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In many applications of business and marketing analytics, predictive
models are fit using hierarchically structured data: common characteristics
of products, customers, or webpages are represented as categorical variables,
and each category can be split up into multiple subcategories at a lower level
of the hierarchy. The model may thus contain hundreds of thousands of bi-
nary variables, necessitating the use of variable selection to screen out large
numbers of irrelevant or insignificant features. We propose a new dynamic
screening method, based on the distance correlation criterion, designed for
hierarchical binary data. Our method can screen out large parts of the hierar-
chy at the higher levels, avoiding the need to explore many lower-level fea-
tures and greatly reducing the computational cost of screening. The practical
potential of the method is demonstrated in a case application on user-brand
interaction data from Facebook.

1. Introduction. We consider a class of problems in business and marketing analytics
in which large-scale statistical predictive models are fit using hierarchically structured data.
These data consist of categorical features modeled using large numbers of binary (dummy)
variables; many of these categories, however, are subcategories of features at higher levels in
the hierarchy, and can themselves be subdivided further at lower levels. Hierarchical aggrega-
tion represents common characteristics of large numbers of features, and is widely applicable
in revenue management, marketing and other business applications. Consider the following
examples:

1. Customer relationship management. Negative comments by users on social media plat-
forms can be predicted based on those users’ past observed interactions with other brands,
topics, and groups of topics on the platform. A firm can then act preventively, e.g., by
displaying offers to certain users, in order to reduce the risk of negative word of mouth
and maintain a healthy brand image.

2. Demand modeling. A retailer sells a wide variety of products. When modeling customer
demand as a function of the price, the retailer may also include dummy variables that
classify products by department (e.g., tools, electronics, clothes), then describe different
categories of products within a given department (e.g., hammers, saws, drills), and finally
add features at the individual product level.

3. Non-profit fundraising. A non-profit organization is sending out written appeals during a
quarterly fundraiser. The non-profit may model donor location at the state level, as well
as the level of three- and five-digit zip codes (the latter being used as a stand-in for donor
income when detailed demographic information is unavailable).

The size of the feature space in these examples grows dramatically as more levels are
added to the hierarchy. In a practical application, we may have tens or hundreds of thousands
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(a) 3-digit zip codes. (b) 5-digit zip codes.

FIG 1. Example showing household income by 3-digit and 5-digit zip code.

of binary variables representing hundreds or thousands of categories. At the same time, most
(but not all) of the features at the disaggregate levels may have no effect on the dependent
variable of interest; moreover, the presence of these features adds noise that confounds our
ability to make accurate statistical predictions (Fan, Han and Liu, 2014). Ideally, the hier-
archical structure itself can help to resolve this problem, by specifying exactly how much
detail is needed to make accurate predictions for different segments. For example, if we are
modeling the demand for tools, it may be sufficient to include a single variable for saws, but
necessary to distinguish between several individual brands of hammers.

To illustrate, Figure 1 shows a map of the Baltimore-Washington area, segmented into 5-
digit zip codes, which can be aggregated by their first three digits. Figure 1(a) shows average
household income by 3-digit block, while Figure 1(b) colors each 5-digit zip code separately.
Block 1 in Figure 1(a) has higher average income than the surrounding area, blocks 2 and 4
have lower income, and block 3 appears to have high income due to a single very wealthy
5-digit zip code. We could model all four blocks at the 3-digit level, with additional variables
as needed at the 5-digit level to capture the main sources of variability. Outside these blocks,
there are wide areas with similar incomes that could be modeled at the 3-digit or even state
level. Although some useful zip codes may be lost in aggregation, we have still identified
several important regions and modeled them in varying degrees of detail. This is a natural and
practical way to approach a large problem with a multi-layered feature space. For example,
in B2B pricing, managers overseeing the sales of 50,000 distinct products would seek to
identify certain product families where differentiation is critically important, as opposed to
others that can safely be represented in aggregate.

The difficulty is that, in large problems, we do not know which segments should be aggre-
gated, and how much aggregation can be used. In such situations, statistical model selection
(also known as variable selection) becomes an extremely useful practical tool for reliably
recovering a sparse set of significant features, while removing large numbers of insignificant
features.1 Model selection is also very useful for practical computation: when both the sam-
ple size n and the size p of the feature space are large, traditional estimation procedures may
run into severe computational difficulties (Kleiner et al., 2014). Reducing the feature space
mitigates this difficulty and improves predictive power.

The main contribution of this paper is a new model selection algorithm that takes a hi-
erarchical data structure and extracts from it a subset of features that is also hierarchically
ordered. The method explores the hierarchy from higher (more aggregate) to lower (more

1In this paper, words such as “significant,” “important,” “relevant” etc. implicitly refer to predictive power. We
do not consider causal relationships in this paper, and assume throughout that our goal is to identify features that
improve prediction, while removing those that do not.
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disaggregate) levels. Informally, we estimate the relevance of a candidate feature based on
the data. If the estimated relevance is sufficiently high, the feature is accepted and its chil-
dren (subcategories) become candidates; however, if the relevance is too low, the feature is
screened out together with all of its descendants. This approach leads to very substantial
computational savings on large problems, as most of the disaggregate features are screened
out at higher levels without ever being directly examined.

To obtain these gains, we first assume that the relevance of a feature can be captured by a
measure of its marginal dependence on the response variable. This assumption is the founda-
tion of an entire stream of methodological literature in statistics, known as sure independence
screening or SIS (Fan and Lv, 2008). We leverage this literature in our work, using the dis-
tance correlation (DC) criterion of Székely, Rizzo and Bakirov (2007) as our measure of
dependence. The statistical literature has shown that this criterion is valid for a very general
class of models, so we do not need to impose any particular functional form on the rela-
tionship between the predictors and response; we can handle any statistical model where the
data are binary. In the process, however, we prove that DC is equivalent to classical Pearson
correlation in the binary setting, which allows the criterion to be computed more efficiently
and provides a conceptual bridge between these two notions of correlation.2

Second, in order for us to exploit hierarchical data structures, the hierarchy has to be
informative to begin with. We allow the set of relevant features to deviate from this structure
to some degree, similar to how block 3 in Figure 1(a) only appears to be relevant because
of one 5-digit zip code. Such an “indirectly relevant” feature would also be discovered by
our method; however, once an aggregate feature appears to be irrelevant, we will not proceed
further down the hierarchy. We prove that, if the marginal DCs of the features obey the
hierarchy in this way, our procedure will recover all of the relevant features under a standard
set of assumptions from the statistical literature. It follows that, by automatically screening
out all descendants of an irrelevant feature, we provably reduce the number of false positives.

The dynamic DC-based algorithm (DDC) shows significant advantages in numerical ex-
periments.3 We study both simulated and real data, the latter consisting of historical inter-
actions with various topics by users on Facebook, which we use to predict whether users
will write negative comments for a particular brand. Although n > p in this dataset, analysis
is non-trivial since n ∼ O

(
105
)

and p ∼ O
(
104
)
. We find that DDC scales much better to

this large dataset, in terms of both predictive power and computational efficiency, than do
various statistical benchmark methods. These results also constitute empirical evidence that
hierarchical structure can be very effective in practical applications, as DDC significantly
outperforms those benchmarks that do not consider this structure at all.

2. Literature Review. We place our work in the context of the vast literature on variable
selection. Most of these references pertain to statistical and machine learning methodology;
however, variable selection is increasingly used in business analytics and operations research
applications (Rudin et al., 2012; Bertsimas et al., 2016; Ryzhov, Han and Bradić, 2016; Li,
Netessine and Koulayev, 2018), where predictive models work together with optimization
or other decision-theoretic tools. We do not directly study optimization in this paper, but our
work could complement, e.g., Xue, Wang and Ettl (2016) or Qu et al. (2019), where statistical
models are embedded inside optimization problems.

Within the statistical literature, our paper is closest to the work on sure independence
screening (SIS), a methodology first proposed by Fan and Lv (2008) for linear regression

2If the data are not binary, our overall approach is still potentially applicable. We will simply have to calculate
DC according to its original definition.

3In compliance with the journal’s data disclosure policy, we have made our data and code available for repli-
cation at this website: https://github.com/ddcfs2019/DDC

https://github.com/ddcfs2019/DDC
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problems and subsequently extended to GLMs (Fan and Song, 2010), nonparametric models
(Fan, Feng and Song, 2011), survival models (Zhao and Li, 2012) and other settings (Zhu
et al., 2011). Unlike regularization-based approaches such as Lasso (Tibshirani, 1996), SIS
treats the problem of model selection separately from estimation. As is typical in the model
selection literature, one first assumes that p� n, but that the response variable is only in-
fluenced by a small subset A of the features. The fundamental assumption of SIS is that
this influence is reflected in the marginal dependence of the response on individual features,
which can be measured using, e.g., Pearson correlation; thus, one screens out a feature if its
estimated marginal dependence is sufficiently small. It is possible to consider more complex
forms of joint dependence (Fan, Samworth and Wu, 2009; Barut, Fan and Verhasselt, 2016),
but this increases computational cost, so the SIS literature predominantly focuses on marginal
dependence.

Different statistical settings necessitate the use of different measures of dependence in
order to prove the validity of the screening procedure, i.e., that the procedure recovers A
with high probability. For example, Fan and Lv (2008) proves this using Pearson correlation,
but is restricted to linear regression (OLS) models. In GLMs, Fan and Song (2010) proposed
solving a marginal maximum likelihood problem for every feature (the streamwise selection
method of Zhou et al., 2006 uses a similar idea). Overall, many criteria can be found in the
literature (for example, Li et al., 2012 proposed to use Kendall rank correlation), but they
tend to be valid for some models and not others. An important exception is the so-called
distance correlation (DC) criterion of Székely, Rizzo and Bakirov (2007), which provides a
very general measure of dependence (Székely and Rizzo, 2009; Székely and Rizzo, 2012),
and can be estimated in a purely data-driven way without having to assume any specific
relationship between the features and response (Huo and Székely, 2016). It was proved by Li,
Zhong and Zhu (2012) that, when DC is used for screening, SIS is valid across a very general
class of statistical models. Because we do not wish to restrict ourselves to any specific class
a priori, we also adopt DC as the screening criterion for our procedure; in the process, we
discover that it admits substantial computational simplifications in our motivating setting of
binary data.

