182

IV. Quality Improvement and Validation Process

[Fel96]

[GHI+94]

[GR96]

[Kru92]

[Min87]

[PEF96]

[Pri91]

[SEL95]

I‘

T. Fellger. Structuring and classification of experience knowledge with hypertext-

based realization. Master’s thesis. University of Mannheim, June 1996 (in German)

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of

reusable object-oriented software. Addison-Wesley, Reading, Massachusetts, 1994

C. Differding and H.D. Rombach. Continual software quality improvement in indus-
trial practice. In C. Ebert and R. Dumke (Eds.), Software metrics in practice,

Springer-Verlag, Berlin, 1996, pp. 14-44 (in German)
C.W. Krueger. Software reuse. ACM Computing Surveys, 24, 1992, pp. 131-183

B. Minto. The pyramid principle - logic in writing and thinking. Minto International

Inc., London, 3rd rev. edition, 1987

The Perfect Experience Factory Model. A booklet form the PERFECT ESPRIT proj-
ect 9090 handbook edition, 1996

R. Prieto-Diaz. Implementing faceted classification for software reuse. Commu-

nications of the ACM, 34 (5), 1991, pp. 88-97

Software process improvement guidebook. Software Engineering Laboratory Series,

SEL-95-102, March 1996. On-line available at http://fdd.gsfc.nasa.gov/selspig.pdf.

Validation Process in Software Engineering: An example with

Function Point

Jean-Marc Desharnais, Pam Morris

1. Background

Benchmarking' studies based on actual data supplied by marny industrial sites require two types
of validation: validation of the collection process as well as validation of the data supplied to the
researchers. The former validation will be referred to as a priori validation and the later one as a
posteriori validation. The a priori validation will review all the steps and procedures of the data
collection process within benchmarking data. The a posteriori validation will establish the de-
gree of quality of the data collected and, wherever required, will eliminate from the comparative
studies the data deemed not reliable. Both types of validation are required to ensure the quality
and the integrity of the data for meaningful benchmarkin g studies in software engineering due the
current immaturity of both software metrics and software engineering processes at industrial sites

as assessed the maturity model developed by the Software Engineering Institute (USA).

2. A Priori Validation

The a priori validation must look into the data collection process of each site supplying data for

the benchmarking studies. It should include the following steps:

1. Verification, for each site, of the existence of written, accurate and reliable documentation on
metrics definitions, coding schemes and admissible values.

2. Verification of consistency between the written documentation and current data collection
practices of the sites.

3. Verification of the existence of training and /or coaching programs to ensure that the staff
collecting the metrics have a solid understanding of software metrics that they collect.

4. Verification that responsibilities are clearly defined for data coding, data gathering and data

storage process.

5. Verification of the existence and effectiveness of quality controls.

! Desharnais, Jean-Mare, Validation Process for Industry Benchmarking Data, Software Engineering Laboratory in
Applied Metrics, Invited Paper, IEEE Conference on Software Maintenance, sept.-oct 1993, Montréal.

184 IV. Quality Improvement and Validation Process

Whenever possible, there should be also steps included to identify if there exist other sources of

information against which some of the information can be cross-validated.

3. A Posteriori Validation

The a posteriori validation should include an analysis of the data sets themselves. It should in-

clude the following three steps:

Step 1: Relevant data
Verify that the data sets supplied by the industrial sites includes all the required data variables.

Furthermore, the data sets must be scrutinized for irrelevant data, which must then be discarded.

Step 2: Data definition consistency
Verification that the data definitions and coding schemes are consistent across sites and over ti-
me. If not, corrective action should be taken, including partial grouping of data if deemed appro-

priate.

Step 3: Validity of data valued within the data sets
This last step includes many sub-activities:
a) Definition of validation criteria for each variable (eg. expected minimum and maxi-
mum);
b) Identification of outliers;

¢) Validation of outliers with site staff.

In addition to the above two types of validation, site staff feedback should be obtained on the
accuracy and reliability of the data and data collection processes. This could lead to the identifi-

cation of biases within the data supplied for the benchmarking studies.

