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We consider the ranking and selection problem of finding the best alternative in a setting where prior sim-

ilarity information between the alternatives can be learned from data. Incorporating similarity information

enables efficient budget allocation for faster identification of the best alternative in sequential selection.

Using a new selection criterion, the similarity selection index, we develop two new allocation methods: one

based on a mathematical programming characterization of the asymptotically optimal budget allocation, and

the other based on a myopic expected improvement measure. For the former, we present a novel sequential

implementation that provably learns the optimal allocation without tuning. For the latter, we also derive its

asymptotic sampling ratios. We also propose a practical way to update the prior similarity information as

new samples are collected. Numerical results illustrate the effectiveness of both methods.
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1. Introduction

In the ranking and selection problem (Chen et al. 2015), there is a finite set of feasible solutions

(“systems” or “alternatives”) with unknown performances that must be estimated from noisy

observations, e.g., from expensive stochastic simulation experiments. A single experiment only

provides information about a single alternative, creating a tradeoff: spending resources, such as

simulation time, to learn about one alternative means that less information can be collected about

the others. Much of the research in this area focuses on designing algorithms that sequentially

allocate experiments to alternatives (adapting to the results of past assignments) for the purpose

of identifying the highest-valued alternative as quickly as possible.

This problem can be approached using a wide variety of algorithmic concepts, including

indifference-zone selection (Kim and Nelson 2001), value of information (Frazier et al. 2008, Chick
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et al. 2010), optimal computing budget allocation (Chen et al. 2000, He et al. 2007), procedures

based on stopping boundaries (Fan et al. 2016, Ma and Henderson 2017), and optimal sampling

laws (Glynn and Juneja 2004, Hunter and Pasupathy 2013). These and many other papers assume

that information is completely independent across alternatives, i.e., an experiment with one alter-

native provides no information about any others. Often, however, it is possible to exploit structural

similarities or differences between alternatives to solve the problem more efficiently. For example,

alternatives may have known common attributes that influence their performance. We may also

have past performance data about other alternatives that come from the same context, giving us

some prior knowledge about the problem at hand. Two examples of such settings are:

• In the simulation of automatic control systems, performance is affected by mechanical settings

that are known to users before simulation. These settings may have been tested before for other

systems. Thus, when optimizing a new system for which no test results are available, we may use

these past data to help the simulation process (Gao and Lu 2021).

• In a clinical trial, an important concern is estimation of the dose-response relationship, which

is influenced by factors such as age and gender. When determining the optimal dose for a new

patient group (e.g., children), for which no data have yet been collected, we may use test results

from other groups (e.g., adults) as prior information since the dose-response curves for both groups

may follow similar patterns (Xue et al. 1999).

In these and other settings, past data provides prior information about new alternatives of inter-

est – not only about their performance, but also about similarities between these performance

values. As a consequence, when we conduct a new experiment on one alternative, the similar-

ity information allows us to learn about other, similar alternatives. This can significantly reduce

the expenditure of resources needed to identify the best alternative reliably, greatly improving

the ability to solve large instances where exhaustive simulation may not be practical. The litera-

ture has recognized this advantage of similarity information and has generally handled it in two

ways. In situations where alternatives are naturally described by certain attributes or features,
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one can relate their values to these features using linear regression; see Han et al. (2016) or Shen

et al. (2017) for examples of such parametric models. If no such features are available, one can

instead quantify pairwise similarities in the form of a matrix. This approach is often adopted by

Bayesian optimization methods, e.g., by Frazier et al. (2009) for ranking and selection or Scott

et al. (2010) for continuous simulation optimization. In these methods, the matrix is included in the

decision-maker’s Bayesian belief about the unknown values and is updated after each experiment;

furthermore, these “correlated beliefs” are also used inside the allocation procedure, leading to a

significant increase in overall computational cost.

This paper investigates a different way to model similarities inside ranking and selection, which

we call the similarity selection index, or S-index for short. This approach is motivated by spectral

clustering techniques (Von Luxburg 2007), and was first proposed by Sun et al. (2019) in the

Proceedings of the Winter Simulation Conference as a way to improve the performance of ranking

and selection procedures.1 One calculates the S-index by taking a certain linear transformation

of the estimated values, which incorporates similarity information between them; one then uses

these transformed values to select an alternative. Sun et al. (2019) provided some preliminary

theoretical results (including several unproved conjectures) and numerical experiments in support

of the S-index as a selection criterion, but did not develop any new algorithms.