The SIS literature has not considered hierarchical data structures. The work by Hao and
Zhang (2014) is perhaps the closest to our paper in that regard: it assumes a linear regression
model with interaction terms whose values are products of pairs of “base” features, and one
performs model selection, using screening or some other approach (Hao and Zhang, 2016), in
two stages, so that interactions can only be selected if one or both of the base components are.
This work cannot be directly applied to our setting, as we do not use linear regression and the
hierarchy in our problem may be multi-layered. Similar data structures can also be handled
using group Lasso methods (Yuan and Lin, 2006), which jointly perform selection and esti-
mation using regularized optimization. Specifically, Zhao, Rocha and Yu (2009), Bach et al.
(2012), and Yan and Bien (2017) all consider group structures that could potentially be ap-
plied to hierarchical data, while Kim and Xing (2010, 2012) explicitly study tree structures.
However, all group Lasso methods, in order to handle our setting, would need to enumerate
and include a separate penalty term for every subtree in the hierarchy, which would not scale
well to multi-layered business data in which both n and p could be large.

Another approach, based on hypothesis testing, was proposed by Yekutieli (2008). In the
language of our paper, the decision to screen out a feature can be made based on a hypothesis
test (Fan and Fan, 2008), with the null hypothesis being that the feature is uncorrelated with
the response. As in our work, one then refrains from testing any descendants of a feature
that has already been screened out. Using the methodology of Benjamini-Hochberg false dis-
covery rate (FDR) control (Ferreira and Zwinderman, 2006), one can guarantee that the pro-
portion of false positives among the selected features is kept below some desired threshold.
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FIG 2. Illustration of a hierarchical data structure.

This approach has much of the same computational appeal as our own, and we extensively
compare against it in numerical experiments. However, we find that our proposed approach
performs more robustly and scales better to large problems; perhaps it is worth noting that
FDR control requires weak dependence between hypotheses (which need not be the case in
our setting) in order to derive guarantees (Liu and Shao, 2014; Fan and Han, 2017).

3. Data and Model. Let there be n observations (x1, y1), ...(xn, yn) that are independent
and identically distributed. We let X = (X1, ...,Xp) denote a generic feature vector, with p
being the number of features, while Y is used to denote a generic response. We assume that
Y and each component of X are binary-valued (zero/one). Let F (y |X) = P (Y = y |X) be
the conditional probability of observing the response y ∈ {0,1} given X. Without specifying
any particular regression model (thus, E(Y ) does not have to be linear in X), we define the
sets of “relevant” and “irrelevant” features as

A= {j ≤ p : F (Y |X) functionally depends on Xj for some Y.}

Ac = {j ≤ p : F (Y |X) is functionally independent of Xj for any Y.}

The goal is to identify A while removing as much of Ac as possible.
We now impose a hierarchical structure on the features. For j = 1, ..., p, we use P (j) to

denote its “parent,” which is understood as a set containing a single index. For features that
belong to the top layer of the hierarchy, we may have P (j) = ∅ as a special case. We further
define C (j) to be the index set of all the “children” of the jth feature (i.e., k ∈ C (j) if and
only if P (k) = j), and D (j) to be the index set of all the descendants of the jth feature.
Thus, C(j) ⊆ D(j). For instance, in the example shown in Figure 2, we have P(2) = {1},
C(2) = {3,4} and D(2) = {3,4,5,6,7,8}.

The hierarchical structure affects the composition ofA through what we call the extinction
property. Informally, this property says that, if Xj and Y are “weakly” correlated, in a sense
that will be precisely defined later, then Xk and Y are also “weakly” correlated for all k ∈
D (j). A very strong version of such a property, which can be understood using the notation
introduced thus far, is provided as an example.

EXAMPLE (strong extinction property). If j ∈Ac, then k ∈Ac for all k ∈D(j).

In words, all descendants of irrelevant features are also irrelevant, so that the set A is also
hierarchically ordered. The weaker extinction property, which we will introduce later and
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use in our analysis, relaxes this requirement, but has a similar form: if a feature appears to
be only weakly relevant (but no longer has to be a member of Ac), the same is true for its
descendants.

Such assumptions have an intuitive appeal in many areas of application. For instance, con-
sider a large online retailer using data to quantify and predict the demand for large numbers
of products. The response Y represents whether the customer buys the product (Y = 1) or not
(Y = 0), with F (1 |X) being the probability of a sale (a stand-in for demand) given a large
number of binary product attributes in X. Thus, one of the features in the top layer of the hi-
erarchy may be “electronics,” and the children of this feature may be, respectively, “phones,”
“cameras,” “tablets” and “TVs.” Different features may have different numbers of children;
for example, if “tools” is another feature in the top layer of the hierarchy, its children will be
completely different from those of the “electronics” feature.

The features that are children of “cameras” may be “SLR” and “digital,” with further
categorization by size one level down. The features that are children of “tablets” may include
various operating systems. The children of “TVs” may be different sizes, which can be further
broken down by brand. The extinction property implies that, for instance, if a certain size of
TV is only weakly correlated with the purchase probability, individual brands of TVs of that
same size should not be strongly correlated. However, the weaker form of the property will
allow size to be completely irrelevant while some individual brands are (weakly) relevant.

4. Methodology. We now describe our new dynamic screening algorithm for identifying
features in A. First, Section 4.1 reviews the DC criterion used by our procedure and proves
its equivalence to Pearson correlation for binary data. By using DC as the foundation for
our procedure, we do not need to parametrize F (Y |X), and thus the proposed method is
model-free. Section 4.2 formally states the dynamic algorithm, while Section 4.3 provides a
descriptive example illustrating how the procedure exploits the hierarchical structure.

4.1. Distance Correlation. We begin by describing the distance correlation (Székely,
Rizzo and Bakirov, 2007), which we adopt as the criterion for the relevance of a feature.
Let X and Y be scalar random variables with respective characteristic functions φX (t) and
φY (t), and let φX,Y (s, t) be their joint characteristic function. The distance covariance be-
tween X and Y is given by

(1) dcov (X,Y ) =

(∫
|φX,Y (s, t)− φX(s)φY (t)|2

(
π2s2t2

)−1
dsdt

) 1

2

.

The distance correlation is defined as

dcorr (X,Y ) =
dcov (X,Y )√

dcov (X,X) dcov (Y,Y )
,

and is always non-negative. Li, Zhong and Zhu (2012) showed that this criterion is a very
general and powerful measure of dependence: when using distance correlation to evaluate the
relevance of features, screening procedures asymptotically recover A across a very general
class of statistical models. Thus, by adopting this criterion for our study, we do not need
to assume any particular form for F (Y |X). Other choices of criteria would not allow such
flexibility; to give one example, the criterion developed in Fan and Song (2010) for screening
in GLMs can only be computed with full knowledge of the likelihood function.

Let (Xi, Yi)
n
i=1 be i.i.d. samples from the joint distribution of (X,Y ). Székely, Rizzo and

Bakirov (2007) proposed, and proved the consistency of, the estimator

d̂cov (X,Y ) =
(
Ŝ1 + Ŝ2 − 2Ŝ3

) 1

2

,(2)
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d̂corr (X,Y ) =
d̂cov (X,Y )√

d̂cov (X,X) d̂cov (Y,Y )

,(3)

where

Ŝ1 =
1

n2

n∑
i=1

n∑
j=1

|Xi −Xj | · |Yi − Yj |

Ŝ2 =

 1

n2

n∑
i=1

n∑
j=1

|Xi −Xj |

 ·
 1

n2

n∑
i=1

n∑
j=1

|Yi − Yj |


Ŝ3 =

1

n3

n∑
i=1

n∑
j=1

n∑
l=1

|Xi −Xl| · |Yj − Yl| .

This estimator is purely data-driven and can be computed without any knowledge of F .
In the special case where both X and Y are binary, we find that (1) is equivalent to the

absolute value of their Pearson correlation. Perhaps more surprisingly, (3) is almost surely
equivalent to the absolute value of the sample Pearson correlation

(4) r̂ =

∑
iXiYi − nX̄Ȳ
(n− 1)sxsy

,

where X̄ and sx denote the sample mean and standard deviation of X . This result is stated
below; the proof can be found in the Appendix.

PROPOSITION 4.1. Suppose X,Y take values in {0,1}, with i.i.d. samples {Xi, Yi}ni=1.
Then, the following statements hold:

(i) dcov (X,Y ) = 2 |cov (X,Y )|, dcorr (X,Y ) = |corr (X,Y )|;
(ii) d̂cov (X,Y ) = 2(n−1)

n |ĉov (X,Y )|, d̂corr (X,Y ) = |ĉorr (X,Y )|,

where ĉov and ĉorr respectively denote the usual sample covariance and correlation.

Proposition 4.1 greatly simplifies the computation of DC, as (4) can be calculated more
efficiently than (2)-(3). More importantly, it justifies the use of Pearson correlation in our
model-free setting. In previous work on sure independence screening, Pearson correlation
was only used in conjunction with linear regression (Fan and Lv, 2008), and other criteria
were used to prove the validity of screening in other classes of models. On the other hand,
DC was shown to be valid under very general assumptions on the model, which are easily
satisfied when the data are binary. Thus, Proposition 4.1 can be viewed as a proof that Pearson
correlation is valid in the setting under consideration.

Having defined DC, we can give a precise statement of the weaker version of Example 3.
The threshold bn defined in Assumption 4.2 represents “weak” correlation, and is chosen to
converge to zero at a suitable rate as n→∞. A more detailed justification is deferred until
Section 5, but we note here that our theoretical analysis relies on the weak extinction property
rather than the strong one mentioned in Example 3.

ASSUMPTION 4.2 (weak extinction property). Define bn =

√
2 log(p∨n)

n . If dcorr (Xj , Y ) =

O (bn) for some j, then dcorr (Xk, Y ) =O (bn) for k ∈Dj .
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4.2. Dynamic Distance Correlation (DDC) Algorithm. We first give an overview of the
proposed algorithm before stating it formally. The jth feature is assumed to be relevant if
dcorr (Xj , Y )≥Kn, where Kn is a threshold to be determined. The procedure first consid-
ers features at the top level of the hierarchy and screens them based on the empirical DC,
so that d̂corr (Xj , Y )<Kn will cause the feature to be screened out. The key to the proce-
dure is that, once j is screened out, we do not examine any feature in D (j). Conversely, if
d̂corr (Xj , Y )≥Kn, we select the feature (i.e., report it as being relevant), whereupon all of
its children features k ∈ C (j) become “candidates” whose empirical DC is to be evaluated.
The algorithm stops once there are no candidates with empirical DC above Kn. This has the
effect of substantially saving computational resources when the size of A is small relative to
p.

