

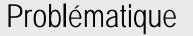
Projet en génie logiciel

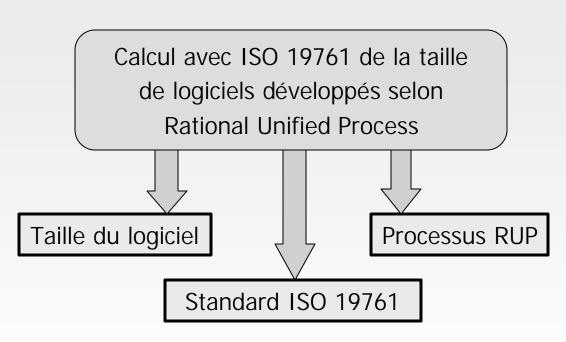
Calcul avec ISO 19761 de la taille de logiciels développés selon le processus RUP

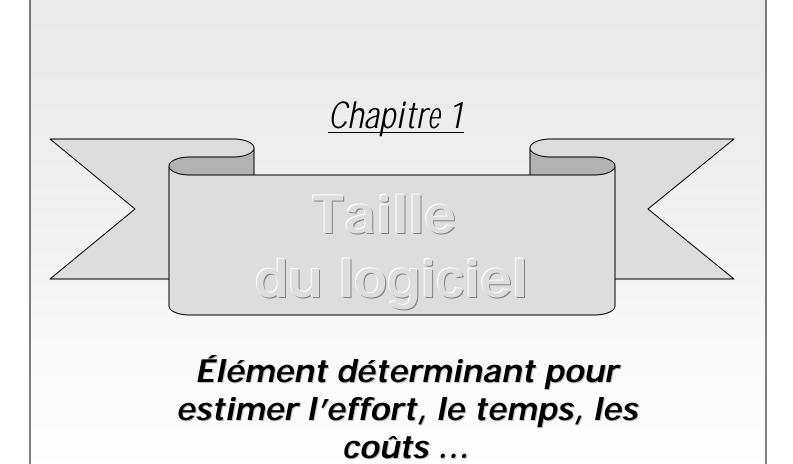
Présenté par Saadi AZZOUZ Directeur Alain Abran

Automne 2003

Sommaire




- Problématique
- Taille du logiciel
- Standard ISO 19761
- RUP et la nouvelle activité de mesure
- Bases de l'outil de mesure automatique
- Solution proposée
- Résultats obtenus
- Occidence
 Occidence
- Questions



Prédire, aux premières phases, les tailles qui résulteraient aux phases suivantes

Taille du logiciel

Définitions

- Fonctionnalités
 - Associe une mesure fonctionnelle à un logiciel
 - Premières phases cycle développement
 - Seule prise en compte des requis fonctionnels (FURs)
 - Indépendamment de toute technologie et plate-forme

Intérêts: Contrôle sur le projet par :

- Bonne planification
- Respect des échéances, etc.

RUP et la taille du logiciel

- Inexistence d'outil de mesure selon une norme standard
- Ce qui affecte le travail des équipes
- Coûts élevés, temps alloué par une mesure manuelle, et manque de précision

Taille du logiciel

Lignes directrices du projet

- Définition nouvelle activité de mesure à intégrer avec les quatre disciplines du processus RUP
- Conception d'un outil de mesure automatique
- Nouvelle activité utilise l'outil

↓ Conséquences

Logiciel me	esuré
-------------	-------

- Prédiction automatique taille au fur et à mesure de l'avancement dans le projet
- Estimation temps, l'effort, coûts, ... (1ères phases)
- Meilleur contrôle

Opération de mesure

- Diminution intervention experts de la mesure manuelle
- Réduction coûts, temps alloué et taux d'erreurs
- Rapidité

Chapitre 2

COSMIC-FFP:

