratio
scale and a reference value. Should the need
arise, judgments can be reviewed for inter-
nal consistency.

The method is independent of the type of
entities chosen. It is important, however,
that the sizes of the entities being estimated
do not differ by more than one order of
magnitude, because our ability to accurately
discriminate size diminishes as the difference
between the entities becomes larger.7,9,10

Judgment matrices
A judgment matrix is a square matrix of

size n, where n is the number of entities being
compared; and each element aij captures the
relative size of entity i with respect to entity j.
The elements of the matrix are defined as

How much bigger (smaller)
entity i is with respect to entity j

Every entity has the same size (1)
as itself

If entity i is aij times bigger (smaller)
than entity j, then entity j is1/aij
times smaller (bigger) than entity i

In practice, as Table 1 shows, the judges must
estimate only the relative sizes of the upper

8 8 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

500
450
400
350
300
250
200
150
100
50
0

Stack Queue Binary
tree

Linked
list (a)

Reference
(string)

Linked
list (b)

Balanced
tree

Hash
table

Li
ne

s
of

 c
od

e
Actual Ad hoc Paired comparisons

Figure 1. The accuracy and precision of different estimation
approaches (results of a study involving over 30 software
professionals and graduate students): actual measurements,
ad hoc estimates, and paired-comparison estimates.

Rank artifacts
from largest to

smallest

Compare
the artifacts pairwise

establishing their
relative size

Review
internal

inconsistencies

Calculate ratio
scale and

inconsistency
index

Calculate
absolute sizes

Artifacts to
be sized

Verbal scale
(optional)

Judgment
matrix

Ratio
scale

Reference
value(s)

Sized
artifactsFigure 2. The

paired-comparisons
estimation process.

A a

a
s

s

a

a
a

n n
ij

ij
i

j

ii

ji
ij

× = []

=

=

=

=

1

1

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 89

diagonal elements of the matrix, because all
the other values can be derived from them.

The element “a12 = 4” in the example in
Table 1 expresses the fact that entity D has
been judged four times bigger than B. No-
tice that as shown by the relations D / C =
6, D / A = 7.5, and C / A = 2, the judgments
recorded in the matrix do not need to be
perfectly consistent. After all, who knows
which is the true value? Remember that we
are estimating things that have not been
built yet.

Although not a mandatory step, arrang-
ing the entities in descending order accord-
ing to their size makes the rest of the process
much easier. As Table 1 shows, when we sort
the rows of a judgment matrix in descending
order, the comparisons flow in one direction
only. For example, entity D will be either
equal to or larger than any of the other enti-
ties against which it is compared; it will
never be smaller. Notice also that within a
row, the values to the left of any given col-
umn are always smaller than or equal to
those to the right. While these properties are
irrelevant from the mathematical point of
view, they diminish the strain put on the
judges by the large number of decisions they
must make.

The paired-comparisons method requires
the existence of at least one reference entity
whose size is known, for example, from a
previous development project. First, we rank
this entity, as we would any other, by com-
paring it to every other entity to be sized.
Later, we use its size to calculate the absolute
size of the entities being estimated.

The choice of a reference entity is an im-
portant decision. Entities with sizes in either
extreme of the scale tend to amplify any bias
that might affect the judgments. To minimize
this risk, it is better to choose as reference an

entity that will divide
the population being es-
timated into halves or
to use two or more ref-
erences instead of one.

The verbal scale
Using a verbal scale simplifies and speeds

up the estimation process without jeopard-
izing the accuracy of the results. Although
not an essential part of the methodology,
having a shared understanding of how small
is “smaller” and how big is “bigger” helps
the participants reach consensus in the siz-
ing process. A predefined value scale keeps
us from wasting time discussing values
down to the second decimal when our judg-
ment error is one or two orders of magni-
tude bigger than that.

Quoting an earlier work from Ernest H.
Weber, Thomas L. Saaty proposes using a
scale from 1 to 9 and their reciprocals to
pass judgment on the entities being evalu-
ated.7 Table 2 lists the equivalence between
verbal expressions and relative sizes.