The precise definition of the cutoff Kn is deferred to Section 5. As will be discussed
there, in order for the procedure to be valid, Kn should be slightly larger than the maximum
estimation error maxj≤p

∣∣∣d̂corr (Xj , Y )− dcorr (Xj , Y )
∣∣∣ of the distance correlations.

We now give a formal statement. Let S` denote the index set of selected features by stage
` of the algorithm, and letM` denote the index set of the current candidates at stage `. These
will be updated dynamically by the procedure.

Step 1 (initialization) Set `= 0, S0 = ∅, and letM0 be the indices of the features at the top
layer only (that is, all features i satisfying P (i) = ∅).

Step 2 (screening) For each j ∈ M`, compute d̂corr (Xj , Y ) and set M` = M`\{j} if
d̂corr (Xj , Y )<Kn.

Step 3 (termination) IfM` = ∅, return Â= S` and stop. Otherwise, continue.
Step 4 (selection) Find

(5) j` = arg max
j∈M`

d̂corr (Xj , Y ) ,

and update

S`+1 = S` ∪ {j`} ,

M`+1 = (M`\{j`})∪ C (j`) ,

where C (j`) is the set of children of j` as defined in Section 3.
Step 5 (iteration) Increment ` by 1 and return to Step 2.

In the algorithm, M` is the candidate set containing features to be considered in this step
of iterations. Step 2 screens out all candidates whose empirical DC is insufficiently strong
to claim relevance; if no candidates remain, step 3 terminates. Otherwise, step 4 adds the
“most relevant” of the remaining features to the selection set. This feature, labeled as j` in
(5), is no longer a candidate, but all of its children (if there are any) now become candidates.
Equivalently, since relevance is determined based on the marginal DC, step 4 could add all
of the features inM` to the selection set; the difference between this approach and the given
formulation may be viewed analogously to the difference between breadth-first and depth-
first search.

The procedure returns the selection set Â, which is different from the screening set

(6) Ĥ= {j ∈ {1,2,3..., p} : d̂corr (Xj , Y )≥Kn},

which includes all features whose empirical DC is above the threshold. It is clear that Â ⊆ Ĥ.
In the finite-sample setting, there may be j and k ∈D (j) such that d̂corr (Xj , Y )<Kn, but
d̂corr (Xk, Y )≥Kn. Such a k would be an element of Ĥ but not Â. This is a fundamental
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FIG 3. Illustration of the DDC algorithm. Due to the extinction property, features 9, 10, 13 and 14 are screened
out without being examined directly.

difference between our dynamic approach and the classical SIS technique of Fan and Lv
(2008). SIS arranges the empirical correlations in descending order and simply screens out a
certain proportion of features ranked at the bottom. This approach requires us to estimate the
marginal correlation for every feature, which may be expensive when p is large; on the other
hand, our proposed algorithm automatically rules out all descendants of any feature that has
been screened out in step 2. Thus, if the problem is sufficiently sparse, we will avoid having
to compute empirical DCs for a substantial proportion of the feature space; consequently, Â
will contain fewer false positives than Ĥ, which will be formally established in Section 5.

REMARK. Our work is motivated by applications in which the data are binary. Poten-
tially, however, the above-described dynamic approach may be useful for other discrete and
continuous features where an analog of the extinction property is assumed to hold. In such
cases, other nonparametric measures of relevance may be useful, such as the marginal mean
regression function E (Y |Xj) or the Kendall τ based robust correlation (Li et al., 2012).

4.3. Descriptive Example. To illustrate our algorithm, we briefly discuss a descriptive
example on a hierarchy with three levels shown in Figure 3. As there are two features in the
top layer, we initializeM0 = {1,2} and S0 = ∅.
Iteration 1: steps 2-5. We first evaluate the empirical DC for features 1 and 2. Suppose
that d̂corr (X1, Y ) > d̂corr (X2, Y ) > Kn. Then, both features remain in the candidate set
during step 2, and step 3 does not terminate. Step 4 sets j0 = 1 since feature 1 has the largest
DC among the candidates. We move feature 1 to the selection set, and add the elements of
C (1) = {3,4} to the candidate set, leading to

S1 = {1} , M1 = {2,3,4} .

Iteration 2: steps 2-5. Suppose d̂corr (X3, Y )> d̂corr (X2, Y )>Kn, but d̂corr (X4, Y )<
Kn. Then, step 2 screens out feature 4, whenceM1 = {2,3}, but step 3 does not terminate.
Step 4 sets j1 = 3, whence feature 3 is moved to the selection set and the elements of C (3) =
{7,8} become candidates, leading to the update

S2 = {1,3} , M2 = {2,7,8} .

Iteration 3: steps 2-5. Suppose d̂corr (X2, Y ) > d̂corr (X7, Y ) >Kn but d̂corr (X8, Y ) <
Kn. Then, step 2 screens out feature 8, whenceM2 = {2,7}. Step 3 does not terminate, step
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4 sets j2 = 2, whence feature 2 is selected and the new candidates C (2) = {5,6} are added.
The resulting update is

S3 = {1,2,3} , M3 = {5,6,7} .

Iteration 4: steps 2-5. Suppose d̂corr (X5, Y ) > d̂corr (X7, Y ) >Kn but d̂corr (X6, Y ) <
Kn. At the end of this iteration, we will have

S4 = {1,2,3,5} , M4 = {7,11,12} .

Iteration 5: steps 2-5. Suppose d̂corr (X11, Y )> d̂corr (X7, Y )>Kn but d̂corr (X12, Y )<
Kn. At the end of this iteration, we will have

S5 = {1,2,3,5,11} , M5 = {7} .

Note that the candidate set shrinks in this iteration since j5 = 11 and C (11) = ∅.
Iteration 6: steps 2-5. Since d̂corr (X7, Y ) > Kn, feature 7 is selected. As C (7) = ∅, we
obtain

S6 = {1,2,3,5,7,11} , M5 = ∅.

Iteration 7: steps 2-3. Since the candidate setM5 is empty, step 3 terminates.
Observe that the procedure never calculates the DCs for features 9, 10, 13, and 14, since

their parent features were screened out in earlier iterations. This leads to increased computa-
tional savings when the hierarchy has many layers.

5. Theoretical Analysis. We begin by choosing the threshold

(7) Kn =
a0

minj≤p d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
bn,

where bn is as in Assumption 4.2 and a0 > 3.5 is a constant (we can take, for instance,
a0 = 3.51). We will first motivate this definition and explain why it is needed for theoretical
analysis, then discuss practical concerns.

In the analysis of threshold-based screening methods (i.e., the entire literature on sure
independence screening), the main technical issue is to choose Kn in such a way that, with
high probability,

max
j≤p

∣∣∣d̂corr (Xj , Y )− dcorr (Xj , Y )
∣∣∣<Kn.

In order to do this, it is necessary to control for the so-called “uniform deviation”

Sn = max
j≤p

∣∣∣d̂cov (Xj , Y )− dcov (Xj , Y )
∣∣∣ ,

which represents the noise in the problem. Accordingly, we select the threshold to dominate
the noise, that is, we choose bn→ 0 so that P (Sn < a0bn)→ 1 for some positive constant a0.
It is well-known from the theory of moderate deviations for self-normalized sums (Peña, Lai
and Shao, 2008 and Belloni et al., 2012) that the choice of bn stated in Assumption 4.2 can
uniformly control the self-normalized noise. As for the constant, we show in the Appendix
that a0 > 3.5 suffices to control for the distance correlations. We then standardize a0bn using
the estimated distance covariances, leading to our proposed threshold value in (7).

From a purely practical point of view, (7) requires us to compute minj d̂cov(Xj ,Xj),
which may be demanding for large p, and conflicts with our desire to avoid having to
examine every feature. Several options are available. First, a practitioner may replace
minj d̂cov(Xj ,Xj) with an empirical estimate, e.g., by sampling a small subset of {1, ..., p}
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and calculating the smallest d̂cov(Xj ,Xj) within this subset. A second alternative is to re-
place minj d̂cov(Xj ,Xj) in (7) with some function of p and n that declines more slowly than
the empirical DCs (i.e., an asymptotic upper bound on minj d̂cov(Xj ,Xj)). Finally, in the
absence of any such information, a practitioner can simply treat Kn as a tunable parameter;
we do exactly this in our case study (Section 6.3) and obtain good performance.

We now proceed to the theoretical analysis. The proofs of all results in this section are
given in the Appendix; here, we state the necessary definitions and assumptions. The first
assumption simply ensures that we are in the high-dimensional setting, as is standard in the
model selection literature.

ASSUMPTION 5.1. The data {Yi,Xi1, ...,Xip}ni=1 are independent and identically dis-
tributed. As n→∞, the number of features, p, either stays constant or grows with n, satis-
fying log p= o

(
n

1

4

)
.

The second assumption ensures that we are able to separate the signal in the data from the
noise. For this, it is necessary for relevant features to be sufficiently strongly correlated with
the response; at the same time, the variances of the features are allowed to slowly decay to
zero as n→∞. In other words, it is possible for individual features to be observed rarely, as
long as the sample size is large.

ASSUMPTION 5.2. The following statements hold:

(i) var (Y )� bn and minj≤p var (Xj)� bn.
(ii) minj∈A dcov(Xj , Y ) ·minj var(Xj)

1/2� bn.

Under the above conditions, we show that the empirical distance correlation converges
in probability to its population counterpart uniformly in j = 1, ..., p. These conditions also
imply maxj∈Ac d̂corr (Xj , Y ) =OP (Kn), and that minj∈A d̂corr (Xj , Y ) is bounded away
from Kn with probability approaching 1.

Recalling that Â denotes the final selection returned by the proposed algorithm, we can
now state the main feature selection guarantee. Define

B = {j ∈Ac : D (j)∩A 6= ∅} .

In words, B collects those features j which do not have any relevance to Y on their own (that
is, j ∈Ac), but which have descendants k ∈D (j) that are relevant to Y . We can refer to such
j ∈ B by the name “indirectly relevant features.” Our main result shows that Â captures both
directly and indirectly relevant features.

THEOREM 5.3. Under Assumptions 4.2, 5.1, and 5.2,

P
(

(A∪B)⊆ Â
)
→ 1.

Additionally, the selection set Â will also be structured hierarchically, that is, j ∈ Â im-
plies that i ∈ Â for all i satisfying j ∈ D (i), and the DDC procedure will calculate
O
(∑

j∈Â |C(j)|
)

empirical distance correlations before terminating.