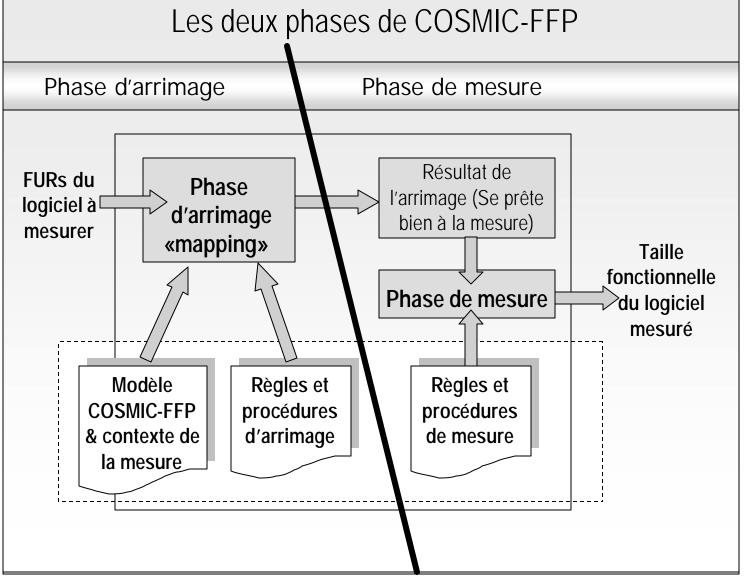
Common Software Measurement International Consortium - Full Functional Point

Le Standard ISO 19761

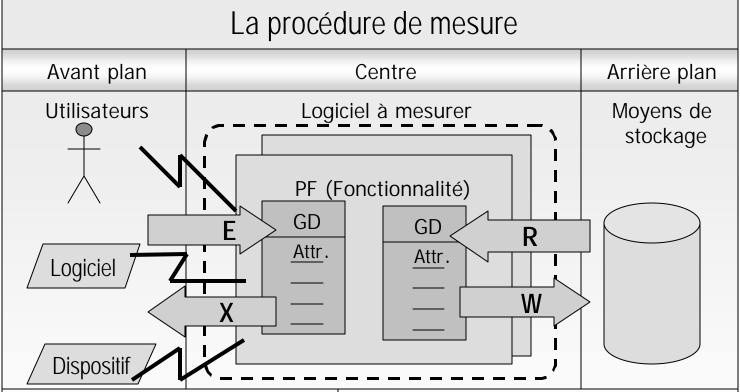
Définition

- Méthode de mesure de la taille fonctionnelle
- Développée en 1997 par le groupe de chercheurs du Dr Abran à l'UQAM
- Adoptée par le groupe international COSMIC en 1999
- Finalement, en février 2003, adoptée comme norme ISO

Principes généraux


- Dite primitive (indispensable pour estimer l'effort, le progrès, les coûts, la qualité, ...)
- Basée sur les requis fonctionnels (FURs)
- Application d'un ensemble de règles et procédures
- Deux phases : Phase d'arrimage et phase de mesure

Le Standard ISO 19761



Le Standard ISO 19761

- 1. Identification des couches
- 2. Délimitation de la frontière
- 3. Utilisateurs du système
- 4. Identification des éléments de base candidats: PF, événements, GD
- 5. Validation des éléments candidats
- 6. Représentation tabulaires des résultats
- 7. Représentation agrégée des Résultats

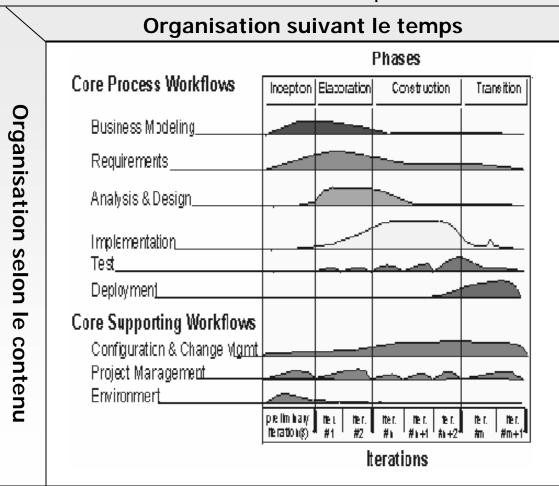
Les meilleures pratiques de développement

