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Abstract

We propose a formalization of the COSMIC Full Function Point (COSMIC-FFP) measure

for the Real-time Object Oriented Modeling (ROOM) language. COSMIC-FFP is a measure

of functional size. It has been proposed by the COSMIC group as an adaptation of the func-

tion point measure for real-time systems. The COSMIC-FFP de�nition is general and can

be applied to any speci�cation language. We propose a formalization of this de�nition for

the ROOM language. ROOM is now widely used for constructing real-time systems. The

bene�ts of our formalization are twofold. First it eliminates measurement variance, because

the COSMIC-FFP informal de�nition is subject to interpretation by COSMIC-FFP raters,

which may lead to di�erent measurements for the same speci�cation, depending on the inter-

pretation made by each rater. Second it allows the automation of COSMIC-FFP measurement

for ROOM speci�cations, which reduces measurement costs. Finally, the formal de�nition of

COSMIC-FFP can provide a clear and unambiguous characterization of COSMIC-FFP con-

cepts which is helpful for COSMIC-FFP measurement for other object-oriented notations like

UML.

INTRODUCTION

Software development activities must be managed in order to e�ectively accomplish them. A high

risk and cost is associated with these activities. The management of aspects like e�ort, quality,

productivity, benchmarking, and outsourcing depends, to a large extent, on the availability of an

appropriate software size measure. Size is a key factor to estimate e�ort, to compute productivity

and quality ratio. Benchmarking relies on the ability to compare systems of similar size. The cost

of outsourcing contracts for maintenance and evolution is also driven by the size of the software.

Hence, measuring software size is an important goal for any organisation developing or using

software.

Function Points is one of the prominent methods which has gained a considerable popularity

in the software industry. It was proposed by Albrecht [2] and improved by International Function

Points Users Group (IFPUG) [5]. Function points was designed to measure information systems

(data intensive and transaction-based systems). Although it is conceptually applicable to real-

time systems, several reports [4, 6, 7, 9] advocate that it is not very well adapted for real-time

systems. Recently, function points were extended by the Common Software Measurement Interna-

tional Consortium (COSMIC) group to more adequately address real-time software. The resulting

measure is called COSMIC Full Function Points (COSMIC-FFP) [1].

The COSMIC-FFP measure may be used to estimate development e�ort, evaluate software

quality, manage outsourcing contracts, and compare systems, speci�ed in di�erent languages, in

terms of productivity, quality, and maintenance costs. Consequently, these measurement aspects

can be used as the basis to improve and achieve the appropriate Capability Maturity Model (CMM)

level of an organization.

In [1], a measurement procedure is de�ned to be applied to any language speci�cation. Since

software requirement speci�cations depend on the language in use, the drawback of the general

applicability of COSMIC-FFP is the lack of a direct representation of some speci�cation concepts

in the context of COSMIC-FFP, some object-oriented concepts for instance. This lack makes the

measurement rules subject to interpretation by COSMIC-FFP raters, which may introduce some

variances on COSMIC-FFP measurement when di�erent persons apply the measurement rules to

the same software speci�cation. These variances lead to software sizing inaccuracy. Consequently,

the management and control of software processes will be negatively a�ected. Therefore, mapping

rules between COSMIC-FFP and speci�cation concepts are required. Furthermore, the measure-

ment rules are given in plain natural language, which makes them diÆcult to apply in a consistent



manner and to use as the basis for automated measurement. COSMIC-FFP measurement is a

manual process; there is no tool for identifying the COSMIC-FFP elements directly from software

requirement speci�cations.

In this paper we propose a formal de�nition of the COSMIC-FFP measurement procedure given

in [1] for mapping COSMIC-FFP concepts to ROOM concepts. This formal de�nition should

eliminate the variance in COSMIC-FFP measurement for ROOM speci�cations, because this de�-

nition is stated in mathematical terms based on the syntactic structure of a ROOM speci�cation,

hence it is objective and not subject to interpretation by the COSMIC-FFP rater. It also allows

the automation of COSMIC-FFP measurement for ROOM speci�cations, which reduces costs of

COSMIC-FFP measurement and avoids measurement errors. To the extent of our knowledge there

is only one approach that has been published on measuring COSMIC-FFP for a notation (UML) [3]

and it does not address the issues of formalization or automated measurement.