Thus, the set Â has the “sure screening property” typically studied in the statistical lit-
erature, namely that A ⊆ Â with probability approaching 1. In addition, however, we also
select all indirectly relevant features that have one or more relevant descendants, since we
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also have B ⊆ Â with probability approaching 1. Intuitively, if j ∈ B and k ∈ D (j) ∩ A is
its relevant descendant, Assumption 5.2 ensures that k is sufficiently strongly correlated with
the response, while Assumption 4.2 also ensures sufficient correlation for j.

At the same time, our proposed algorithm does not conduct an exhaustive search: as soon
as we find a feature j that is weakly correlated with the response, we do not continue to
explore its descendants. This greatly reduces the computational complexity of the procedure,
and yields interpretable results since the output Â is always a tree.

Finally, we can note that, if we are willing to make additional assumptions on the corre-
lation strength of irrelevant features, the consistency result can be strengthened. Essentially,
the additional assumption ensures that B is empty and provides a clear separation between
the correlation strengths of relevant vs. irrelevant features, enabling us to select the relevant
features with no false discoveries.

COROLLARY 5.4. Suppose that we are in the setting of Theorem 5.3, and impose the
additional assumption that

(8) max
j∈Ac

dcov (Xj , Y ) = δ

√
log(p∨ n)

n

for some fixed δ > 0. Then, P
(
A= Â

)
→ 1.

We can further characterize the advantages of DDC relative to a more traditional sure
screening approach that returns the screening set Ĥ defined in (6) with no explicit considera-
tion of the hierarchical structure. Compared to such an approach, DDC can be guaranteed to
select fewer false positives under any finite sample size, and achieves a smaller false discov-
ery rate in the asymptotic regime of Theorem 5.3, as formalized in the following proposition.

PROPOSITION 5.5. The following statements are true:

(i) For any finite sample size n,
∣∣∣Â ∩Ac

∣∣∣ ≤ ∣∣∣Ĥ ∩Ac
∣∣∣. Specifically, the following type of

false positive is excluded by DDC: if we let

Ĝ =
{
j /∈A : d̂corr (Xj , Y )≥Kn, ∃i≤ p : d̂corr (Xi, Y )<Kn, j ∈D (i)

}
,

then Ĝ ⊆ Ĥ, but Ĝ ∩ Â= ∅.
(ii) Suppose that we are in the setting of Theorem 5.3. Then, |Â\A||Â| ≤

|Ĥ\A|
|Ĥ| .

(iii) Suppose that we are in the setting of Corollary 5.4. Then, |Â\A||Â| = 0.

The set Ĝ in Proposition 5.5(i) contains a type of false positive that is quite likely to arise
in a finite-sample setting. Since most of the features are concentrated in the bottom layer
of the hierarchy (see Figure 3), this is also where we would expect to see the most false
positives due to spurious correlation. However, DDC can only accept such a false positive if
all of its irrelevant ancestor features are false positives, a less likely event. Proposition 5.5(ii)
then shows that, asymptotically, the false positive rate is reduced for DDC as compared to
non-hierarchical screening.
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6. Numerical Studies. We assessed the performance of the DDC algorithm as compared
to several benchmark methods, which are described in Section 6.1 together with various
details related to implementation. Experiments were conducted on both simulated (Section
6.2) and real (Section 6.3) data. In compliance with the journal’s data disclosure policy, both
types of data and code are available for replication.4

Experiments were conducted in Python; thus, computation times are reported for Python
code and statistical packages. We used sparse matrix representations with the real data, but
found that this did not improve performance on the synthetic data.

6.1. Experimental Setup. We implemented the DDC algorithm (treating the threshold
Kn as a tunable parameter) together with four benchmarks. The first three are general model
selection methods, while the fourth handles hierarchical data structures similarly to DDC.

Lasso (Tibshirani, 1996; Van de Geer, 2008) assumes a particular regression model (we
chose logistic regression because the response is binary) and optimizes a penalized likelihood
function that encourages eliminating features by setting their regression coefficients equal to
zero. Lasso has one tunable parameter that governs the tradeoff between model accuracy and
model sparsity.

Streamwise regression or SR (Zhou et al., 2006) performs a univariate (marginal) regres-
sion for each individual feature, analogously to the screening approach of Fan and Song
(2010). Screening is performed dynamically using two parameters, an initial “budget” W0

and an “investment” α∆ that is added to (subtracted from) the budget every time a feature is
rejected (accepted); thus we are more likely to accept a feature if the budget is greater. As
with Lasso, we used logistic regression as the model inside SR.

Sure independence screening (SIS) uses the same screening criterion (DC/Pearson corre-
lation) that we use in DDC, but calculates this criterion for every feature, without considering
the hierarchy, and simply selects a proportion d of features with the highest estimated cor-
relations. Although Fan and Lv (2008) gives several suggestions for how to choose d, we
simply treated it as a tunable parameter.

Hierarchical false discovery rate control or FDR (Yekutieli, 2008) explicitly considers the
hierarchy by screening features in the same order as DDC. For each feature j, FDR tests
the null hypothesis that Xj is uncorrelated with Y using the usual t-statistic; if the null
hypothesis is not rejected, then FDR never examines the descendants of j. The procedure has
one tunable parameter which essentially governs the threshold for rejecting the hypothesis.

The Lasso method, logistic regression (used inside SR), and k-fold cross-validation
(used in Section 6.3) were implemented using the well-known, off-the-shelf Python pack-
age scikit-learn (https://scikit-learn/stable). All experiments were con-
ducted on a machine with 32 GB of memory and a 4GHz Intel Core i7 processor. The specific
performance metrics used for each type of experiment will be discussed in Sections 6.2-6.3.

6.2. Simulated Data. We generated multiple hierarchical binary data structures satisfy-
ing the extinction property. In order to demonstrate how well DDC and benchmark methods
scale to larger problems, we considered problems of two sizes: in the first, the hierarchy has
five levels and p≈ 5,500, and in the second, the hierarchy has six levels with p≈ 170,000
features. The sample sizes are n= 100 and n= 1,000 respectively for the two problem types;
note that p� n in both cases. The reported results are averaged over 500 randomly generated
datasets in the first example, and 50 datasets in the second.

In both cases, the following procedure was applied to generate hierarchical data. The top
level of the hierarchy consists of five features, all of which are relevant (correlated with the

4https://github.com/ddcfs2019/DDC

https://scikit-learn/stable
https://github.com/ddcfs2019/DDC
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(a) Small data. (b) Large data.

FIG 4. Average TPR/FPR curves.

response). For every feature in level i = 1,2, ...,L, where L is the number of layers in the
hierarchy, we generated 2i−1 children, resulting in exponential growth of the feature space.
For any relevant feature i ∈A, its first child is always hard-coded as being relevant, while its
other children are irrelevant (members of Ac). Thus, |A|= 5L.

For relevant features i ∈ A, correlation was ensured in the following manner. First, a
quantity κi was generated as follows: if feature i belongs to the top layer of the hierarchy,
we let κi be uniform on the interval [−0.25,0.25]; otherwise, κi is uniform on the interval[
−|κP(i)|, |κP(i)|

]
. In this way, the correlation is decreasing as we move toward the disaggre-

gate levels of the hierarchy (as we would expect to see in an application). Then, κi was used
to set the distribution

P
(
Xi = 1 |Y = 1,XP(i) = 1

)
=

κi + 1
2

P (Y = 1)
,

P
(
Xi = 1 |Y = 0,XP(i) = 1

)
=

1
2P (Y = 0)− κi
P (Y = 0)

.

To simulate Xi for i ∈A, we first sample Y from a Bernoulli distribution with success prob-
ability 0.5. Then, if XP(i) = 1, we generate the value of Xi from the above conditional dis-
tribution. If XP(i) = 0, we set Xi = 0 as is commonly the case in practical applications with
hierarchical data (see Section 6.3 for one such application). For i /∈ A, we simply generate
Xi from an independent Bernoulli distribution with success probability 0.3.

All of the methods listed in Section 6.1 were evaluated using three criteria: a) the true
positive rate (TPR), or the proportion of relevant features being selected among all features
in A; b) the false positive rate (FPR), or the proportion of irrelevant features being selected
among all features inAc; and c) computation time. In general, a better model will have higher
TPR and lower FPR. Computation time is also important, because of the exponential growth
of the number of candidate features.

Because all methods are tunable, we ran each method across a range of parameter values
and obtained TPR/FPR values (averaged over the randomly generated datasets) for each pa-
rameter setting. We then created TPR/FPR curves from these results, shown in Figure 4. We
note that SR is the only method that has two tunable parameters, but either parameter essen-
tially changes the scaling of the other. To illustrate, we include two curves for SR in each
plot, each of which varies one parameter with the other fixed, and observe that both curves
are virtually identical. We also include average computation times for a single execution of
each method (for SR we average across both curves) in Table 1.
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Method Small data Large data
DDC 0.0114 0.2650
Lasso 0.0182 16.4719

SR 4.4838 202.3595
SIS 0.2448 27.5916

FDR 0.0261 0.5744
TABLE 1

Average computation times (in seconds) of all methods on simulated data.

Comparing Figures 4(a)-4(b) is instructive for understanding how different methods scale.
In the smaller problem, DDC is outperformed by both SIS and FDR; however, when we move
to the larger problem, the advantage of FDR completely disappears, and the performance gap
between SIS and DDC shrinks considerably while DDC runs over 100 times faster than SIS.
Moreover, in the larger problem, DDC is now able to achieve the highest TPR of any method,
though it is at the expense of a larger FPR than SIS. From Table 1, we also see that DDC is
the fastest method in both problem types and scales much better than Lasso, SR, and SIS. The
FDR method is consistently the second-fastest, but experiences performance degradation on
the larger problem. Finally, we note that SR and Lasso do not perform well on either problem.
This may be due to the fact that both methods make the additional assumption of a logistic
regression model, which may not be well-suited for these particular datasets. Although it may
be possible to obtain better performance with another model, one could also argue that the
need to make such an assumption is a weakness of these methods, because DDC, SIS and
FDR are all able to run without assuming any specific statistical model.

Overall, we conclude that, given its computational cost, DDC is highly competitive with
the benchmark methods on high-dimensional problems in which the data are structured hier-
archically. Furthermore, the results suggest that DDC scales better to larger problems.