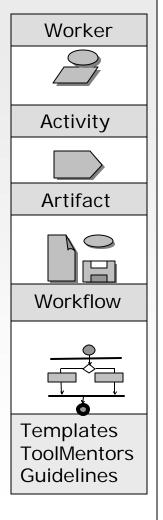
Définition

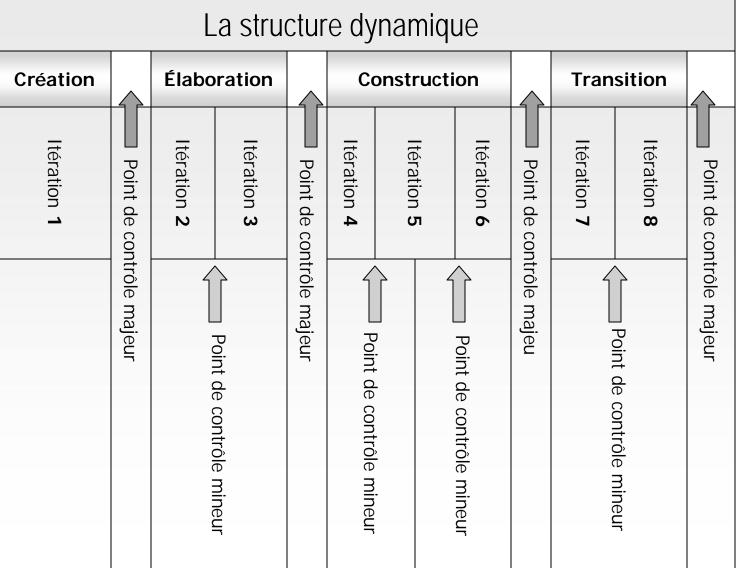
- Développé par la société Rational Software
- Situe très bien les responsabilités : on sait à tout moment qui fait quoi, comment et quand
- C'est un produit : peut évoluer
- Processus de type « Framework »
- Distribué sous forme d'un produit web
- S'adapte mieux aux grands projets

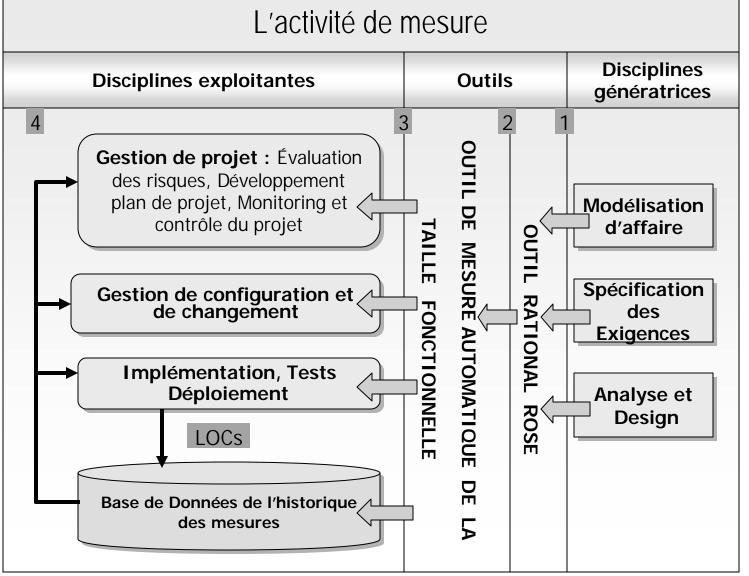
Meilleures pratiques de développement

RUP y adhère complètement par :


- Processus systématique
- Développement itératif et incrémental
- Importance accordée à l'architecture logicielle et réutilisation de composants
- Basé sur l'utilisation du standard UML