The ROOM language is widely used for developing real-time and distributed software. Rational

Corporation provides a case tool (Rational Rose RealTime powered by ObjecTime) that allows the

edition, validation, and simulation of ROOM speci�cations. ROOM is representative of the family

of object-oriented methods for real-time systems. The ROOM language has a formal framework

to abstractly and concretely describe the software. It integrates concepts of data encapsulation,

inheritance, and information hiding, incorporates detail level programming language, and provides

an executable model at high levels of abstraction.

The structure of a ROOM model facilitates the automation of COSMIC-FFP measurement.

The ROOM notation provides the details which are essential for COSMIC-FFP measurement. In

ROOM, the behavior of an object is de�ned as a state machine. Each machine is composed of a set

of transitions between states. The structure of a transition allows to easily identify and distinguish

the di�erent types of data movements in the COSMIC-FFP context, since a transition is already

decomposed into actions that are written in a programming language. The use of executable

instructions in the body of actions facilitates the identi�cation of those data movements and

distinction between them, which is necessary for COSMIC-FFP measurement. We cannot easily

identify these details in a speci�cation written in semi-formal speci�cation languages like UML.

The rest of this paper is structured in seven sections. The �rst section provides an overview

of the COSMIC-FFP method and the ROOM language. The adequacy of di�erent speci�cation

languages is brie
y discussed in the second section. The third section formalizes some elementary

concepts of COSMIC-FFP in the ROOM context which are then used in the fourth section to

classify data components. The �fth section brie
y describes how components are weighed. The

sixth section introduces the algorithm of the COSMIC-FFP measurement for ROOM speci�cations.

Finally, we conclude with an appraisal of this work in the seventh section, identifying its strengths,

weaknesses, limits, and future work.

BACKGROUND

COSMIC Full Functions Points (COSMIC-FFP)

The following equation describes how COSMIC-FFP, denoted by SizeCFSU(layeri), are measured:

SizeCFSU(layeri)
�

= � size(entries) + � size(exits) + � size(reads) + � size(writes)

Variable SizeCFSU(layeri) denotes the functional size of the software in layeri. A layer is de�ned

as the result of the functional partitioning of the software environment. To obtain that functional

size, a set of rules and procedures must be applied. They consist of mapping the software to measure

onto an implicit software model and then measuring the components of this software model. There

are two main categories of components: data groups and data movements. A data group is de�ned

as a set of data attributes that are logically related based on the functional perspective. Data

movements are divided in four categories: entry, exit, read, and write. A data movement is de�ned

as a function which refers to a set of data attributes. The COSMIC-FFP measurement standard,

1 Cosmic Functional Size Unit (CFSU), is de�ned as one elementary data movement (data entry,

exit, read, or write).

Sub-expressions �size(entries), �size(exits), �size(reads), and �size(writes) denote the num-

ber of all the \entries", \exits", \reads", and \writes" that are identi�ed in layeri, respectively.



The ROOM Language

ROOM is a formal modeling language for the development of systems [8]. It is well adapted to

real-time systems. The design notation is a combination of graphical and textual speci�cations.

This includes embedded segments of executable code of an object-oriented programming language.

In a ROOM model, the design might be observed via two di�erent view points: structure and

behavior. The structure represents the architecture of the model components and the links between

these components. The behavior shows how the system may evolve over time. It is a�ected by

the time and the occurrence of some events. The events are generated by the system or by its

environment.

A ROOM model is based on three kinds of entity: actors, protocols, and data objects. A

complete model is a combination of these entities. An actor is de�ned as an active object. Indeed,

an object exhibits both static and dynamic semantics. The ROOM language integrates the data

encapsulation concept. An actor is encapsulated and has restricted visibility of and by other

actors. The access relation between the objects is by reference only. An actor o�ers its services

that might be required by the communication channels. Each request of a service corresponds

to a speci�c message. A protocol represents a set of messages that can be exchanged between

the actors. Finally, a data object is the basic unit of the system data. It is sent or received in

conjunction with the message. It is also used to de�ne actor variables.

The dynamic part of a model is de�ned in the behavior section of the speci�cation. The behavior

of an actor is described as an extended �nite state machine. In the ROOM environment, the state

machines are called ROOMcharts. They are based on the Statecharts formalism of Harel. A

ROOMchart is a hierarchical state machine. A state may be decomposed in sub-states. States

that are not decomposed are called leaf states. A ROOMchart is de�ned by a state context. This

state context may have variables, entry code, exit code, a set of sub-states, or a set of transitions.

Executable state machines are a feature of the ROOM language.