4. Post Measurements Validation Procedure for the Function Point Counts

The post measurements validation procedure for Function Point couats is a “a posteriori validati-
on”. Although Function Point Analysis has been in existence for almost 20 years, the idea of
having a systematic procedure to validate the resultant Function Point count "a posteriori” has

just started to arise. A presentation on this topic was delivered at the IFPUG 1996 spring Confe-

Validation Process in Software Engincering: An Example with Function Point

185

. 2 . .
rence in Atlanta” and an article relating to the same subject in the first issue of the Voice, a Pu-

blication of the International Function Point Users Group3 in June 1996. Similar ideas were also
expressed in the 1994 Ph.D. thesis of Alain Abran®.

The A posteriori validation process covers the following areas:

Input Process Output
People
Documentation 1
High Level

Intermediate Level

Low Level

Document the results

4.1 Preparation

¢ prepare for the validation process by identifying the major participants in the count (e.g.

Function Point Specialist and Subject Matter Expert),

¢ ecnsure that a complete set of information is available to the review (e.g. data model and proc-
ess model),

¢ cnsure that a complete set of procedures is available to the review (e.g. a clear set of official

rules and "local rules® to count Function Points).

2 .
Morris Pam, Desharnais Jean-Marc, Validation of Function Point: i i
rence Aori 1996 oint: an experimental perspective, IFPUG Confe-

3
Longstree! David Auditing Function Point Counts, The Voice, A Publication of the International Func on Poin
f 3 5 i i
Users Group, 1996, pp. 8-9-10. l teats l ! ‘ "

4 .
Abran, Alain, "Analyse du processus de mesure des poi ion" i
s . points de fonction”, Ph.D. Th
Montréal, Mars 1994, 405 pages. o

5
The word local rules refer to the adaptati i i
. 3 ptation of official rules to the documentation available in ific si

a specific application/project. # specific it or for

Ecole Polytechnique de

186

1V. Quality Improvement and Validation Process
4.2 High level review
The high level review is aimed at identifying any major strategy errors employed in the count.
The high level review examines the :

0 unadjusted functional size of the software being measured,

0 scope of the Function Point count °,

0 boundary to the software being measured.

4.3 Intermediate level review

This level of the review explores these intrinsic relationships between inputs, files and out-

puts/Inquiries for the measured software and compares them with values collected from in-
dustry.

More specifically it examines the :

0 relationship between the number of logical files and the unadjusted functional

size of the software.

Figure 1 shows the relation between the number of data files (Internal Logical Files + External
Interface Files) and the total number of Function Points. Typically data (ILFs and EIFs)) contri-

bute about 30% of the total number of function points, whilst transactions (input, output and in-

quiry) contribute to the remaining 70%.

¢ For a development project and a major enhancement project the scope is the functionality impacted by the project
activities. The functionality is confined by the limits of the software’s external application boundary (refer
ISO/IEC/SCT Standard DIS 14143 “Software Measurement - Definition of Functional Size™).

Validation Process in Software Engineering: An Example with Function Point 187

Relationship between Functional Size and Total Number of Files (ILFs + EIFs)

6000

g
2
E 5000
2 r
g . /
& 4000
T
§ *
2 P
2 3000 ¥
S *
8 . * .
@ .
E 7
c 2000
K
o »
g - f o«
= 1 *
51 * M
= 7
g 1o . . y = 22.094x
= . Son? oo o R = 0.7668
e ¢ n=161
0
0 50 100 150 200 250

Total Number of Data Files (1LFs+EIFs)

Fig. 1

O relationship between the numbers of functions to each other,

Figure 2 shows the relationship between Inputs, Outputs and Inquiries from the authors' database

(a combination of Australian and Canadian data).

Relationship Between Number of Internal Logical Files to Transactions

- Series 1
inputs
® Seriest . y= z’.)eaozx
400 — 4 Series3 R? = 0.8083
m Series2 1

e rd N=161
nputs

350 17

= = Ouputs /

2 300 S— S / Series 2
g . Qutputs
3 . & y = 1.1756x
£ 250 N N
& . R’ = 0.5067
= s . N =161
5 200 . /
= A
B o 3~ | e}
z 150 s <o / Serias 3
L) L] . ..
"B | A a Inquiries
100 A s =] = 1,1794x
o PYE S 7 / . v=
a8 L R al " R*=0.702
50 4 o N f‘“ﬁ Y N =161
) ‘. 2 Ao -
0
0 20 40 60 80 100 120 140

Number of Internal Logical Files

Fig. 2

188

IV. Quality Improvement and Validation Process

0 percentage contribution of each function type to the unadjusted functional size of

the software,

Figure 3 shows the percentage contribution to total Size by Function Type from ISBSGs’ an

Australian database (external ring) and the authors' database (internal ring).