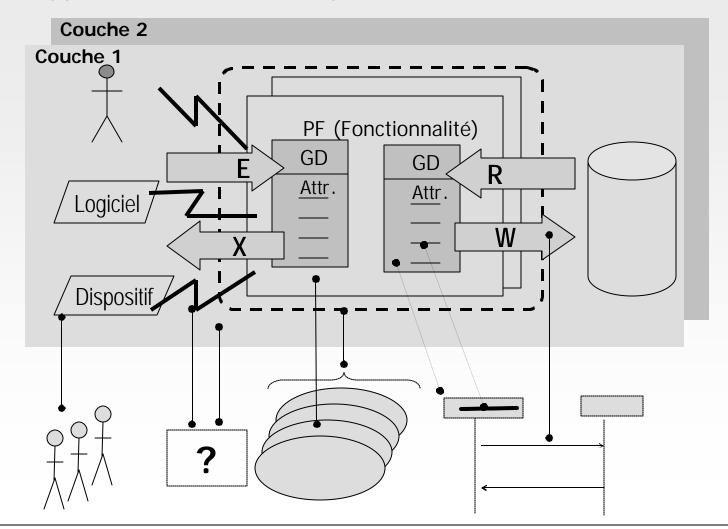



La structure statique



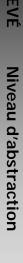


L'outil de mesure automatique


L'automatisation nécessite souvent une supervision

L'outil de mesure automatique

Rapprochement des concepts COSMIC-FFP et la notation UML

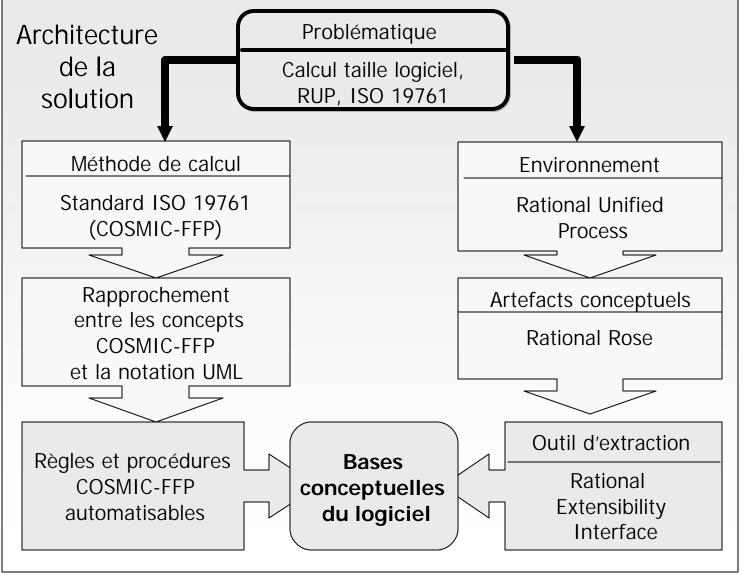

L'outil de mesure automatique

Les différents niveaux d'abstraction de mesure

Cycle de développement	Artefacts mis en oeuvre	Indicateurs précurseurs	Unités et proportions
Modélisation d'affaireSpécification des exigences	Diagramme de cas	cas d'utilisationActeursInteractions	Ufsu
Analyse & Design	 Scénarios 	ScénariosObjets	Sfsu
Analyse & Design	Détail des Scénarios	Mouvements de donnéesType (E,X,R,W)	Cfsu

$$x Ufsu = y Sfsu = z Cfsu$$

BAS


Tenir compte des éléments de base indispensables

Solution proposée

Solution proposée

Activité de mesure & l'outil externe

	Phases	Création	Élaboration	Construction	Transition
Act	Autres activités				
Activités	Activité de mesure				
	I	1	1		
0	util externe			_	
Éν	aluation de la				
	taille				
	RÉSULTATS UTILITÉ				
Ra	ational Rose	Artefacts (Cas d'utilisation,	Diagramme de	séquence,)