6.3. Application: Predicting Negative Comments on Social Media. We applied our
method to the problem of predicting the incidence of negative comments about a particu-
lar brand, made by Facebook users, based on their previous interactions with other brands
and topics. We used Facebook’s graph API (https://developers.facebook.com/
docs/graph-api/) to collect data on user-brand interactions.5 Specifically, we consid-
ered user comments recorded from 4 years before to 3 months after January 1, 2014, for
31,078 Facebook pages classified into eight categories defined by the Facebook system
(brands, celebrities, communities, media etc.). These categories can be divided into 83 sub-
categories (for example, “communities” can be decomposed into “lifestyle,” “hobbies,” “fun,”
“sport-interest” and others), which can be further divided into 51 additional fine-grained cat-
egories (for example, “fashion” can be decomposed into “clothing,” “accessories,” and “jew-
elry”). All three types of categories are pre-defined by Facebook. These three levels form our
hierarchy, with an additional (fourth) bottom layer containing one feature for each individual
page; in this way, we can link negative word-of-mouth to user interest in various broad topics,
as well as to user engagement with certain specific influential pages.

Next, we consider each comment in the dataset and determine its sentiment (tone) using an
ensemble learning algorithm by Zhang, Bhattacharyya and Ram (2016), which has previously
been validated with state-of-the-art performance on human-labeled data. The ensemble com-
bines and understands texts from different angles, such as unstructured data, bag-of-words-
based linguistic rules, and contexts; the output is a 3-class classification (positive, negative,

5Currently, Facebook requires firms to go through a review process in order to access much of the API’s
functionality. However, at the time when we downloaded the data, the entire API was publicly accessible. The
dataset that we have disclosed for replication has been processed as described in this section, with all identifiable
information removed.

https://developers.facebook.com/docs/graph-api/
https://developers.facebook.com/docs/graph-api/
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or neutral). Based on this classification, we randomly choose a single focal brand (Walmart)
and gather all users who have made negative comments on this brand during the first three
months after January 1, 2014, thus forming a negative user set of 95,594 users. We then
repeat this process and select the same number of users who made non-negative comments
about the focal brand. After combining these user sets, we have n= 191,188 users who have
interacted with a total of 18,736 pages.

Each user is now represented by a single data point, where the binary response indicates
whether they have made a negative comment specifically about the focal brand within the
first three months of 2014, whereas the binary features indicate whether they have interacted
with certain pages or categories of pages before 2014. Our goal is to use the observed past
interactions, across all pages, to predict the incidence of future negative comments for the
focal brand only. The binary predictors record the incidence of any type of commenting
interaction (positive, negative, neutral). Thus, our dataset has a sample size of n= 191,188
with p = 18,878 features. To demonstrate how well our method scales with problem size,
we also constructed a similar, smaller dataset with n = 38,238 users and, correspondingly,
p = 9,510 features; note that, in this application, p increases with n since more users will
interact with more brands.

Both datasets are very noisy, with many features appearing infrequently and a low propor-
tion of data points with a response of 1. All of these factors make prediction quite challenging.
In such problems, model selection has great practical value: even though n > p, the high level
of noise creates the risk of spurious correlation, noise accumulation, and other known prac-
tical issues (Fan, Han and Liu, 2014), which can be mitigated by using a sparse model. As
we demonstrate below, very sparse models can achieve very strong out-of-sample predictive
power in this setting. Model sparsity also improves interpretability, since managers now only
have to consider a small set of key features; DDC is particularly useful in this regard since
it distinguishes between pages that can safely be represented at the aggregate level (e.g., by
topic), as opposed to brands that require individual attention.

Furthermore, by reducing the number of features, model selection also reduces the com-
putational complexity of estimating a regression model on the data. A screening approach
is especially helpful in this setting, since we work with the marginal DC of each feature
rather than the entire design matrix. Computational cost is important because, in practice, we
may wish to repeat this analysis for many different brands (i.e., different response variables),
which requires both rerunning and retuning the model. Moreover, the specific instance we
consider here uses only a small portion of the data that are available to Facebook, and more
computationally efficient methods would enable us to increase the problem size correspond-
ingly.

Since the true sparse feature set A is unknown in this problem, we evaluate DDC and
other methods according to their predictive power. We first conduct a screening step using
the method of choice (DDC, Lasso, SR, SIS, or FDR). We then fit a new logistic regression
model to the selection set returned by that method. This estimation step is required for DDC,
SR, SIS and FDR as none of them performs estimation directly. As for Lasso, although it
does perform estimation together with screening, this estimation is known to be biased, and
Belloni and Chernozhukov (2013) has shown that the bias can be reduced by fitting a new
model to the selected features. Thus, we perform this separate estimation step on the output
of every method, so that prediction is performed using the same model class in all cases, and
the only difference is in the feature set provided to the model.

As before, we run each method across a range of parameter settings. For each setting, we
also consider a range of threshold values for the post-selection logistic regression model: that
is, we predict Y = 1 if the estimated probability of this event is above the threshold. We then
evaluate each combination of threshold and parameter setting using 10-fold cross-validation,
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(a) Small data. (b) Large data.

FIG 5. ROC curves for real datasets.

and create ROC curves (Smithson and Merkle, 2013) from the results. Figure 5 shows these
curves and reports the AUC, or area under the curve, for each method; this metric, which
always takes values between 0.5 and 1, is widely used in practice when the data and response
are binary and the proportion of positive responses is low. Table 2 reports computation times
for both selection and estimation.

Again, one should compare Figures 5(a)-5(b) in order to understand how well the methods
scale. On the small dataset, DDC, FDR and Lasso all achieve virtually the same performance.
When we move to the large dataset, Lasso and FDR continue to perform very similarly, but
DDC has now pulled ahead. DDC is consistently the fastest method: on the large dataset, it
runs 7.5 times faster than FDR (combining both steps), 7.8 times faster than Lasso, over 1100
times faster than SIS, and over 2700 times faster than SR. The top three methods (DDC, Lasso
and FDR) are all able to produce very sparse models, accepting under 1% of the available
features. SIS can also be made to achieve this level of sparsity, since its tunable parameter
directly controls the proportion of features to accept, but the accepted features appear to
include many false positives (as was suggested in Proposition 5.5) since the performance of
SIS on the large dataset is poor. Finally, the solutions produced by SR are less sparse, but still
accept fewer than 3% of features.

Based on these results, we conclude that DDC offers significant practical potential in ap-
plications where the data follow a hierarchical structure, and both n and p are sufficiently
large to merit the use of model selection to reduce the feature space, improve estimation
speed, and increase predictive power. We note that the benefits of DDC are greater, relative
to the benchmark methods, when the dataset is larger.

7. Conclusion. We have developed a new algorithm for model selection and screening
in problems where the data are binary and structured hierarchically, which occur in many

Method
Small data Large data

Selection Estimation Selection Estimation
DDC 0.1332 0.0322 0.7215 0.1812
Lasso 0.1542 0.3422 0.8812 6.2348

SR 997.7151 0.3480 1340.3724 1177.1811
SIS 2.7791 80.6958 26.6560 983.6413
FDR 1.2697 0.0790 6.2700 0.6468

TABLE 2
Average computation times (in seconds) of all methods on real data.
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business and marketing applications. An attractive feature of our approach is that it explores
the hierarchy from top to bottom and screens features in a dynamic manner; as a result, lower-
level features may not need to be examined at all if they have already been screened out at
higher levels, and the computational cost is substantially reduced. The practical potential of
the approach was demonstrated on both simulated and real data.

We note that our computational study considered two different types of settings. Our sim-
ulated data belong to the high-dimensional setting where p� n. However, we also give a
case application in which p < n, but both n and p are fairly large. We emphasize that, even
though this setting is not “high-dimensional” as that term is usually understood in the theo-
retical literature, nonetheless it is a setting where screening offers great practical value: first,
it reduces the computational cost of estimating a predictive model, which can be prohibitive
when both n and p are large, and second, it improves the predictive power of that model.
Model selection is also very useful to managers as it leads to more interpretable results; in
the context of hierarchical data, it allows decision-makers to better understand the degree of
granularity needed for the aggregation structure in order to capture the statistical significance
of a class of products or a customer segment. Thus, the application studied in our paper adds
an important dimension to the practical study of the algorithm.

APPENDIX A: TECHNICAL PROOFS

In this section, we give the full proofs of all results that were stated in the text.

A.1. Proof of Proposition 4.1. For any two binary variables X,Y , where it is allowed
that X = Y as a special case, we first prove

φXY (s, t)− φX (s)φY (t) =
(
eis − 1

) (
eit − 1

)
cov (X,Y ) .

For the left hand side, we have

φXY (s, t)− φX (s)φY (t) = E
(
eisXeitY

)
−E

(
eisX

)
E
(
eitY

)
= cov(eisX , eitY ).

Note that EeisX = eisP (X = 1) +P (X = 0) (and similarly for Y ). Then, with some algebra
it can be shown that

φXY (s, t)− φX(s)φY (t)
= E

[
(eisX −EeisX)(eitY −EeitY )

]
= (eis − 1)P(X = 0)(eit − 1)P(Y = 0)P(X = 1, Y = 1)
−(eis − 1)P(X = 0)(eit − 1)P(Y = 1)P(X = 1, Y = 0)
−(eis − 1)P(X = 1)(eit − 1)P(Y = 0)P(X = 0, Y = 1)
+(eis − 1)P(X = 1)(eit − 1)P(Y = 1)P(X = 0, Y = 0)

= (eis − 1)(eit − 1)P(X = 0)P(Y = 0)P(X = 1, Y = 1)
−(eis − 1)(eit − 1)P(X = 0)P(Y = 1)P(X = 1, Y = 0)
−(eis − 1)(eit − 1)P(X = 1)P(Y = 0)P(X = 0, Y = 1)
+(eis − 1)(eit − 1)P(X = 1)P(Y = 1)P(X = 0, Y = 0).

The first and third terms after the last equality above can be combined and simplified as

B = (eis − 1)(eit − 1)P(Y = 0)(P(X = 1, Y = 1)− P(X = 1)P(Y = 1))

The second and fourth terms can likewise be simplified as

C = (eis − 1)(eit − 1)P(Y = 1)(P(X = 1, Y = 1)− P(X = 1)P(Y = 1)).