Suspecting that the values proposed by
Saaty could be different for the software
domain, I conducted an informal survey
among colleagues; 30 people from different
countries and from both industry and aca-
demia provided input for the scale. The re-
sults suggest that the correspondence be-
tween size and verbal description in the
software domain is closer to the one shown
in Table 3 than to Saaty’s.

Calculating a ratio scale and an
inconsistency index

A ratio scale is a vector [r1, r2, …, rn] in
which each number ri is proportional to the
size of entity i. An inconsistency index is a
number that measures how far away our

Table 1
Judgment Matrix Example

Entities D B C A

D 4 6 7.5
B 1.5 2
C 2
A

Table 2
Saaty’s Verbal Scale

Definition Explanation Relative value Reciprocal

Equal size The two entities are roughly the same size. 1 1.00
Slightly bigger (smaller) Experience or judgment recognizes one entity as being somewhat bigger (smaller). 3 .33
Bigger (smaller) Experience or judgment recognizes one entity as being definitely bigger (smaller). 5 .20
Much bigger (smaller) The dominance of one entity over the other is self-evident; very strong difference in size. 7 .14
Extremely bigger (smaller) The difference between the entities being compared is of an order of magnitude. 9 .11
Intermediate values between When compromise is needed. 2, 4, 6, 8 .5, .25, .16, .12
adjacent scales

judgments are from being perfectly consis-
tent. (A perfectly consistent judgment ma-
trix is one in which all its elements satisfy
the condition aij × ajk = aik for all i, j, k.)

There are several ways to derive ratio scales
and inconsistency indexes from paired-com-
parisons data, among them Saaty’s eigenval-
ues,7 averaging over normalized columns,7

and Gordon Crawford and Cindy Williams’
geometric mean procedure.11 Here, I use
Crawford and Williams’s approach because of
its simplicity and good results. I first calculate
the geometric mean of the matrix’s rows as

, (2)

then I calculate the ratio scale as

,
(3)

and finally the inconsistency index as

.
(4)

Thus, given the ratio scale [r1, r2, …, rn], we
can calculate the absolute sizes of the enti-
ties being estimated using the expression

. (5)

If more than one reference value is stipu-
lated, the regression line of the references
provided can replace the reference size.

A numerical example
Let’s look at a complete numerical exam-

ple using as the departure point the judg-
ments stated in Table 1. First, using the rules
for creating a judgment matrix and the rel-
ative size of the entities given earlier as ex-
amples, we derive values for the matrix:

.

Applying Equation 2, we calculate the vec-
tor of the row’s geometric means:

.

We sum the geometric means

and then normalize the vector just calculated
by dividing it by the sum of the means:

.

Assuming that entity C is the reference point
and its size is 1.7 KLOC, we can calculate
the absolute size of the other entities using
the relationship in Equation 5:

.

The absolute sizes—SizeD = 9.07 KSLOC,
SizeB = 2.3 KSLOC, and SizeA = 1.06
KSLOC—with an inconsistency index of
3% are the final outputs of the process.

Implementation
Successful implementation of the paired-

comparisons method requires the selection
of qualified judges and a tool capable of au-
tomating the calculations.

When the number of entities to evaluate is
large, you can divide the work among multi-
ple judges. You can also use this approach to
minimize the bias introduced by a single
judge and to get buy-in to the results. The
number of judges used to evaluate n entities

.

.
.

.

.
.

.

.
.

.

.
.

64

12
1 7

16

12
1 7

12

12
1 7

07

12
1 7

∗

∗

∗

∗

.

.

.

.

64

16

12

07

vi =∑ 5 7.

3 6

93

68

42

.

.

.

.

1 4 6 7 5
25 1 1 5 2
16 7 1 2
13 5 1 1

.
. .
. .
. .