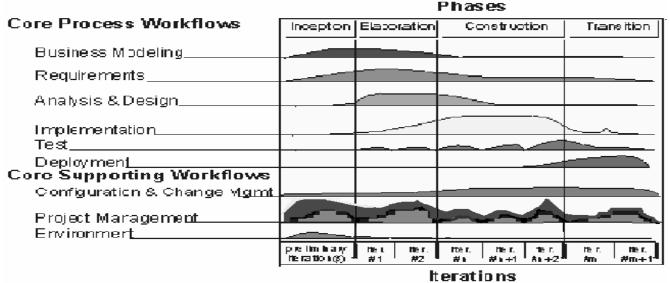
Organisation

S

selon

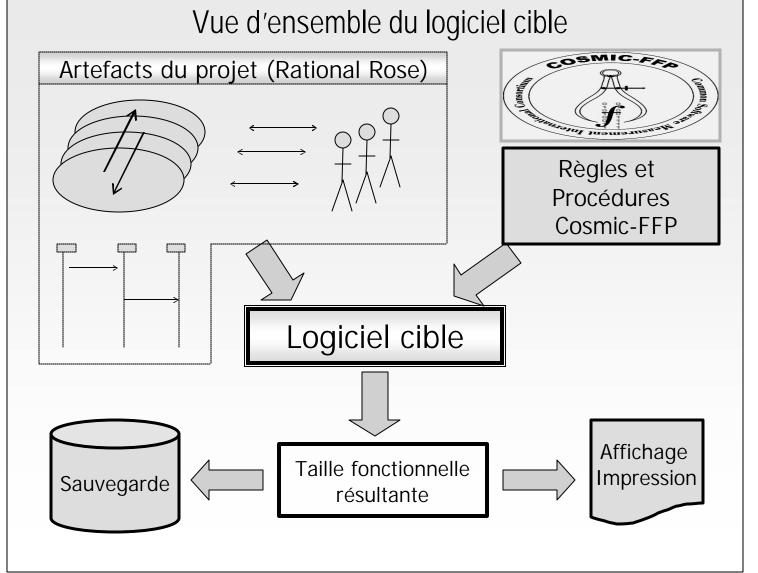
 $\overline{\mathbf{e}}$

contenu

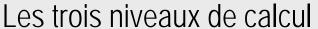

Solution proposée

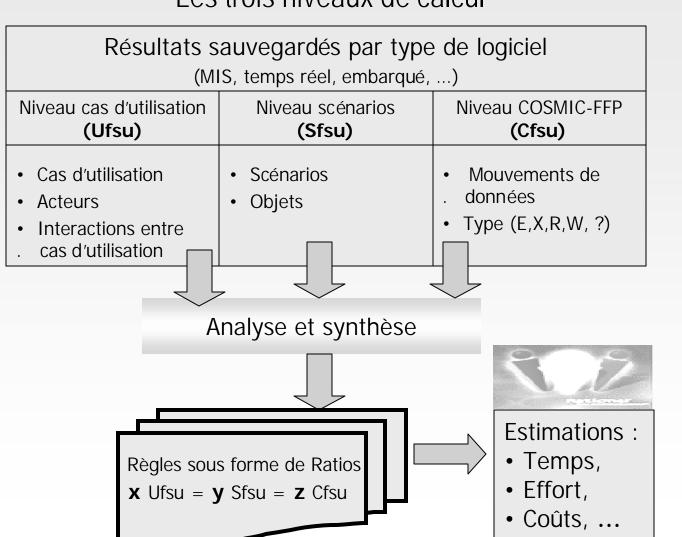
L'activité de mesure & RUP

Organisation suivant le temps



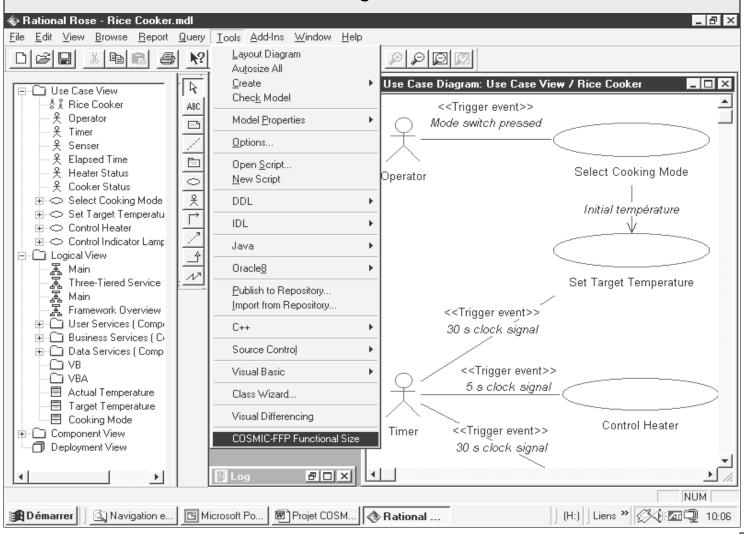
Solution proposée



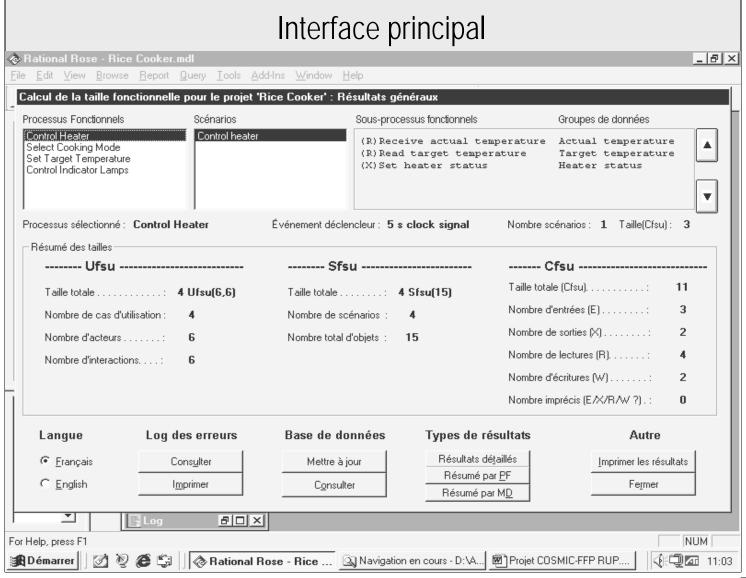


Solution proposée

Chapitre 6


Résultats obtenus

Un Add-in conviviale dans Rational Rose


Environnement du logiciel et son exécution

Résultats détaillés

Calcul de la taille fonctionnelle pour le projet 'Rice Cooker' : Résultats détaillés

Mo	PID	Description du processus	Déclencheur	Description de Sous-processus	Groupe de données	8-Р Турс	FFP Total
1	1.1	Control Heater	S s clock	Receive actual temperature	Actual Temperature	B	1
			signal	Read target temperature	Target Temperature	R	1.
				Set heater status	Heacer Status	X	1 3
 2	1.2	Select Cooking Mode	Mode switch	Receive Cooking Mode	Operator	Е	1
			pressed	Vrite Cooking Mode	Cooking Mode	W	1 z
 3	1.3	Set Target	30 s clock	Receive elmpsed time	Elapsed Time	E	1
		Temperature	signal	Read cooking time	Cooking Mode	R	1
			-	Write target temperature	Target Temperature	W	1 3
					Total d'unités COSMI	IC-FFP :	11