In this approach, similarity information is represented by weights assigned to edges in a graph

whose vertices are the alternatives. The linear transformation then adjusts the estimated values of

these alternatives based on the weights. Thus, the weights play a similar role to that of correlated

beliefs in Bayesian methods. However, the main distinguishing characteristic of this approach,

relative to the simulation literature, is that similarity information is utilized only inside the selection

criterion used to return the best alternative after the experiments have concluded, rather than

inside the statistical model used to learn the unknown values. The learning process still assumes

1 Sun et al. (2019) introduced the concept under the name “spectral index.” In this paper, we use “similarity selection

index” to avoid confusion with the spectrum of a matrix.
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that the values of individual alternatives are estimated independently, as in traditional ranking

and selection, but in the selection step, each alternative is evaluated using the S-index rather than

the sample mean. In this way, we fully use the power of similarity information while reducing the

computational cost of the allocation procedure.

Since the S-index is used for selection, rather than allocation, it can potentially be used in

conjunction with any existing allocation method, which is how it was implemented by Sun et al.

(2019). However, allocations should perform better if they are tailored to the new selection criterion.

We propose two such allocation methods in this paper. The first method calculates a budget

allocation by optimizing an approximation of the probability of correct selection (PCS) from a

geometric perspective. This approximate problem, however, is shown to yield an asymptotically

optimal solution, because it can be shown to be equivalent to the well-established problem of

optimizing large deviations rates of PCS, first posed by Glynn and Juneja (2004).

The optimal budget allocation is a function of the unknown values, and cannot be directly imple-

mented; one could approximate it by solving the optimization problem with plug-in estimators,

but this is computationally cumbersome. We address this difficulty by developing a sequential

implementation that provably converges to the optimal allocation, without tuning, and without

exactly solving a convex optimization problem in every step. The design of this algorithm is quite

distinct from existing sequential procedures, and leverages techniques from nonlinear optimization

in a novel way. We also develop a second heuristic approach, based on value of information, which

is simple to compute and performs remarkably well in numerical experiments.

The advantages of the S-index depend on the availability of accurate similarity information. To

make this approach more robust against misspecification, we develop a procedure for learning prior

similarities from existing data and sequentially updating them as new information is collected. It

should be noted that, while correlated Bayesian beliefs have to deal with the same concern, in the

simulation literature only Qu et al. (2015) and Zhang and Song (2017) have dealt with the problem

of learning similarity structures to a significant degree. In general, identifying the most effective

similarity structure is itself a subject for research (Malkomes and Garnett 2018).
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In sum, our work makes the following contributions:

• We formulate an optimal budget allocation problem using a geometric approximation of PCS,

and show that the solution to this problem optimizes the asymptotic convergence rate of PCS

characterized using large deviations theory. There is a separate stream of literature focusing on

large deviations-based allocations, so this result is of stand-alone interest.

• We propose a sequential implementation, leveraging the idea of reduced gradient methods

in nonlinear optimization, and prove that this method asymptotically learns the optimal budget

allocation with probability 1. We also propose an additional sequential heuristic that is computa-

tionally efficient and easy to implement.

• We develop a dynamic update procedure that learns a prior similarity graph from data and

sequentially updates it as more samples are collected, significantly strengthening the applicability

of our proposed algorithms.

• Numerical experiments comparing our proposed methods to each other and also to several

existing benchmarks indicate that the new algorithms perform well. Furthermore, using the S-index

for selection can also improve the performance of existing allocation methods.

The paper is organized as follows. Section 2 introduces the S-index and a class of similarity

structures in which consistent selection can be guaranteed. Section 3 defines the notion of an optimal

budget allocation under S-index selection, and presents a computationally efficient algorithm that

can be guaranteed to learn that allocation asymptotically. Section 4 presents a second approach

based on Bayesian value of information. Section 5 describes one way in which similarity structures

can be updated over time as new information is acquired. Numerical experiments are given in

Section 6. The Appendix contains all proofs and some additional results and discussions.