Percentaae Contribution to Total Size bv Function

Fig. 3

0 profile of the complexity of the functions.

This check also explores the intrinsic nature of MIS applications. The following table compares
the mean function points awarded for each function type found within the authors’ database and

the ISBSGs database with the equivalent complexity rating in the IFPUG complexity matrices.

In both databases the overall mean complexity for :

0 Transactional function types is closest to ‘average’,

¢ Data function types is closest to ‘low’.

7 International Software Benchmarking Standard Group Repository Release 2 October 1995,

s,

Validation Process in Software Engineering: An Example with Function Point 189
Mean Function Points Awarded Corresponding IFPUG
(Total number FPs /Total num- Complexity
ber functions) Rating
Function Type Dataset | Dataset 2 Average Low
(n=106) (n=161)
Inputs 4.3 4.2 4 3
Outputs 5.4. 5.8 5 4
Inquiries 3.8 4.0 4 3
Internal Logical Files 7.4 7.8 10 7
External Interface Files 5.5 5.2 7 5
Tab. 1

4.4 Low level review

The lowest level review examines the :
0 function point count of selected Data Business Functions,

¢ function point count of selected Transaction Business Functions.

This level of the review is performed when the previous level reviews have assessed the count as

being potentially :
valid - then the detailed review is used to confirm the assessment, or

invalid - then the detailed review is used to investigate sources of error to be corrected.

For example:

If the number of function points contributed by External Inputs is outside the normal expected
ranges and is:
¢ Too high, then check for the following common counting errors or reasons for variances:
¢ input selection filters for reporting data may have been incorrectly counted as External
Inputs,
0 physical data entry screens may have been incorrectly counted as logical transactions
(elementary processes),
¢ each slight variation in the data entered for an input transaction may have been incor-
rectly counted as a unique elementary process,

O physical transactions eg. save, exit, send may have been incorrectly counted as logical

External Input transactions.

¢ Too low, then check for the following common counting errors or reasons for variances:

150 IV. Quality Improvement and Validation Process Validation Process in Software Engineering: An Example with Function Point 191
0 add, change and delete functions may have been bundled into a single maintenance in- Function type:
put and not counted as discrete elementary processes, Each function type is identified by a letter
0 counter may have not looked for additional input transactions beyond standard mainte- 1: External Input
nance eg. Cancel Invoice , Post Invoice to GL etc., O: External Output
0 an incoming file has been incorrectly counted as a single External Input instead of Q: External Inquiry

ILF: Internal Logical File
EIF’: External Interface File

evaluating each transaction type for qualification as a unique elementary process,
0 physical files have been incorrectly grouped into logical files causing both the com-

plexity of the files to be incorrect and the complexity of every transaction accessing .
the logical file to be incorrect Each function type code will have a suffix. This suffix will identify the order of the function

le, if the first function type identified on a page is an EI:"11" will
0 business rules may not allow the user to delete data. type on-a page, for example, if the first f Lyp ifi

be written next to the EI If the second function type identified on that same page is an EQ:

4.5 Documentation of the Validation Process "Q2" will written next to the EQ.

The main areas addressed are:

O the comments made by the persons who performed the count,
¢ review the detail of the documentation and ensure that is has followed prescribed

Verify that any areas within the count which could be open to interpretation and would affect the
documentation standards,

count result have been adequately documented.
0 verify if the documentation supplied with the count is detailed enough to allow:

* all functions which contributed to the count to be identified,

5. Conclusion
* all assumptions and decisions made during the count to be verified,

ifi i i i osed and illustrated a standard process for the validation of Function Point results.
* another Certified® function point counter to easily update the count. We have prop p
We put the emphasis on the a posteriori validation which has three steps: the relevance of the

i ificati ; the consistency of data definitions and coding schemes and the validity of data values wit-

An example of the collection and codification standards for count documentation as follows: data, y & . .
hin the data sets. This validation process will significantly improve the quality of the data col-
Count Data collection procedures: lected.
Each document produced by the count must include the relevant page number on

the lower right corner of every page.