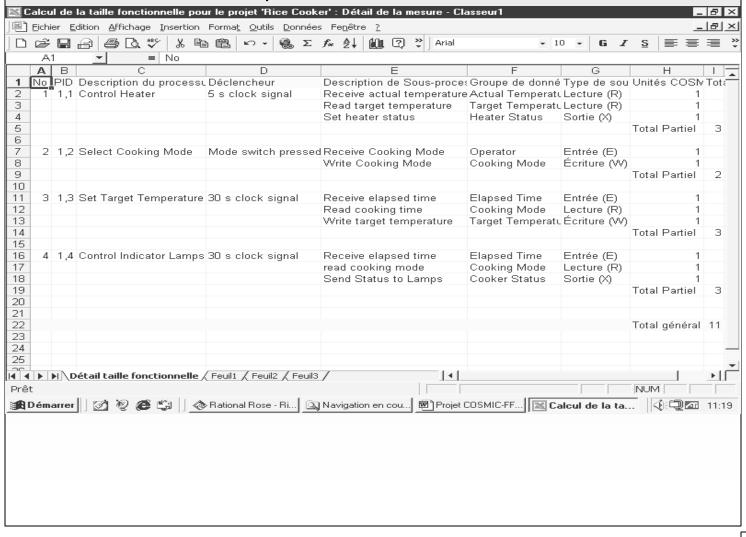
Résultats agrégés par processus fonctionnel

lo	Processus ID	Description du processeus		Sous-F	LOCES	sus FF	P	Points FFP (Cfsu)	Proportion dans le projet (%)
			E	Х	R	W	U		
L	1.1	Control Heater	0	1	2	0	0	3	27,27 %
2		Select Cooking Mode	1	0	0	1	0	2	18,18 4
3	1.3	Set Target Temperature	1	0	1	1	0	3	27,27 9
4	1.4	Control Indicator Lamps	1	1	1	0	0	3 2 3 3	27,27 %
260	umé :	4 Processus	3	z	4	2	٥	11	100 4
			- OK]				

Résultats agrégés par mouvement de données

Calcul de la taille fonctionnelle pour le projet 'Rice Cooker' : Résumé par type de mouvement de données

Sous-Processus COSMIC-FFP	Unités COSMIC.FFP (Cfvu)	Proportion (%)		⊩	(29	(F)	(4)	ŒĐŒM ?
			100%	***************************************				
Entrée (E)	2	27,27 %						
Sortie (X)	2	18,18 4						
Lecture (R)	4	26,26 %						
Écriture (W)	2	18,18 4				36,36%		
Imprécis (E/X/R/W 1)	a	00,00 1		27,27% F	18,18*		18,18	
	Total: 11 CFSUs	100 4	06 l		ro - To4	ļ	110,10	7


(OK

Impression des résultats

Historique des mesures

Calcul de la taille fonctionnelle pour le projet 'Rice Cooker' : Consultation de l'historique des mesures

		- Ufsu			-Sfau		_ Ef≎u					
ldentification du projet	Туре	Cas util.	Acteurs	Interas.	Scénarios	Objets	Entrées(E) S	ortica(X) L	ectures(R) Éco	ritures(W) (E/X/R/W/)	LOGs
Cosmic	2	5	2	9	4	0	7	7	0	0	4	0
Gestion	1	5	Z	9	4		7	7	0		4	3
Gestions	4	5	2	9	4	0	7	7	0	0	4	0
Gestiongg	1	5	2	9	4	0	7	7	0	0	4	9
Gestion GlossairelZ3	4 3	5	Z	9	4		7	7	0	0	4	0
Rice Cooker	3	4	6	6	4	1.5	3	2	3	1	٤	33
Valve Contrôle	4	1	5	1	1	9	4	1	13	3	0	6
lucui	1	0	0	0			0		0	0	0	0
2cvev	2	0	0	0	0	0	0	0	0	0	0	0
3fvf	3	0	0	0	0	0	0	0	0	0	0	0
4ueve	1	0	0	0			0		0	0	0	0
5vev	1	0	0	0	0	0	0	0	0	0	0	0
Sveveve	1	0	0	0	0	0	0	0	0	0	0	0

Codes des types de projets 1-Gestion 2-Temps réel 3-Embarqué 4-Autre

Résultats très satisfaisants

Analyse des résultats

Notions COSMIC-FFP et leur prise en charge dans ce projet

Notion COSMIC-FFP	Prise en charge	Commentaires				
Utilisateur, PF, GD et Attr.	Oui	En correspondance directe avec la notion correspondante UML				
Frontière du logiciel	Oui	Prise en charge de tous les processus fonctionnels				
Mouvement de données	Oui	Mise à contribution de la notion d'acteu et de la propriété <i>persistance</i> des classe				
Événement déclencheur	Oui	Création d'un <i>nouveau</i> stéréotype que j'ai conçu et dénommé «Trigger Event»				
Couche du logiciel	Partielle	Ce travail se limite à mesurer les logiciel à une seule couche				