Size
r

r
Sizei

i

reference
reference= ∗

ln lna
v

v

n n

ij
i

jj i

n

i

n

−

−() −()
>=
∑∑

2

1

1 2

2

r
v

v
i

i

l
l

n=

=
∑

1

v ai ij
j

n

n=
=

∏
1

9 0 I E E E S O F T W A R E J a n u a r y / F e b r u a r y 2 0 0 1

Table 3
Verbal Scale for the Software Domain

Definition Explanation Relative value Reciprocal

Equal size Ei /Ej ≤ 1.25 (0–25%) 1.00 1.00

Slightly bigger (smaller) 1.25 < Ei /Ej ≤ 1.75 (26–75%) 1.25 .80

Bigger (smaller) 1.75 < Ei /Ej ≤ 2.275 (76–275%) 1.75 .57

Much bigger (smaller) 2.275 < Ei /Ej ≤ 5.75 (276–575%) 4.00 .25

Extremely bigger (smaller) 5.75 < Ei /Ej ≤ 10 (576–1000%) 7.50 .13

should not exceed n / 3, otherwise the ad-
vantage of the method will be lost because
each judge will not get the opportunity to
make multiple comparisons for a given en-
tity. A simple way to allocate comparisons to
judges is to assign every other comparison to
a different judge in a sequential fashion.

At Ericsson, we use the home-grown tool
MinimumTime to support the paired-com-
parisons method. Figure 3a shows Minimum-
Time’s interface, which was designed to reduce
the strain put on judges by the large number
of comparisons required by the method.

MinimumTime displays all the completed
decisions in a matrix structure using a sym-
bolic or numeric format, according to the
user’s preferences. In keeping with the idea of
providing range rather than point estimates,
the tool calculates a confidence interval
based on the scale dispersion. The tool also
provides an analysis capability, shown in Fig-
ure 3b, to detect judgment inconsistencies
and thus to iteratively refine the initial esti-
mate. The sensibility of this tool can, and
should, be adjusted to find only the major
discrepancies. Since the true value of the re-
lation is unknown, a certain degree of incon-
sistency could be considered beneficial.

S oftware sizing using the paired-com-
parisons method is especially well
suited to the early stages of a develop-

ment project, when the knowledge available
to project team members is mostly qualitative.

The mathematics behind the method are
foolproof, but the judgments on which the cal-
culations are based are not. For the method to
work, those making the comparisons must un-
derstand both the functional and the techno-
logical dimensions of the things being sized.

Although not conclusive, the results ob-
served so far are promising. Further experi-
mentation is necessary to establish the validity
of the verbal scale for the software domain and
to verify that the method scales up when used
with larger and more complex entities.

Acknowledgments
I thank Tamara Keating and Gaetano Lombardi

from Ericsson, Alain Abran from the Université du
Québec à Montréal, Norma Chhab-Alperin from Sta-
tistics Canada, and Raul Martinez from RMyA for
their valuable comments.

References
1. R. Park, Software Size Measurement: A Framework for

Counting Source Statements, tech. report CMU/SEI-92-

TR-20, Software Eng. Inst., Carnegie Mellon Univ.,
Pittsburgh, 1992.

2. A. Albrecht and J. Gaffney, “Software Function, Source
Lines of Code, and Development Effort Prediction: A
Software Science Validation,” IEEE Trans. Software
Eng., vol. SE-9, no. 6, 1983, pp. 639–648.

3. COSMIC—Full Function Points, Release 2.0, Software
Engineering Management Research Lab, Montreal,
Sept. 1999; www.lrgl.uqam.ca/cosmic-ffp/manual.html
(current 11 Dec. 2000).

4. G. Bozoki, “An Expert Judgment Based Software Sizing
Model,” Target Software, www.targetsoft-ware.com
(current 8 Jan. 2001).

5. J. Karlsson and K. Ryan, “A Cost-Value Approach for
Prioritizing Requirements,” IEEE Software, vol. 14, no.
5, Sept./Oct. 1997, pp. 67–74.

6. M. Shepperd, S. Barker, and M. Aylett, “The Analytic
Hierarchy Processing and Almost Dataless Prediction,”
ESCOM-SCOPE ’99, Proc. 10th European Software
Control and Metrics Conf., Shaker Publishing, Maas-
tricht, The Netherlands, 1999.

7. T. Saaty, Multicriteria Decision Making: The Analytic
Hierarchy Process, RWS Publications, Pittsburgh, 1996.

8. A. Lederer and J. Prasad, “Nine Management Guide-
lines for Better Cost Estimating,” Comm. ACM, vol.
35, no. 2, Feb. 1992, pp. 51–59.