Combining these together yields

B +C
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= (eis − 1)(eit − 1)(P(X = 1, Y = 1)− P(X = 1)P(Y = 1))(P(Y = 0) + P(Y = 1))
= (eis − 1)(eit − 1)(P(X = 1, Y = 1)− P(X = 1)P(Y = 1))
= (eis − 1)(eit − 1)cov(X,Y ).

Recalling the definition of dcov(X,Y ), we write

dcov2(X,Y ) =

∫
R2

‖φXY (s, t)− φX(s)φY (t)‖2w(s, t)dsdt,

where w(s, t) =
(
π2s2t2

)−1. We simplify this as

dcov2(X,Y ) =

∫
R2

(eis − 1)(e−is − 1)(eit − 1)(e−it − 1)cov2(X,Y )w(s, t)dsdt

=A · cov2(X,Y ),

where

A=

∫
R2

‖(eis − 1)(eit − 1)‖2w(s, t)dsdt

=

∫
R2

(2− 2 coss) (2− 2 cos t)w(s, t)dsdt

= 4.(9)

Thus,

dcov(X,Y ) = 2|cov(X,Y )|, dcov(X,X) = 2cov(X,X) = 2var(X),

whence

dcorr(X,Y ) =
2|cov(X,Y )|

2
√

var(X)var(Y )
= | corr(X,Y )|,

which completes the proof of statement (i) in Proposition 4.1.
We now prove statement (ii). First, we state a technical result proved in Székely, Rizzo and

Bakirov (2007) that will be useful later.

LEMMA A.1. The estimator d̂cov (X,Y ) satisfies

d̂cov
2
(X,Y ) =

∫
R2

‖fnX,Y (s, t)− fnX(s)fnY (t)‖2w(t, s)dsdt,

where

fnX,Y (s, t) =
1

n

n∑
k=1

exp{i〈s,xk〉+ i〈t, yk〉}

is the empirical characteristic function of the sample (x1, y1), ...(xn, yn), and

fnX(s) =
1

n

n∑
k=1

exp{i〈s,xk〉} , fnY (t) =
1

n

n∑
k=1

exp{i〈t, yk〉} .

Next, we prove the following technical lemma, which simplifies the computation for binary
data.
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LEMMA A.2. Let x̄ and ȳ denote the sample averages of the binary vectors (x1, ..., xn)
and (y1, ..., yn). The empirical characteristic function satisfies

fnX,Y (s, t)− fnX(s)fnY (t) =
1

n

(
n∑

k=1

xkyk − nx̄ȳ

)
(eis − 1)(eit − 1).

Proof: We rewrite fnX,Y (s, t), fnX(s), and fnY (t) specifically for the binary case. In the fol-
lowing, let # (E) be the number of data points (xk, yk) in the sample that satisfy a condition
E. For example, # (xk = 1) is the number of such data points satisfying xk = 1.

We write

fnX,Y (s, t) =
1

n

n∑
k=1

exp(isxk + ityk)

=
1

n
[ei(s+t)#(xk = 1, yk = 1) + eis#(xk = 1, yk = 0)

+eit#(xk = 0, yk = 1) + #(xk = 0, yk = 0)]

=
1

n

[
(ei(s+t) − eis − eit)#(xk = 1, yk = 1) + eis#(xk = 1) + eit#(yk = 1) + #(xk = 0, yk = 0)

]
.

The last line is obtained by adding and subtracting eis#(xk = 1, yk = 1) and eit#(xk =
1, yk = 1). In addition,

fnX(s) =
1

n

n∑
k=1

eisxk =
1

n
(eis#(xk = 1) + #(xk = 0))

=
1

n
[(eis − 1)#(xk = 1) + n] = 1 + x̄(eis − 1),

where the second line can be obtained by adding and subtracting #(xk = 1). Similarly, we
have fnY (t) = 1 + ȳ(eit − 1). Then,

fnX(s)fnY (t) = (1 + x̄(eis − 1))(1 + ȳ(eit − 1))

= 1 + x̄(eis − 1) + ȳ(eit − 1) + x̄ȳ(eis − 1)(eit − 1).

Consequently,

fnX,Y (s, t)− fnX(s)fnY (t)

=
1

n

(
n∑

k=1

xkyk − nx̄ȳ

)
(eis − 1)(eit − 1)

+x̄+ ȳ− 1 +
1

n
(#(xk = 0, yk = 0)−#(xk = 1, yk = 1))

=
1

n

(
n∑

k=1

xkyk − nx̄ȳ

)
(eis − 1)(eit − 1) +

#(xk = 1) + #(xk = 0)

n
− 1

=
1

n

(
n∑

k=1

xkyk − nx̄ȳ

)
(eis − 1)(eit − 1),

which completes the proof.
Combining Lemmas A.1 and A.2, we have

d̂cov
2
(X,Y ) =

1

n2

(
n∑

k=1

xkyk − nx̄ȳ

)2

·A,

where A is as in (9). The desired result follows.
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A.2. Proof of Theorem 5.3. Using results from moderate deviation theory for self-
normalized sums, we first prove an intermediate result bounding the distance between the
estimated and population DC. To begin, we define

bn =

√
2 log (p∨ n)

n

and

v̂ar(Y ) =
1

n

n∑
i=1

(Yi − Ȳ )2,

v̂ar(Xj) =
1

n

n∑
i=1

(Xij − X̄j)
2,

ṽar(Xj) =
1

n

n∑
i=1

(Xij −EXij)
2.

Note that this definition of v̂ar is slightly different from the usual sample variance (which we
used in Proposition 4.1), in that we divide the sum by n instead of n− 1. Since our analysis
focuses on the asymptotic regime where n→∞, this is not a major issue. The benefit is
that, under this definition, we have d̂cov (X,X) = 2 |v̂ar (X)|, which simplifies some of the
computations in the proofs that follow.

The following lemma establishes several technical results that are useful for the proof.

LEMMA A.3. The following statements are true:

(i) Suppose that Zij is defined to be any one of the quantities in the set

{XijYi −EXijYi,Xij −EXij , (Xij −EXij)
2 −E(Xij −EXij)

2}.

Also define V 2
nn,j =

∑n
i=1Z

2
ij and Snn,j =

∑n
i=1Zij . Then, under Assumption 5.1,

P

(
max
j≤p

1
n |Snn,j |

( 1
nV

2
nn,j)

1/2
≤ bn

)
→ 1,(10)

P

(
max
j≤p

| 1n
∑

iXij −EXj |
ṽar(Xj)1/2

≤ bn

)
→ 1.(11)

(ii) For any d0 > 0,

P

(
| 1n
∑

i Yi −EY |
var(Y )1/2

≤ d0bn

)
→ 1,(12)

P

(∣∣∣∣∣ 1n∑
i

Yi −EY

∣∣∣∣∣≤ 0.5d0bn

)
→ 1.(13)

(iii) For any d0 > 0,

P

(
max
j≤p

∣∣∣∣∣ 1n∑
i

XijYi −EXijYi

∣∣∣∣∣≤ bn(0.5 + d0)

)
→ 1,(14)

P

(
max
j≤p

∣∣∣∣∣ 1n∑
i

Xij −EXij

∣∣∣∣∣≤ bn(0.5 + d0)

)
→ 1.(15)
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(iv) Under Assumption 5.2(i),∣∣∣∣∣ d̂cov(Y,Y )

dcov(Y,Y )
− 1

∣∣∣∣∣+max
j≤p

∣∣∣∣∣ d̂cov(Xj ,Xj)

dcov(Xj ,Xj)
− 1

∣∣∣∣∣+max
j≤p

∣∣∣∣ v̂ar(Xj)

var(Xj)
− 1

∣∣∣∣+max
j≤p

∣∣∣∣ ṽar(Xj)

var(Xj)
− 1

∣∣∣∣= oP (1).

(v) For any d0 > 0,

P
(

max
j≤p

∣∣∣v̂ar(Xj)
1/2 − var(Xj)

1/2
∣∣∣≤ (0.5 + d0)bn

)
→ 1.

P


∣∣∣d̂cov(Xj ,Xj)

1/2 − dcov(Xj ,Xj)
1/2
∣∣∣

d̂cov(Xj ,Xj)1/2
≤ bn (1 + 2d0) (1 + d0)

d̂cov (Xj ,Xj)
1/2

, j = 1, ..., p

→ 1

P


∣∣∣d̂cov(Y,Y )1/2 − dcov(Y,Y )1/2

∣∣∣
d̂cov(Y,Y )1/2

≤ bn (1 + 2d0) (1 + d0)

d̂cov (Y,Y )1/2
, j = 1, ..., p

→ 1.

Proof: (i) Observe that EZij = 0 and the random variables Zij are independent across i≤ n.
Applying Lemma 5 of Belloni et al. (2012), there exists a sequence ln→∞, and a constant
C > 0, such that for any 0< x<C n1/6

ln
− 1, we have∣∣∣∣maxj≤p P(|Snn,j/Vnn,j |> x)

2(1−Φ(x))
− 1

∣∣∣∣→ 0,

where Φ denotes the standard normal cdf. Now, choose x = Φ−1(1− γn/(2p)) and define

γn =
(√

π log (p∨ n)
)−1

. Then, 2p(1−Φ(x)) = γn and γn = o(1) by construction, whence

P

(
max
j≤p

1
n |Snn,j |

( 1
nV

2
nn,j)

1/2
>

x

n1/2

)
= P

(
max
j≤p

∣∣∣∣Snn,jVnn,j

∣∣∣∣> x

)

≤ pmax
j≤p

P
(∣∣∣∣Snn,jVnn,j

∣∣∣∣> x

)
≤ 2p(1−Φ(x))(1 + o(1))

= γn(1 + o(1)).

To complete the proof of (10), we now show that x≤
√

2 log p∨ n, which is equivalent to the
inequality

P
(
N(0,1)>

√
2 log (p∨ n)

)
≤ γn

2p
.

This is achieved by applying the Mill’s ratio inequality (Ruben, 1962) as follows:

P
(
N(0,1)>

√
2 log (p∨ n)

)
≤ 1√

2π
· 1√

2 log (p∨ n)
e− log(p∨n) ≤ 1

2p
√
π
· 1√

log (p∨ n)
.

Combining this with the assumption that log p= o
(
n

1

4

)
, we take ln = n

1

24 and obtain

x≤
√

2 log p∨ n <C
n

1

6

ln
− 1

for all C > 0. Thus, the first statement (10) is proved.
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The second statement (11) is a direct implication of the preceding by setting Zij =Xij −
EXij . Thus, part (i) is proved.