Analyse des résultats

Analyse des études de cas «Rice cooker» & «Valve control»

⇒ Écarts dans les études de cas

- 11 cfsu au lieu de 12 pour «Rice cooker»
- 22 cfsu au lieu de 21 pour «Valve control»
- Lecture de 2 flag en même temps ou séparément
- Persistance influe sur le type mais pas sur la taille

⇒ <u>Aspect qualitatif</u>

- Opération entre acteurs
- Objet isolé ne participant à aucune opération
- Processus fonctionnel de taille inférieure à 2
- Cas d'utilisation sans diagrammes de séquences
- Ordre illogique des mouvements de données
- Etc.

Analyse des résultats

⇒ Rigueur à la conception

- Utiliser le stéréotype standard «Actor» pour toute classe implémentant un utilisateur du système
- Attribuer la propriété «Persistent» pour une zone de stockage persistante. (Tout objet référencé dans un diagramme de séquence doit dériver d'une classe)

⇒ <u>Limites du logiciel</u>

- Logiciel mesuré doit être conçu avec Rational Rose
- Le logiciel opère sur les diagrammes de séquences
- Logiciel traite le cas d'une seule couche :
 - Incertitude des résultats d'une délimitation automatique des couches
 - Laisser le mesureur définir les PF de chaque couche

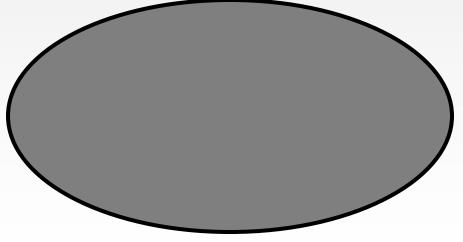
Conclusion

Très bonne base pour l'étude des ratios

Conclusion

- Résultats très satisfaisants pour une 1ère tentative d'automatisation de la taille du logiciel
- Trois niveaux d'abstraction : éléments de base pour de futures études de ratios
- Rigueur de conception => Meilleurs résultats
- Approfondir mes connaissances :
 - Le standard COSMIC-FFP
 - Mise en pratique de la notation UML
 - Rational Rose
 - Langage de programmation REI
 - Le processus RUP
 - La discipline de mesure de la taille du logiciel

Bibliographie


- [1] A. Abran, J.M. Desharnais, S. Oligny, D. St-Pierre, and C. Symons, "COSMIC FFP Measurement Manual Version 2.2, The COSMIC Implementation Guide for ISO/IEC 19761: 2003", École de technologie supérieure ETS, Montréal 2003, pp. 81.
- [2] Rice Cooker Cosmic Group Case Study, version du 26 janvier 2003
- [3] Valve Control System Cosmic Group Case Study, version du 25 janvier 2003
- [4] Booch, Grady; Rumbaugh, James et Jacobson, Ivar. "The unified modeling language user guide", Addison-Wesley, c1999
- [5] Valéry Béro, Ghislain Lévesque et Alain Abran,
 « Application de la méthode FFP à partir d'une spécification selon la notation UML: Comte-rendu des premiers essais d'application et questions. », P. 18
- [6] Philippe Kruchten, "The rational unified process, an introduction" 2000, addison wesley, Mars 2000, P. 298
- [7] Philippe Kruchten, "The RUP platform" Présentation de Philippe Kruchten au SPIN de Montréal 14/01/03, P. 33
- [8] Chantal Bouthat, « Guide de présentation des mémoires et thèses » 1993, P. 110
- [9] Brochure Directives pour le projet en génie logiciel remise par M. Bouisset. P. 4

Projet en génie logiciel

Calcul avec ISO 19761 de la taille de Logiciels développés selon Rational Unified Process