There is a toolset that supports ROOM: Rational Rose RealTime. It was developed by Ra-

tional and ObjecTime Limited. This toolset allows the creation, modi�cation, simulation, and

implementation of a model. This includes the ability to execute an incomplete model. Rational

Rose Real-time provides model editors, a set of navigators, an incremental model compiler, static

and dynamic checkers, and generators of executable code in a programming language.

ADEQUACYOF THE ROOM LANGUAGE FOR FORMAL-

IZING COSMIC-FFP

The main goal of the COSMIC-FFP method is to measure the functional size of real-time software.

To measure the number of COSMIC-FFPs, a software speci�cation document must contain the

necessary details to identify and categorize:

� software features and

� data components that might be entered, modi�ed, referred, and produced during the pro-

cessing of a feature.

These details are required to determine the type of each data movement (entry, exit, read, and

write) in the COSMIC-FFP context. Therefore, any evaluation of the adequacy of a speci�cation

language for the formalization of COSMIC-FFP measurement rules must take account these as-

pects. In the rest of this section, we evaluate brie
y the adequacy of several families of speci�cation

languages for the formalization of the full function point calculation.

Trace-based speci�cations are not adequate for the formalization of COSMIC-FFP. Because they

abstract from states, it is not possible to identify data components. Consequently, the calculation

of weights for data movements cannot be fully formalized, because data components are required.

Algebraic speci�cations are not adequate for formalizing COSMIC-FFP de�nition. Operations

are not always functional processes in COSMIC-FFP. Some of them may be auxiliary operations

used in the de�nition of operations required by the user. We do not see any systematic way of

distinguishing them. There is a similar problem with data components. Sorts may represent data

components and data attributes, without any systematic way of distinguishing between them.

Because process algebras do not distinguish between inputs and outputs, it seems diÆcult

to identify data movement components. There is a similar problem with data components. In



process algebras, event parameters may either be input parameters, output parameters or state

information. Hence, it is diÆcult to identify data components. Because of these diÆculties, process

algebra are not adequate for formalizing COSMIC-FFP.

There is a more natural mapping between COSMIC-FFP and model-based speci�cations. How-

ever, not all model-based langages are appropriate for COSMIC-FFP formalization. For instance,

in semi-formal object-oriented notations like UML and OMT it is diÆcult to formalize COSMIC-

FFP. The main diÆculty with these notations is that they are not precise enough to allow a proper

classi�cation of data movements. The necessary details for identifying data components that might

be modi�ed and/or referred are provided in plain natural language, which is almost impossible to

formally analyze. For instance, in UML it is not always possible to formally determine the type of

data movements or identify the data groups that are modi�ed and referenced by the data move-

ments based on the details provided by the sequence, class, and collaboration diagrams. In the Z

notation, it is not trivial to distinguish between a modi�ed variable and a referred variable that

are used in a predicate.

In ROOM, the structure of a transition allows to easily identify and distinguish the di�erent

types of data movements, since elementary actions of a transition are written in a programming

language. Data group can also be identi�ed from data class and protocol de�nition. Several real-

time software projects are successfully developed by a number of industrial organizations using

the ROOM language. Furthermore, the ROOM language is suÆciently abstract to support good

speci�cation practices. It allows to easily construct an executable model that can be used for early

prototyping and is supported by the Rational Rose toolset. Based on these observations, we have

chosen the ROOM language for the formalization of COSMIC-FFP.

DEFINITION OF COSMIC-FFP CONCEPTS

In order to give a formal de�nition of the measurement rules, we need to �rst de�ne some elementary

concepts of the COSMIC-FFP measure as de�ned in the COSMIC-FFP Measurement Manual

(COSMIC-FFP MM) [1]. We map these concepts to the ROOM notation.

Boundary and Layer

Boundary

\A boundary of a piece of software is the conceptual frontier between this piece and the environment

in which it operates, as it is perceived externally from the perspective of its users. The bound-

ary allows the measurer to distinguish, without ambiguity, what is included inside the measured

software from what is part of the measured software's operating environment" [1].

Given a set of actors in a ROOM model, it is possible to derive the set of data and protocol

classes referenced by these actors. Therefore, the input of the measuring process consists of the text

of a ROOM speci�cation and the set of actor names to be measured. This set of actors represents

the application boundary to be measured. We denote the application boundary by B.