(ii) Define Zi = Yi−EY√
var(Y )

. Then, we have | 1n
∑

iZi| = OP (n−1/2). It follows that

| 1n
∑

iZi| = oP (bn), implying (12) for any d0 > 0. On the event where (12) holds, it fol-
lows that ∣∣∣∣∣ 1n∑

i

Yi −EY

∣∣∣∣∣≤ d0bn
√

var(Y )≤ 0.5d0bn,

completing the proof of (13).
(iii) Let Zij =XijYi −EXijYi. On the event

E1 =

{
max
j≤p

1
n |Snn,j |

( 1
nV

2
nn,j)

1/2
≤ bn

}
,

we have

(16) max
j≤p

∣∣∣∣∣ 1n∑
i

XijYi −E (XijYi)

∣∣∣∣∣≤ bn max
j

(
1

n

n∑
i=1

(XijYi −E (XijYi))
2

)1/2

.

A crude but simple bound for the right-hand side of (16) is

max
j

(
1

n

n∑
i=1

(XijYi −E (XijYi))
2

)1/2

≤ 2,

which implies that

max
j

∣∣∣∣∣ 1n
n∑

i=1

XijYi −E (XijYi)

∣∣∣∣∣= oP (1) .

Thus, uniformly in j ≤ p, we have

1

n

n∑
i=1

(XijYi −EXijYi)
2 =

1

n

n∑
i=1

XijYi + (E (XijYi))
2 − 2

n

n∑
i=1

XijYiE (XijYi)

≤ E (XijYi)− (E (XijYi))
2 + oP (1)

≤ 0.25 + oP (1)

Consequently, for any d0 > 0, (14) holds with probability approaching 1. Equation (15) fol-
lows from similar arguments, which are omitted.

(iv) Let Zij = (Xij − EXij)
2 − E(Xij − EXij)

2. Applying part (i) proved above, on the
event

E2 =

max
j

∣∣∣∣∣∣∣
1
n

∑
iZij(

1
n

∑
iZ

2
ij

)1/2

∣∣∣∣∣∣∣≤ bn
 ,

we calculate

max
j≤p

∣∣∣∣ ṽar(Xj)− var(Xj)

var(Xj)

∣∣∣∣≤
∣∣∣∣∣maxj≤p

1
n

∑
iZij

minj var(Xj)

∣∣∣∣∣≤ bnmaxj

(
1
n

∑
iZ

2
ij

)1/2

minj var(Xj)
= oP (1),
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where the last equality follows from the boundedness of maxj |Zij | and from Assumption
5.2(i).

Note that, under the definition of v̂ar used in this section, we have

v̂ar (Xj) =
1

n

n∑
i=1

(Xij − X̄j)
2 = ṽar(Xj)−

(
X̄j −EXij

)2
.

Thus, for arbitrarily small d0, we have

(17) |v̂ar (Xj)− var (Xj)| ≤ |ṽar (Xj)− var (Xj)|+ b2n (0.5 + d0)2 .

For the first term on the right-hand side, we apply (i) with Zij = (Xij −EXij)
2 −

E
(

(Xij −EXij)
2
)

, and obtain, with probability approaching 1, the inequality,

|ṽar (Xj)− var (Xj)| ≤ bn

(
1

n

n∑
i=1

Z2
ij

) 1

2

.

We now bound 1
n

∑n
i=1Z

2
ij . By the same argument as in (i), noting that X2

ij =Xij and there-
fore

var (Xj) (1− 2EXij)
2 = var

(
(Xj −EXij)

2
)

for binary features, we obtain

1

n

n∑
i=1

Z2
ij =OP (bn) +E

(
Z2
ij

)
=OP (bn) + var (Xj) (1− 2EXij)

2

≤OP (bn) + var (Xij)

< (1 + εn)2 var (Xj) ,

where the last inequality holds, uniformly in j ≤ p and with probability approaching 1, for
some εn→ 0, due to the fact that bn�minj var (Xj). Consequently, returning to (17), there
exists some ε′n→ 0 satisfying

|v̂ar (Xj)− var (Xj)| ≤ bn (1 + εn)
√

var (Xj) + b2n (0.5 + d0)2

≤ bn
(
1 + ε′n

)√
var (Xj).

This also implies

max
j≤p

∣∣∣∣ v̂ar (Xj)− var (Xj)

var (Xj)

∣∣∣∣≤ bn (1 + ε′n)√
var (Xj)

= oP (1) ,

and

max
j≤p

n∑
i=1

(
Xij − X̄j

)2 ≤max
j≤p

var (Xj) + oP (1) =OP (1) .

The same arguments also yield
∣∣∣ v̂ar(Y )

var(Y ) − 1
∣∣∣= oP (1), whence∣∣∣∣∣ d̂cov (Y,Y )

dcov (Y,Y )
− 1

∣∣∣∣∣=
∣∣∣∣ v̂ar (Y )

var (Y )
− 1

∣∣∣∣= oP (1) ,
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as well as

max
j≤p

∣∣∣∣∣ d̂cov (Xj ,Xj)− dcov (Xj ,Xj)

dcov (Xj ,Xj)

∣∣∣∣∣= max
j≤p

∣∣∣∣ v̂ar (Xj)

var (Xj)
− 1

∣∣∣∣= oP (1) .

(v) First, we note that the result of part (iv) implies

(18)
var (Xj)

1/2

v̂ar (Xj)
1/2 + var (Xj)

1/2
≤ 1

2
(1 + oP (1)) .

We then observe that

(19)
∣∣∣v̂ar (Xj)

1/2 − var (Xj)
1/2
∣∣∣≤ |v̂ar (Xj)− var (Xj)|

v̂ar (Xj)
1/2 + var (Xj)

1/2
.

Applying (17) to the right-hand side of (19), we obtain∣∣∣v̂ar (Xj)
1/2 − var (Xj)

1/2
∣∣∣≤ bn (1 + ε′n) var (Xj)

1/2

v̂ar (Xj)
1/2 + var (Xj)

1/2

≤ 1

2
bn
(
1 + ε′n

) (
1 + ε′′n

)
,

where the last inequality follows from (18). Now note that, as defined in this section,
d̂cov (Xj ,Xj)

1/2 =
√

2v̂ar (Xj)
1/2, which leads to∣∣∣d̂cov (Xj ,Xj)

1/2 − dcov (Xj ,Xj)
1/2
∣∣∣

d̂cov (Xj ,Xj)
1/2

≤
√

2

∣∣∣v̂ar (Xj)
1/2 − var (Xj)

1/2
∣∣∣

d̂cov (Xj ,Xj)
1/2

≤
√

2

2

bn (1 + ε′n) (1 + ε′′n)

d̂cov (Xj ,Xj)
1/2

≤ bn (1 + 2d0) (1 + d0)

d̂cov (Xj ,Xj)
1/2

,

where the last line follows because, for fixed d0 > 0, we have 1√
2

(1 + ε′n) (1 + ε′′n) ≤
(1 + 2d0) (1 + d0) for large enough n. The same argument also implies∣∣∣d̂cov (Y,Y )1/2 − dcov (Y,Y )1/2

∣∣∣
d̂cov (Y,Y )1/2

≤ bn (1 + 2d0) (1 + d0)

d̂cov (Y,Y )1/2
,

as required.
We are now able to consider the distance between the estimated and population DC. The

following theorem presents a bound on this distance that holds w.p. 1 asymptotically.

THEOREM A.4. For any d0 > 0, under Assumptions 5.1 and 5.2, we have

P
(

max
j≤p

∣∣∣d̂cov(Xj , Y )− dcov(Xj , Y )
∣∣∣> bn(2 + d0)

)
→ 0

as n→∞.
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Proof: For any c0 > 0, define three events

E1 =

{
max

j
|EXjY −

1

n

n∑
i=1

XijYi| ≤ bn(0.5 + c0)

}
,

E2 =

{
max

j
|EXj − X̄j | ≤ bn(0.5 + c0)

}
,

E3 =
{
|EY − Ȳ | ≤ bn (0.5 + c0)

}
.

By Lemma A.3, all three events jointly hold with probability approaching 1.
On events E2 and E3, we have∣∣EXjEY − X̄j Ȳ

∣∣≤ ∣∣EXj(EY − Ȳ )
∣∣+ ∣∣EXj − X̄

∣∣ · Ȳ ≤ bn(0.5 + 1.5c0)

uniformly in j ≤ p. On the event E1 ∩E2 ∩E3 (that is, when all three events simultaneously
hold), it follows from the triangle inequality that

|dcov(Xj , Y )− d̂cov(Xj , Y )| ≤ 2 |cov (Xj , Y )− ĉov (Xj , Y )|

≤ 2

∣∣∣∣∣E (XjY )− 1

n

n∑
i=1

XijYi

∣∣∣∣∣+ 2
∣∣EXj ·EY − X̄j Ȳ

∣∣
≤ 2bn (0.5 + c0) + 2bn (0.5 + 1.5c0)

≤ bn (2 + 3.5c0) .

uniformly in j ≤ p. Thus, the event

E =

{
max

j

∣∣∣dcov(Xj , Y )− d̂cov(Xj , Y )
∣∣∣< bn(2 + 3.5c0)

}
is implied by E1 ∩ E2 ∩ E3, and thus holds with probability approaching one. The result
holds since c0 can be arbitrarily small, so we can take c0 = d0

3.5 .
Now, consider the threshold

Kn :=
bn(3.5 + d0)

minj d̂cov (Xj ,Xj)
1/2 d̂cov (Y,Y )1/2

.

The following theorem is the analog of Theorem A.4 for distance correlation (rather than
covariance).

THEOREM A.5. Under Assumptions 5.1 and 5.2, we have

P
(

max
j

∣∣∣d̂corr(Xj , Y )− dcorr(Xj , Y )
∣∣∣<Kn

)
→ 1,

where P represents the probability measure induced by the distribution of Kn. Additionally,

P
(

min
j∈A

dcorr(Xj , Y )≥ 3Kn

)
→ 1

as n→∞.