Count codification Procedures:

The count will be recorded using the level of detail and the documentation coding conventions

described below:

9
8 A Certificd counter is a person who is accredited by IFPUG as a Certified Function Point Specialist. These acronyms correspond to the IFPUG standard.

y

GABLER EDITION WISSENSCHAFT | Franz Lehner/Reiner Dumke/
Information Engineering und ; Alain Abran (Eds.)

IV-Controlling
Software Metrics

Herausgegeben von Professor Dr. Franz Lehner
Research and Practice

; in Software Measurement

Die Schriftenreihe prasentiert aktuelle Forschungsergebnisse der

Wirtschaftsinformatik sowie interdisziplindre Ansdtze aus Informatik

und Betriebswirtschaftslehre. Ein zentrales Anliegen ist dabei die

Pflege der Verbindung zwischen Theorie und Praxis durch eine an-

wendungsorientierte Darstellung sowie durch die Aktudlitét der Bei-

tréige. Mit der inhaltlichen Orientierung an Fragen des Information

Engineerings und des IV-Controllings soll insbesondere ein Beitrag zur

theoretischen Fundierung und Weiterentwicklung eines wichtigen .

Teilbereichs der Wirtschaftsinformatik geleistet werden. Deutscher Univer sitéitsVerlag

y

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Software Metrics : research and practice in software Measurement
Hrsg.: Franz Lehner
- Wiesbaden : Dt. Univ.-Verl. ; Wiesbaden : Gabler, 1997
(Gabler Edition Wissenschaft : Information Engineering und IV-Controlling}
ISBN 3-8244-6518-3

Der Deutsche Universitéits-Verlag und der Gabler Verlag sind Unfernehmen der
Bertelsmann Fachinformation.

Gabler Verlag, Deutscher Universitéits-Verlag, Wiesbaden
© Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH, Wiesbaden 1997
Lektorat: Claudia Splitigerber

Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschiitzt.
Jede Verwertung auBerhalb der engen Grenzen des UrheEerrechts—
gesetzes ist ohne Zustimmung des Verlages unzuldssig und strafbar.
Das gilt insbesondere fiir Vervielfa tigungen, Ubersetzungen,
Mikroverfilmungen und die Einspeicherung und Verarbeitung in elek-
tronischen Systemen.

http:/ /www.gabler-online.de

Hochste inhaltliche und technische Qualitit unserer Produkte ist unser Ziel. Bei der Produktion
und Auslieferung unserer Biicher wollen wir die Umwelt schonen: Dieses Buch ist auf séurefrei-
em und chlorfrei gebleichtem Papier gedruckt.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Worenbezeichnungen usw. in diesem
Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annchme, daB solche
Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu befrachten
wéren und daher von jedermann benutzt werden diirften.

Druck und Buchbinder: Strauss Offsetdruck, Marlenbach
Printed in Germany

ISBN 3-8244-6518-3

Foreword

There ubiquity of software in the development of complex systems and high technology
consumer products is steadily increasing in a competitive environment that is now global in
scope. Thus software developers are faced with the challenge of making software systems and
products of ever greater quality and safety, while at the same time being faced with the growing
pressure of costs reduction in order to gain and maintain competitive advantages. As in any
scientific and engineering discipline, reliable measurement is essential for talking on such a

challenge.

"Software measurement is an excellent abstraction mechanism for learning what works and what
doesn't" (Victor Basili). Measurement of both software processes and products provides a large
amount of basic information for the evaluation of the software development processes or the
software products themselves. Examples of recent successes in software measurement span
multiple areas, such as evaluation of new development methods and paradigms, quality and
management improvement programs, tool-supporting initiatives and company-wide measurement

programs.