Layer

\A layer is the result of the functional partitioning of the software environment such that all

included functional processes perform at the same level of abstraction" [1]. Each layer can be

measured separately in COSMIC-FFP. In ROOM, a layer serves as an abstraction of the informa-

tion hiding mechanism. It is similar to the encapsulation shell of an actor with the addition of a

vertical relationship to communicate with other layers. This means that several layers might be

de�ned at the same level of abstraction. Based on these observations we can conclude that there

is no direct mapping between the layer concept of ROOM and the layer concept of COSMIC-FFP,

which makes it diÆcult to automatically identify a layer. Therefore, a human judgment is required

to select the subset of actors from the application boundary B that perform at the same level

of abstraction. The selected subset corresponds to a layer in COSMIC-FFP. This provides the

opportunity to measure any part of the system by selecting the set of actors representing it. Of

course the layer boundary is the conceptual demarcation between this subset of actors and the

other pieces of the application. We denote a layer at level i by li and its boundary by Bli .



Functional Process and Triggering Event

Functional Process

\A functional process is a unique and ordered set of data movements (entry, exit, read, write)

implementing a cohesive set of Functional User Requirements (FUR). It is triggered by an event

and, once performed, must leave the software in a coherent state with respect to the triggering

event" [1].

A functional process corresponds to a transition in the ROOM notation. A transition is triggered

by an event and implemented by a cohesive set of actions acting on inputs, changing the system

state and/or extended state variables, and/or possibly producing a result.

Typically, a transition between two states is composed of a set of functions. There are six

kinds of function: guard condition appearing in the transition trigger, exit action, choicepoint

condition, label action appearing in the transition label, entry action, and functions that might

be called by the previous actions. In this paper we refer to each of these actions and functions as

an elementary action.

The arrival of a message triggers the transition execution in the following order: guard condition

of the trigger, exit action of the source state (also called old state), choicepoint condition, action

declared in the transition label, entry action of the destination state (also called new state), and

functions that might be called during the transition processing.

Formally we de�ne a transition by a 5-tuple as follow:

T
�

= hso; InputT ; FT ; OutputT ; sni (1)

where so denotes the old state; InputT denotes the set of all the incoming messages appearing in

the trigger of T ; FT denotes the set of all the elementary actions associated with the transition

label, so, and sn; OutputT denotes the set of all the outgoing messages generated by the elementary

actions of T and sent to outside the boundary; and sn denotes the new state. Note that due to

the limited number of pages, we omit in this paper the formal de�nitions of several symbols (e.g.,

InputT , OutputT ).

As an elementary example, we use the speci�cation of a traÆc light system as described in the

Rational Rose RealTime toolset. The requirement of this system is described as follows: \a key

design requirement is that both lights cannot be green at the same time. They must synchronize

with each other to make sure that light A turns red before it allows light B to turn green".

For the sake of simplicity, we would like to keep our example small. Only the TraÆcLight actor

(called capsule in the Rational Rose RealTime toolset) will be considered, illustarted in �g. 1. All

its substates are leaf states. The boundary only contains the TraÆcLight actor. In the rest of this

paper we will use this example to illustrate the application of the formal rules.

To illustrate how we identify a functional process, consider the excerpt of the TraÆcLight actor

speci�cation provided below.

(1) State: IHavePriority

(2) Type: ChoicePoint

(3) Parent State:: TOP

(4) Condition: return (myId > *RTDATA);

(5) Transition: messageFromOtherLight

(6) From:: TOP:On:Junction6

(7) To:: TOP:IHavePriority

(8) Event Guards:

(9) Event Guard:

(10) Ports: betweenLights

(11) Signals: id

(12) Guard: TRUE

(13) Action:

(14) timer.cancelTimer(timerId);

(15) Transition: True

(16) From:: TOP:IHavePriority

(17) To:: TOP:Green:Junction3

(18) Action:

(19) timer.informIn(RTTimespec(10,0));
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Figure 1: The behavior and structure diagrams of the TraÆcLight actor

The transition between the On and Green states is composed of two segments: messageFro-

mOtherLight and True. The transition chain execution will be triggered by the arrival of message

id and if the choicepoint condition is true. Formally, let TLight denotes this transition. Following

(1), it is de�ned as follow:

TLight
�

= hOn; id; FTLight ; nil; Greeni;

where On is the source state; id is the incoming message; FTLight represents the executable state-

ments de�ned within the condition block of IHavePriority choicepoint state and the action blocks

of messageFromOtherLight and True; nil denotes that there is no outgoing message generated

during the transition processing; and Green is the destination state.

Triggering Event

\A triggering event occurs outside the boundary of the measured software. It may initiate one or

more functional processes. Clock or timing events are considered as triggering events" [1].