Proof: We calculate∣∣∣d̂corr(Xj , Y )− dcorr(Xj , Y )
∣∣∣
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=

∣∣∣∣∣ d̂cov(Xj , Y )

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
− dcov(Xj , Y )

dcov(Xj ,Xj)1/2dcov(Y,Y )1/2

∣∣∣∣∣
=

∣∣∣∣∣ d̂cov(Xj , Y ) dcov(Xj ,Xj)
1/2dcov(Y,Y )1/2

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2 dcov(Xj ,Xj)1/2dcov(Y,Y )1/2

− d̂cov(Xj ,Xj)
1/2d̂cov(Y,Y )1/2dcov(Xj , Y )

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2 dcov(Xj ,Xj)1/2dcov(Y,Y )1/2

∣∣∣∣∣ .(20)

Factoring out the common denominator in (20), the numerator is bounded by

d̂cov(Xj , Y ) dcov(Xj ,Xj)
1/2dcov(Y,Y )1/2 − d̂cov(Xj ,Xj)

1/2d̂cov(Y,Y )1/2dcov(Xj , Y )

≤
∣∣∣d̂cov(Xj , Y )− dcov(Xj , Y )

∣∣∣dcov(Xj ,Xj)
1/2dcov(Y,Y )1/2

+dcov(Xj , Y )
∣∣∣dcov(Xj ,Xj)

1/2 − d̂cov(Xj ,Xj)
1/2
∣∣∣dcov(Y,Y )1/2

+d̂cov(Xj ,Xj)
1/2dcov(Xj , Y )

∣∣∣d̂cov(Y,Y )1/2 − dcov(Y,Y )1/2
∣∣∣(21)

≤
∣∣∣d̂cov(Xj , Y )− dcov(Xj , Y )

∣∣∣dcov(Xj ,Xj)
1/2dcov(Y,Y )1/2

+(dcov(Xj ,Xj))
1/2(dcov(Y,Y ))1/2

∣∣∣dcov(Xj ,Xj)
1/2 − d̂cov(Xj ,Xj)

1/2
∣∣∣dcov(Y,Y )1/2

+d̂cov(Xj ,Xj)
1/2(dcov(Xj ,Xj))

1/2(dcov(Y,Y ))1/2
∣∣∣d̂cov(Y,Y )1/2 − dcov(Y,Y )1/2

∣∣∣ ,(22)

where (22) follows from (21) because dcov(Xj , Y ) ≤
√

dcov(Xj ,Xj) ·
√

dcov(Y,Y ).
Hence, ∣∣∣d̂corr(Xj , Y )− dcorr(Xj , Y )

∣∣∣≤A1 +A2 +A3,

where, for any d0 > 0, we have

A1 =

∣∣∣d̂cov(Xj , Y )− dcov(Xj , Y )
∣∣∣

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
≤ bn(2 + d0)

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
,(23)

A2 =

∣∣∣dcov(Xj ,Xj)
1/2 − d̂cov(Xj ,Xj)

1/2
∣∣∣dcov(Y,Y )1/2

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2

≤

∣∣∣dcov(Xj ,Xj)
1/2 − d̂cov(Xj ,Xj)

1/2
∣∣∣

d̂cov(Xj ,Xj)1/2
(1 + d0)(24)

≤ bn (1 + 2d0) (1 + d0)

d̂cov (Xj ,Xj)
1/2

(1 + d0)(25)

A3 =

∣∣∣d̂cov(Y,Y )1/2 − dcov(Y,Y )1/2
∣∣∣

d̂cov(Y,Y )1/2
≤ bn (1 + 2d0) (1 + d0)

d̂cov(Y,Y )1/2
(26)

The inequality in (23) follows from Theorem A.4. Inequality (24) follows from part (iv) of
Lemma A.3, whereas (25)-(26) follow from part (v) of Lemma A.3. Now, with probability
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approaching 1, we have

d̂cov(Xj ,Xj)
1/2 ≤ dcov(Xj ,Xj)

1/2 + oP (1)≤
√

2var(Xj)
1/2 + oP (1)≤

√
2

2
+ d0.

Similarly, d̂cov(Y,Y )1/2 ≤
√

2
2 +d0. Recalling that n−1/2 = o(bn), we conclude that, for any

c0 > 0, we can take d0 sufficiently small so that

A2 ≤
(1 + d0)2 (1 + 2d0) bn

d̂cov(Xj ,Xj)1/2
≤

(1 + d0)2 (1 + 2d0)
(√

2
2 + d0

)
bn

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
≤

(√
2

2 + c0

)
bn

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2

and

A3 ≤
(1 + 2d0) (1 + d0) bn

d̂cov(Y,Y )1/2
≤

(1 + 2d0) (1 + d0)
(√

2
2 + d0

)
bn

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
≤

(√
2

2 + c0

)
bn

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
.

Hence, we can write c′0 = 3c0 and obtain∣∣∣d̂corr(Xj , Y )− dcorr(Xj , Y )
∣∣∣≤ (

2 +
√

2 + 3c0

)
bn

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2

≤ (3.5 + c′0) bn

d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2

≤ (3.5 + c′0) bn

minj d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2

=Kn

uniformly in j ≤ p.
In addition, applying Lemma A.3 again, we obtain

Kn ≤
bn(3.5 + c′0)

minj d̂cov(Xj ,Xj)1/2d̂cov(Y,Y )1/2

≤ bn(3.5 + c′0)

minj dcov(Xj ,Xj)1/2d̂cov(Y,Y )1/2
max

j

(
dcov(Xj ,Xj)

1/2

d̂cov(Xj ,Xj)1/2

)

≤ 2bn(3.5 + c′0)

minj dcov(Xj ,Xj)1/2dcov(Y,Y )1/2
,

with probability approaching 1. On the other hand, there exists some constant C > 0 satisfy-
ing 1√

2
maxj dcov (Xj ,Xj)

1/2 < 1
C . By Assumption 5.2, we also have

min
j∈A

dcov (Xj , Y ) ·min
j≤p

var (Xj)
1/2 ≥ 6

C

(
3.5 + c′0

)
bn,

which leads to

min
j∈A

dcorr(Xj , Y )≥
minj∈A dcov(Xj , Y )

dcov(Y,Y )1/2 maxj dcov(Xj ,Xj)1/2

≥
6
C (3.5 + c′0) bn

minj dcov (Xj ,Xj)
1/2 dcov (Y,Y )1/2

√
2

maxj dcov (Xj ,Xj)
1/2

≥ 6 (3.5 + c′0) bn

minj dcov (Xj ,Xj)
1/2 dcov (Y,Y )1/2

≥ 3Kn,
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completing the proof.
Proof of Theorem 5.3: We can now complete the proof of the main theorem. The hier-

archical structure of Â follows directly from the design of the algorithm. With regard to the
main result, we separately prove A⊆ Â and B ⊆ Â.

Note that, by Assumption 5.2, minj∈A dcorr(Xj , Y ) > 2Kn. Hence, by Theorem A.5,
with probability approaching 1, we have

min
j∈A

d̂corr(Xj , Y )≥min
j∈A

dcorr(Xj , Y )−Kn >Kn.

Consequently, Theorem A.5 implies

(27) P
(

min
j∈A

d̂corr(Xj , Y )>Kn

)
→ 1.

Now, for any j ∈ A, we aim to show j ∈ Â. If not, then there are two possibilities: either
d̂corr (Xj , Y )≤Kn, or there exists i such that j ∈ D (i) and d̂corr (Xi, Y )≤Kn. The first
case is ruled out due to (29). In the second case, we have, with probability approaching one,

(28) dcorr (Xi, Y )≤ d̂corr (Xi, Y ) +Kn ≤ 2Kn ≤Cbn
for some constantC > 0. By the weak extinction property (Assumption 4.2), dcorr (Xj , Y ) =
O (bn) since j ∈ D (i). However, by Assumption 5.2, we have minj∈A dcorr (Xj , Y )� bn,
whence j ∈Ac and a contradiction is obtained. Thus, A⊆ Â asymptotically w.p. 1.

We now show B ⊆ Â. For any j ∈ B, we know that j /∈ A but there is a descendant
feature k of j such that k ∈ A. Suppose that j /∈ Â. Then, there are two possibilities: either
d̂corr (Xj , Y ) ≤ Kn, or there exists i such that j ∈ D (i) and d̂corr (Xi, Y ) ≤ Kn; in the
latter case, k is also a descendant of i. Thus, in either case, k is a descendant of some feature
(either i or j) whose estimated distance correlation with Y is below Kn. By (28), the true
distance correlation between this feature (either i or j) is bounded above by Cbn. Then, by
the weak extinction property, dcorr (Xk, Y ) = O (bn). However, Assumption 5.2 together
with k ∈A implies that dcorr (Xk, Y )� bn, and a contradiction is obtained.

For the final statement in Theorem 5.3, observe that, for any j ∈ Â, C (j) features will be
added to the candidate set, and therefore |C(j)| calculations of empirical DC will be made
in the next iteration. For the initial candidate set, the number of variables at the top level
of the hierarchy is finite. Therefore, the total number of calculations of empirical DC is
O(
∑

j∈Â |C(j)|).
Proof of Corollary 5.4: Combining the assumption of the corollary with Theorem A.5,

we obtain

(29) P
(

max
j /∈A

d̂corr(Xj , Y )≤Kn

)
→ 1.

It can then be shown that j /∈A implies j /∈ Â using arguments similar to the previous proof.
Proof of Proposition 5.5: We first consider statement (i). First, from the definition of (6)

it follows that Â ⊆ Ĥ, leading to the inequality
∣∣∣Â ∩Ac

∣∣∣≤ ∣∣∣Ĥ ∩Ac
∣∣∣.

By the definition of the DDC algorithm, for any j ∈ Â we have d̂corr (Xj , Y ) ≥Kn as
well as d̂corr (Xi, Y )≥Kn for any i such that j ∈D (i). Thus, it follows that j 6= Ĝ and thus
Â∩ Ĝ = ∅. On the other hand, any j ∈ Ĝ satisfies d̂corr (Xj , Y )≥Kn and thus is an element
of Ĥ by (6). Thus, Ĝ ⊆ Ĥ.
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To show statement (ii), first recall that A⊆ Â in the asymptotic regime of Theorem 5.3,
whence A⊆ Ĥ since Â ⊆ Ĥ. Therefore,∣∣∣Ĥ ∩Ac

∣∣∣− ∣∣∣Â ∩Ac
∣∣∣= ∣∣∣Ĥ∣∣∣− ∣∣∣Â∣∣∣ .

It follows that

(30)

∣∣∣Â \ A∣∣∣∣∣∣Â∣∣∣ ≤

∣∣∣Ĥ \ A∣∣∣∣∣∣Ĥ∣∣∣
because the right-hand side of (30) is obtained by adding the same constant to both the nu-
merator and denominator of the left-hand side. Finally, statement (iii) follows directly from
Corollary 5.4.
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