2. The S-index: Definition and Properties

We assume there are k alternatives with unknown values µ1 >µ2 > . . . > µk. For simplicity, we will

develop the main concepts of the paper assuming that all k values are distinct. However, there is

no loss of generality in this assumption, and Appendix D gives some additional discussion for the
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case where multiple alternatives may have equal values. We model similarity information using a

weighted graph representation G= (V,S), where each alternative is viewed as a vertex i∈ V . Let S

be the similarity matrix, with Si,j = Sj,i ≥ 0 being the weight assigned to the edge between vertices

i, j ∈ V .

Suppose now that the values µi are unknown, but we have access to estimates yi of µi. In ranking

and selection, yi is usually the sample mean of all experiments conducted with alternative i (or

the posterior mean, in a Bayesian framework). Now, consider the optimization problem

z = argmin
u∈Rk

k∑
i=1

(ui− yi)2 +
λ

2

∑
1≤i,j≤k

Si,j(ui−uj)
2. (1)

The quantity zi is called the S-index of alternative i. If λ= 0, we will have z = y, but when λ> 0

the solution of (1) will be regularized by the similarity information; consequently, two alternatives

with larger similarity will also have similar S-indices. The choice of λ, which controls the relative

importance of the similarity information, is left up to the user. We can rewrite (1) in matrix

notation as

z = argmin
u∈Rk

(u− y)T (u− y)+λuTLu, (2)

where L= L(S) =D− S and D is a diagonal matrix with Di,i =
∑k

j=1Si,j. For simplicity, we let

Si,i = 0, since the diagonal entries of S do not affect L. The solution to (2) can be expressed in

closed form as

z = (I +λL)
−1
y, (3)

which allows us to compute the S-indices efficiently, given estimates y and a similarity matrix S.

From Von Luxburg (2007), it can be seen that the matrix I + λL is symmetric positive definite

(thus invertible) with minimum eigenvalue 1 and corresponding eigenvector 1. Sun et al. (2019)

discusses alternate ways to compute (3) that do not require matrix inversion.

In much of what follows, we will make use of several properties of the inverse Q = Q(S;λ) =

(I +λL(S))
−1
, stated below and proved in the Appendix. These properties hold for all similarity

graphs.
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Theorem 1. For a graph G with Si,j ≥ 0 and Si,j = Sj,i, Q= (I + λ(D− S))−1 has the following

properties:

(1) Q is symmetric positive definite, having largest eigenvalue 1 with eigenvector 1.

(2) Qi,j ≥ 0, ∀i, j = 1, ..., k, i.e., every entry of matrix Q is non-negative.

(3) ∀i= 1, ..., k, Qi,i >maxj ̸=iQi,j, i.e., the diagonal entry is the largest entry in both its column

and its row.

Classical ranking and selection uses argmaxi yi as the selection criterion, i.e., it predicts the

alternative with the highest sample mean as being the best. Given enough samples, yi→ µi and

so the true best alternative will eventually be discovered under this criterion. We propose to use

S-indices instead of sample means, so that argmaxi zi becomes the selection rule. Then, the first

important question is whether the true best alternative can still be recovered using the linear trans-

formation (3). To that end, Sun et al. (2019) introduced a particular class of similarity structures

under which this can be guaranteed. The following is a slightly relaxed version of Definition 1 in

Sun et al. (2019).

Definition 1. A graph G is aligned if for every fixed i = 1, ..., k, the similarities {Si,j} satisfy

Si,j ≤ Si,m for any j <m< i or j >m> i.

We can then show that, if the original estimates are sufficiently accurate to recover the correct

ordering of the alternatives, this ordering will also be preserved under S-indices. Consequently,

selecting alternative argmaxi zi will still lead us to the true best alternative. The proof of Theorem

2, given in the Appendix, corrects a minor technical issue with a similar proof in Sun et al. (2019).

Theorem 2. For an aligned graph G and estimates y1 ≥ y2 ≥ · · · ≥ yk, the S-index defined by

z =Qy= (I +λL)−1y preserves the ordering, i.e., z1 ≥ z2 ≥ · · · ≥ zk.