The German Computer Science Interest (GI) Group of Software Metrics, the (GI) Interest Group
of Quality Improvement of Object-Oriented Systems and the Canadian Interest Group in
Software Metrics (CIM) have attended to these concems in the recent years. Research initiatives
were directed initially to the definition of software metrics and then to validation of the software
metrics themselves. This was followed by more and more investigation into practical
applications of software metrics and by critical analysis of the benefits and weaknesses of
software measurement programs. Key findings in this area of software engineering have been
published in some important books, such as Zuse's Software Complexity, Allerburg and Abran's
Metrics in Software Evolution, Dumke and Zuse’s Theory and Practice of Software
Measurement, Dumke et al’s Software Quality with Metric Tools, Lehner's Software

Maintenance and Ebert and Dumke's Software Metrics in Practice.

VI

Foreword

This new book includes key papers presented at the 6th International Workshop on Software
Metrics in Regensburg (Germany), September 1996. It is a collection of theoretical studies in the
field of software measurement as well as experience reports on the application of software
metrics in Canadian, Austrian, Belgian and German companies and universities. Some of these
papers and reports describe new software measurement applications and paradigms for
knowledge-based techniques, maintenance service evaluation, factor analysis discussions and
neural-fuzzy applications. Others address the object-oriented paradigm and discuss the
application of the Function Point approach to an object-oriented design method, the evaluation of
the Java development environment, the analysis of quality and productivity improvements of
object-oriented systems, as well as the definition of the metrics of class libraries. Other papers
offer a different perspective, presenting a software measurement education system designed to
help improve the lack of training in this field, for example, or they include experience reports

about the implemention of measurement programs in industrial environments.

This book will be of interest to software engineering researchers, as well as to practitioners in the

areas of project management and quality improvement programs, for both software maintenance

and software development in general.

Alain Abran
Reiner Dumke

Franz Lehner

Table of Contents

FOTEWOIA ...ttt s e s s s st e e st sasren v
Table Of CONENES ...cvveuiieiciicrie vt sb et et b et rets e ee et s st eenenee VII
I. Quality and Measurement of Object-Oriented Software 1

R. Hubig, I. Morschel
Quality and Productivity Improvement in Object-Oriented Software Development 3

M. Hitz, S. Stiller

Automatic Extraction of Object-Oriented Software Metricsccveveeveeneereernnrnerssinionnions 15
R. Dumke

Really Object-Oriented SOftware MetriCscocovvivrririeiereirineeneetseessnesesnansesensss s essse s 27
T. Fetcke, A. Abran, T.-H. Nguyen .

Mapping the OO-Jacobson Approach to Function Point Analysiscceeerverererriverenrinnnnes 59
IL. Internet and World Wide Web...........cc.cocooiniinicceeeece e 75
A. Winkler, R. Dumke, R. Koeppe, G. Kompf

Efficiency and Maintainability of JAVA Applicationscococevrieernccrnninineserennnens 77
B. Duhamel, G. St-Amant, A. Abran . .

Design of a Measure to Assess Compliance of Internet Web Sites with Privacy Laws........... 95
IIL Software Metrics and Measurementccocevurereercrireccereeennnn. 109

M. Maya, A. Abran, P. Bourque
Measuring the Size of Small Functional Enhancements to Softwareccccevevevevcvnenanis 111

D. Schmelz, M. Schmelz

The Use of Factor Analysis in the Area of Software MEtriCSocevurueererreereeersernreseerennns 123
E. Baisch, C. Ebert .

On a Neural-Fuzzy Technique with GA-Optimization for Software Quality Models 131
H. Zuse

The Software Measure Information System: ZD-MISccocoovvveruirrererrereeereresseresinens 139

vin Table of Contents
IV. Quality Improvement and Validation Processcocoooovovovoo... 165

F. Houdek

Software Quality Improvement by Using an Experience FACIOIYvvevureeeeeerreeerrorn. 167

J.-M. Desharnais, P. Morris

Validation Process in Software Engineering: An Example with Function Point.................... 183)

. Bbert I. Quality and Measurement of Object-
Applying Knowledge-Based Techniques to Software Quality Management......................... 193

A. Mittelmann Oriented Software

Implementation of a Measurement Plan in an Industrial Environment..............oo.ovevovvooan.. 211

List of Contributors

i
!
i