The arrival of message sent from outside the boundary in ROOM corresponds to a triggering

event in COSMIC-FFP, since it triggers the execution of a transition. In transition TLight, the

arrival of message id represents the triggering event of TLight, since TraÆcLight actor receives

message id from outside the boundary via port betweenLights.

CLASSIFYING COMPONENTS

In the COSMIC-FFP de�nition, there are six types of component to measure: data group, data

attribute, entry, exit, read, and write. In this section, we provide the informal de�nitions of

the COSMIC-FFP measuring rules as reported in the COSMIC-FFP MM followed by our formal

de�nitions for the ROOM notation.

Data Group

\A data group is a distinct, non-empty, non-ordered and non-redundant set of data attributes

where each data attribute describes a complementary aspect of the same object of interest. A data



group is characterized by its persistence" [1]. An object in the object-oriented paradigm and an

entity in the entity/relationship model are typical candidates of a data group.

In a ROOM model, actor variables and data included in messages within protocol classes rep-

resent data of the system. Actors and protocol classes refer to data classes and prede�ned data

types in order to de�ne the type of their components. An actor may have simple variables and/or

complex variables. A variable is said to be simple if its type is a scalar data type (e.g., integer,

boolean, string), an array of a scalar type, or a prede�ned data class. A variable is said to be

complex if a non-prede�ned data class is used to de�ne its type. The set of simple variables of

actor a is denoted by Vsimple(a) which is de�ned as follow:

Vsimple(a)
�

= fv j v 2 variables(a) ^ :(9 c : c 2 DC ^ type(v; c))g (2)

where DC denotes the set of all the non-prede�ned data classes declared in the system; variables(a)

denotes the set of all the variables declared in actor a; and type(v, c) denotes that the type of

variable v is data class c.

Similarly, a message within a protocol may include data. This data may be simple or complex,

as actor variables. The set of simple data of message m is denoted by Dsimple(m) which is de�ned

as follow:

Dsimple(m)
�

= fd j handles(m; d) ^ :(9 c : c 2 DC ^ type(d; c))g (3)

where type(d, c) denotes that the type of data d is data class c; and handles(m, d) denotes that

message m includes data d.

A data group in COSMIC-FFP corresponds to a data class, a set of actor simple variables, or

a set of simple data included within message. There are four kinds of data groups that must be

identi�ed. The following rules are given:

� Rule (4) provides the set of data classes used by the actors within the boundary.

� Rule (5) provides the set of actor simple variable groups.

� Rule (6) provides the set of data classes embedded in messages sent and/or received by the

actors within the boundary.

� Rule (7) provides the set of simple data embedded in messages sent and/or received by the

actors within the boundary.

DataClass
�

= fc j c 2 DC ^ (9 a; v : a 2 Bli ^ v 2 variables(a) ^ type(v; c))g (4)

DataV ariables
�

= fVsimple(a) j a 2 Blig (5)

DataMessage
�

= fc j c 2 DC ^ (9 m; d : m 2Mext [Mint ^ type(d; c) ^

handles(m; d))g

(6)

SimpleDataMessage
�

= fDsimple(m) j m 2Mext [Mintg (7)

where Mext is the set of all the messages exchanged between the actors within the boundary and

the environment via the external ports; Mint is the set of all the messages exchanged between the

actors within the boundary.

Finally, the set of data groups, denoted by DG, used by the actors and protocols within the

boundary is de�ned as the union of the four sets: DataClass, DataActor, DataMessage, and

SimpleDataMessage.

DG
�

= DataClass [DataV ariables [DataMessage[ SimpleDataMessage (8)

To illustrate how we identify the set of data groups DG, consider the excerpt of the TraÆcLight
actor speci�cation provided below.



(1) Capsule: TraÆcLight

(2) ...

(3) Public Interface:

(4) Attributes:

(5) timerId: RTTimerId

(6) myId: int = 0

(7) idProvider: IdProvider

(8) ...