9. E. Miranda, “Establishing Software Size Using the
Paired Comparisons Method,” Proc. 9th Int’l Work-
shop Software Measurement, Université du Québec à
Montréal, 1999, pp. 132–142; www.lrgl.uqam.ca/
iwsm99/index2.html (current 11 Dec. 2000).

10. E. Miranda, “An Evaluation of the Paired Comparisons
Method for Software Sizing,” Proc. 22th Int’l Conf.
Software Eng., ACM, New York, 2000, pp. 597–604.

11. G. Crawford and C. Williams, The Analysis of Subjec-
tive Judgment Matrices, tech. report R-2572-1-AF,
Rand Corp., Santa Monica, Calif., 1985, pp. xi, 34;
www.rand.org/cgi-bin/Abstracts/ordi/getabbydoc.
pl?doc=R-2572-1 (current 12 Dec. 2000).

J a n u a r y / F e b r u a r y 2 0 0 1 I E E E S O F T W A R E 91

Req f is

25 % tolerance

<< < = > >>

Ratio
scale

+ / –Estimated
value

Total 9 . 5
3 %

793.4
Inconsistency Index

Reference
value

Artifact
name

= =
=

=
=
=

>
=
<
>

>
>
>
=
>

>
>
>
>
>
<

>
>>
>>
>
=
=
>

>>
>>
>
>
>
=
=
>
=

90

Re
q

a

Re
q

b

Re
q

c

Re
q

d

Re
q

e

Re
q

f

Re
q

g

Re
q

h

Re
q

i

Re
q

j

Calculate Clear

Analyze

0.12
0.13
0.11
0.11
0.11
0.09
0.09
0.08
0.08
0.08

1.1
1.2
1.0
1.0
1.0
0.8
0.8
0.8
0.7
0.7

96.5
101.6
86.0
90.0
85.0
69.5
73.6
65.9
63.0
63.0

Req a
Req b
Req c
Req d
Req e
Req f
Req g
Req h
Req i
Req j

>
>>
<
>
>
>
>
>

Inconsistency Diagnostic

REQ A is equal to REQ C. REQ C is 0.8 times smaller than REQ I. So REQ A
should be 0.8 times smaller than REQ I, but its value is 1.3.
In a perfectly consistent relationships A[i,j]*A[j,k]/A[i,k]=1. The current value
is: 0.56.
Review the relationships between the artifacts named above
NOTE:
 A[i,j] is red, A[j,k] blue and A[i,k] purple OK

×

Req a
Req b
Req c
Req d
Req e
Req f
Req g
Req h
Req i
Req j

Req c is

2 % tolerance

<< < = > >>

Ratio
scale

+ / –Estimated
value

Total 9 . 5
3 %

793.1
Inconsistency Index

Reference
value

Artifact
name

= =
=

=
=
=

>
=
<
>

>
>
>
=
>

>
>
>
>
>
<

>
>>
>>
>
=
=
>

>
>>
<
>
>
>
>
>

>>
>>
>
>
>
=
=
>
=

90

Re
q

a

Re
q

b

Re
q

c

Re
q

d

Re
q

e

Re
q

f

Re
q

g

Re
q

h

Re
q

i

Re
q

j

Calculate Clear

Analyze

0.12
0.13
0.11
0.11
0.11
0.09
0.09
0.08
0.07
0.08

1.2
1.2
1.1
1.1
1.0
0.8
0.9
0.8
0.7
0.7

96.5
101.6
91.1
90.0
85.0
69.5
73.6
65.9
59.5
60.5

than Req 1

Figure 3. (a) The
MinimumTime tool’s
graphical interface.
(b) The consistency
analyzer.

About the Author

Eduardo
Miranda is
a senior special-
ist at Ericsson
Research
Canada and an
industrial re-
searcher affili-
ated with the

Research Laboratory in Software Engineer-
ing Management at the Université du
Québec à Montréal. He is in charge of in-
vestigating new management techniques
for planning and tracking projects. He re-
ceived a BS in system analysis from the
University of Buenos Aires and an MEng.
from the University of Ottawa. He is a
member of the IEEE Computer Society and
the ACM. Contact him at Ericsson Research
Canada, 8400 Decaire Blvd., Town of
Mount Royal, Quebec H4P 2N2, Canada;
eduardo.miranda@lmc.ericsson.se.

(a)

(b)