(9) Protocol: BetweenLights

(10) Type: endports

(11) inSignals:

(12) object Signal: turningRed

(13) dataType: void

(14) object Signal: id

(15) dataType: int

(16) outSignals:

(17) object Signal: turningRed

(18) dataType: void

(19) object Signal: id

(20) dataType: int

The TraÆcLight actor has three attributes: timerId, myId, and idProvider. By applying rules

(2), (4), and (5) to the TraÆcLight actor speci�cation, we conclude that there are two data groups:

IdProvider de�ned as a data class which is used as the data type of idProvider attribute and the

set of simple variables, denoted by Vsimple(TraÆcLight), that contains myId and timerId attributes

which are typed as integer and RTTimerId (a prede�ned data class) respectively. To identify the

data groups included in messages that are exchanged during the system processing, we apply rules

(3), (6), and (7) to protocol BetweenLights which is used as the type of betweenLights port of

TraÆcLight actor. There is one message, id, that includes simple data of type integer. In this

case, Dsimple(id) is identi�ed as a data group. Finally, we apply rule (8) to identify the data

groups that must be included in DG. In this example, DG contains three data groups: IdProvider,

Vsimple(TraÆcLight), and Dsimple(id).

Data Attribute

\An attribute is the smallest parcel of information, within an identi�ed data group, carrying a

meaning from the perspective of the software's FURs" [1]. In ROOM, a data attribute is de�ned

either as a simple actor variable or an attribute of a data class. An attribute may be simple or

complex. A complex attribute may be decomposed into attributes that are de�ned at a lower level.

For the sake of simplicity, we refer to an attribute that is not decomposed into �ner attributes

as an \elementary attribute". This kind of attributes represents the smallest information in the

ROOM notation which corresponds to a data attribute in COSMIC-FFP. Attributes(dg) denotes

the set of attributes of a data group dg 2 DG.

Data Movements

Entry

\An entry (E) is a movement of the data attributes found in one data group from the user's

side of the software boundary to the inside the software boundary. An \entry" does not update

the data it moves. Functionally, an \entry" sub-process brings data lying on the user's side of

the software boundary within reach of the functional process to which it belongs. Note also

that in COSMIC-FFP, an \entry" is considered to include certain associated data manipulation

(validation) sub-process" [1].

In a ROOM model, an incoming message handles a request from outside to inside the boundary

through the external ports on the interlayer boundary. A message is composed of a signal, message

priority, and possibly a set of data. There are two cases de�ned in the COSMIC-FFP MM to

identify an \entry". In the �rst case, if the set of data embedded in the message belongs to

one data group then an incoming message corresponds to one \entry" in the COSMIC-FFP. In



the second case, if the set of data belongs to di�erent data groups then an incoming message

corresponds to several entries. We count one \entry" for each identi�ed data group.

The number of data groups referred by a message determines the number of entries to which an

incoming message must be mapped. Therefore, for each incoming external message the set of data

groups that are referred in it should be identi�ed (which corresponds to the number of entries).

Note that the same principle is applied to the other data movements (read, write, and exit).

Rule (9) provides a formal de�nition that allows to identify the data groups included in message

m within the incoming message set of transition T through the external ports.

Entry(T )
�

= fdg j dg 2 DG ^ 9 m; d : m 2 InputT ^ m 2 InMessageext ^

(type(d; dg) _ d 2 Attributes(dg)) ^ handles(m; d)g

(9)

where type(d, dg) denotes that the type of data object d is data group dg.

By applying rule (9) to transition TLight, we can identify one data group, Dsimple(id) that has

been included in message id sent from outside the boundary, since message id is received and

sent via port betweenLights which communicates with other actors (lines (10) and (11) in the

speci�cation of transition messageFromOtherLight).

Exit

\An exit (X) is a movement of the data attributes found in one data group from inside the

software boundary to the user side of the software boundary. An \exit" does not read the data

it moves. Functionally, an \exit" sub-process sends data lying inside the functional process to

which it belongs (implicitly inside the software boundary) within reach of the user's side of the

boundary. Note also that in COSMIC-FFP, an \exit" is considered to include certain associated

data manipulation sub-process" [1].

Our formal de�nition of \exit" is similar to rule (9), except that messagem must be an outgoing

external message rather than incoming message. Rule (10) provides a formal de�nition that allows

to identify the data groups included in message m generated by transition T and sent to outside

the boundary.

Exit(T )
�

= fdg j dg 2 DG ^ 9 m; d : m 2 OutputT ^ m 2 OutMessageext ^

(type(d; dg) _ d 2 Attributes(dg)) ^ handles(m; d)g

(10)

By applying rule (10) to the transition timeout speci�cation provided below, we conclude that

there is no message included data that has been generated to outside the boundary during the

transition processing. In this case ExiT(timeout) is an empty set.

Additional Candidates for \Exits"

In COSMIC-FFP all the external messages that do not include any data and sent to outside the

boundary B during the processing of a functional process are counted as one single \exit" (e.g.,

con�rmation and error messages). Rule (11) provides a formal de�nition for identifying messages

without data of transition T in a single set denoted by ExitNoData(T ).

ExitNoData(T )
�

= fm j m 2 OutputT ^ empty(m)g (11)

where empty(m) denotes that message m has no data.

By applying rule (11) to the speci�cation of transition timeout, we can identify one message,

turningRed, that will be sent to outside the boundary via betweenLights port when timeout transi-

tion is executed (line (10) in the speci�cation of transition timeout). This message does not include

any data. In this case ExitNoData(timeout) has one element.

(1) Transition: timeout

(2) From:: TOP:Junction1

(3) To:: TOP:o�:Junction5

(4) Event Guards:

(5) Event Guard:

(6) Ports: timer

(7) Signals: timeout

(8) Action:

(9) timerId = timer.informEvery(RTTimespec(1,0);

(10) betweenLights.turningRed().send();



Write

\A write (W) refers to data attributes found in one data group. Functionally, a \write" sub-

process sends data lying inside the functional process to which it belongs to storage. Note also

that in COSMIC-FFP, a \write" is considered to include certain associated data manipulation

sub-process" [1].

In a ROOMmodel, only the elementary actions, FT , of transition T might refer to data attributes

and possibly change their values. Mapping elementary actions of a transition in ROOM to \writes"

in COSMIC-FFP requires to identify the set of data attributes that are maintained by those

elementary actions. FT is said to maintain a data group dg if and only if there is an instruction in

an elementary action within FT that at least modi�es the value of one attribute of dg. The group

of attributes that are referred to and modi�ed by the elementary actions within FT will be used

to determine the number of \writes" to which those elementary actions should be mapped.

Rule (12) provides the set of data groups maintained by FT during the execution of transition

T .

Write(T )
�

= fdg j dg 2 DG ^ 9 v : v 2 Attributes(dg) ^ maintains(FT ; v)g (12)

where maintains(FT ; v) denotes that there is an executable instruction in an elementary action

within FT that changes the value of variable v, considered as an attribute of data group dg.

During the processing of transition timeout, there is one data group, Vsimple(TraÆcLight), that

will be maintained, since timerId, which is an attribute of Vsimple(TraÆcLight), is maintained by an

executable statement de�ned in the action block of transition timeout (line (9) in the speci�cation

of transition timeout). In this case Write(timeout) has one data group.

Read

\A read (R) refers to data attributes found in one data group. Functionally, a \read" sub-process

brings data from storage, within reach of the functional process to which it belongs. Note also

that in COSMIC-FFP, a \read" is considered to include certain associated data manipulation

sub-process" [1].

In ROOM, only the elementary actions of a transition (attributes referred without modi�cation)

may refer to a set of attributes from the storage side and bring them inside the boundary without

modi�cation. Mapping elementary actions of a transition in ROOM to \reads" in COSMIC-FFP

requires to identify the set of data attributes that are consulted by FT . FT is said to consult a

data group dg if and only if there is an instruction in an elementary action within FT that at least

uses the value of one attribute of dg.

Rule (13) provides the set of data groups that are referred by FT during the execution of

transition T .

Read(T )
�

= fdg j dg 2 DG ^ 9 v : v 2 Attributes(dg) ^ consults(FT ; v)g (13)

where consults(FT ; v) denotes that there is an executable instruction in elementary action within

FT that refers to attribute v.

To illustrate how we identify a \read", we apply rule (13) to the speci�cation of transition TLight.

During the processing of transition TLight, there is one data group, Vsimple(TraÆcLight), which is

consulted: attribute myId, which is an attribute of Vsimple(TraÆcLight), is consulted during the

veri�cation of the IHavePriority choicepoint condition (i.e., return (myId > �RTDATA)).

Formal De�nition Summary

Table 1 presents COSMIC-FFP concepts as de�ned in the COSMIC-FFP MM. The �rst column

introduces each concept with a name. The second column presents our interpretation of each

concept in the ROOM notation context. For instance, a functional process in the COSMIC-FFP

MM de�nitions corresponds to a transition in the ROOM notation.

WEIGHING COMPONENTS

In the measurement procedure given in [1], one CFSU is assigned to each data movement. The

total number of CFSUs for a given layer l, which we denote by SizeCFSU(l), is computed using the



Table 1: Mapping COSMIC-FFP concepts to ROOM concepts

COSMIC-FFP concepts ROOM concepts

functional process transition

boundary set of actors

data group data class or set of simple vari-

ables

attribute elementary attribute

entry incoming external message

exit outgoing external message

read consulted variables in elemen-

tary actions of a transition

write updated variables in elemen-

tary actions of a transition

cardinality of sets Entry(T ), Exit(T ), Read(T ), and Write(T ) for each transition T in T , where

T denotes the set of all transitions triggered by messages sent from outside the boundary. A single

data movement is counted for all outgoing dataless messages of a transition (e.g., error messages,

con�rmation messages). The following formula de�nes SizeCFSU(l):

SizeCFSU(l)
�

=
X
T2T

card(Entry(T )) +
X
T2T

card(Exit(T )) +

X
T2T

card(Read(T )) +
X
T2T

card(Write(T )) +
X
T2T

f(T )
(14)

where card denotes the cardinality of a set and f is a function that handles dataless messages of

a transition. It is de�ned as follows:

f(T ) =

�
0 if card(ExitNoData(T )) = 0

1 if card(ExitNoData(T )) > 0

THE COSMIC-FFP MEASUREMENT ALGORITHM

To compute the SizeCFSU(l) for a ROOM speci�cation, the information needed as input (aside

from the speci�cation itself) is the list of actors included in the boundary of layer l. This list can

be provided in either of the following forms:

1. A list of composite actor names { In that case, all actor components of these composite actors

are considered to be included in the boundary of layer l.

2. A list of composite actor names and a list of actors component names { In that case, only

the actors speci�cally identi�ed are included in the boundary of layer l.

The counting algorithm is composed of six steps, as described below. In each step, the appro-

priate formal rule(s), de�ned in previous section, should be applied.

1. Compute the set DG for all the actors identi�ed in the input

2. Compute the set of data attributes Attributes(dg) for each data group in DG

3. Determine the transitions and their components representing the behavior of the actors within

the boundary of layer l

4. Compute the sets Entry, Exit, Read, and Write of each transition

5. Compute the weight of each element of Entry, Exit, Read, and Write

6. Compute the sum of the weights to obtain SizeCFSU(l)

Of course, for the sake of concision, we have not speci�ed in this paper how each set (e.g., DG,

Attributes(DG)) is computed from a ROOM speci�cation. They are rather straightforward to

compute, and they shall be the subject of a technical report which will de�ne them precisely, for

the sake of completeness.



CONCLUSION

In this paper, we have proposed formal measurement rules for ROOM speci�cations according

to COSMIC-FFP informal de�nitions given in [1]. The formality of our de�nitions constitutes a

signi�cant advantage, because it ensures that all ROOM speci�cations are measured in a uniform

manner. This provides a greater accuracy for cost estimation, productivity evaluation and quality

measurement (where COSMIC-FFP size can be used to compute defect density). It also enables a

reliable benchmarking between organizations. Our formal rules of COSMIC-FFP provide a clear

and unambiguous characterization of COSMIC-FFP concepts which is helpful for COSMIC-FFP

measurement of other object-oriented notations like UML.

Formal rules are founded on �rst order logic and set theory. They could be used as the basis

for developing a software size measurement tool that automates COSMIC-FFP measurement for

ROOM. This tool can be integrated in the Rational Rose RealTime toolset that supports ROOM.

Automation provides a good opportunity to reduce measurement costs of COSMIC-FFP and to

avoid measurement errors, while making the counting process objective. Our rules are, however,

speci�c to the ROOM notation, hence automation is directly applicable to ROOM speci�cations.

The formal rules reported in this paper are just the �rst step of our work. During the for-

malization process, we found several interpretations of the COSMIC-FFP rules. We have chosen

the interpretation which seemed the most \reasonable", but further validations with a group of

COSMIC-FFP experts will be necessary. We need to apply the formal rules to several systems

and compare the results with manual measurements conducted by several experts to validate their

suitability. The di�erence between the results will be analyzed in order to identify the elements

that cause it. Implementing the formal rules in the Rational Rose RealTime toolset will streamline

this validation.

In the future, we want to analyze how COSMIC-FFP could be measured from partial ROOM

speci�cations, in order to estimate COSMIC-FFP during speci�cation construction. We also plan

to address the estimation of COSMIC-FFP for the UML notation, although UML documents do not

always contain all the necessary details to measure COSMIC-FFP automatically. We are thinking

of a semi-automated measurement approach where heuristics are used to identify COSMIC-FFP

components from various UML diagrams.
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