In the rest of the paper, y (and therefore z as well) will be a random vector, whose distribution

depends on the number and outcomes of simulation experiments. The performance of a selection

criterion based on such a vector can be measured in terms of the probability of correct selection
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(PCS), i.e., the probability that the first component of the vector is also the highest-valued. For

example, under S-index selection, the PCS can be written as

PCS(z) = P (z1− zi ≥ 0, i ̸= 1) ,

and analogously PCS(y) is the PCS under the original estimates y. If the similarity graph is very

informative about the relationships between the values of alternatives, it is possible to show that

PCS(z)≥ PCS(y), though this cannot be guaranteed in general. Theorem 3 gives one example of

a graph structure that has this property. Although most of our analysis, from Section 3 onwards,

assumes that y and z are normally distributed, Theorem 3 does not require specific distributional

assumptions, but rather arises from the structure of the similarity measure.2 The result also does

not require the graph to be aligned (and does not hold for all aligned graphs).

Theorem 3. If S1,j ≤ Si,j for any i ̸= j, i, j ̸= 1, for any allocation policy, PCS(z)≥PCS(y).

Intuitively, if the best alternative is “separated” from the others by the similarity measure, PCS

will be improved because our estimates of µi for suboptimal i will smooth out each other, while

exerting little impact on our estimate of µ1. This may give some intuition why, even if yi is a

minimum-variance unbiased estimator of µi, the S-indices z may nonetheless be more accurate than

2 Theorem 3 establishes Conjecture 3 in Sun et al. (2019).

Figure 1 The numbers above the markers represent the indices of the alternatives. The S-indices smooth the
sample means and correct the errors between the relative order of the largest two alternatives.
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y in identifying the highest-valued alternative. A simple illustration is given in Figure 1, where the

sample means suggest a wrong best alternative, while the S-indices give the correct best alternative

by smoothing the sample means.

The preceding results treat the similarity graph as given. In practice, if there is reason to believe

that alternatives have common attributes that strongly influence their values, one might construct

the graph from past data on similar alternatives (see Section 6 for concrete examples). Such a

graph generally will not be aligned, nor will it satisfy the conditions of Theorem 3. Nonetheless, it

may still contain helpful information that can improve the performance of ranking and selection

methods, especially in the early stages. Later, in Section 5, we will present a practical approach

for updating the similarity graph over time, in a manner that eventually makes it aligned. For the

moment, we will continue to assume that a suitable graph is available.

It is important to keep in mind that, in this methodology, the similarity measure is separate

from the statistical mechanism used to estimate the unknown values. The computation of y itself

need not use the similarity measure at all; the latter is only used to transform y in the final

selection step. In this way, even though the concept of similarity between alternatives is used both

in S-index selection and in correlated Bayesian belief models, they use it in different ways. In

Bayesian methods, covariance matrices are built into the statistical model used to estimate values,

and correlations decay over time (converge to zero) as more information is collected. Furthermore,

prior covariances can be obtained from, e.g., spatial similarities that are not directly connected

to the true performance values. In S-index selection, the similarity structure has to be derived

directly from the true values if one uses an aligned graph. Thus, one can view S-indices as a purely

frequentist framework with the ability to model correlated beliefs, but the similarity graph has to

be constructed in a different way than in Bayesian methods; see Section 6 for practical examples.

3. Optimal Budget Allocation Under S-index Selection

We now develop methods for allocating the experimental budget under the assumption that the

S-index is used for selection. Our main design principle is similar to that of optimal computing
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budget allocation (Chen and Lee 2010): we first formulate a mathematical program whose solution

is an optimal allocation in a certain theoretical sense. This “ideal” allocation will depend on the

unknown values µ, and thus cannot be directly computed or implemented. However, we will design

efficient sequential procedures that use only estimated values, but can be guaranteed to converge

to the optimal allocation asymptotically.

In the following, we often denote the index of the best alternative by i∗ instead of 1 to make the

eventual implementation clearer. We suppose that the estimates y are constructed using simple

frequentist statistics. Let w1, ...,wk be a vector of i.i.d. standard normal random variables, and

assume that

y= µ+Λw, Λ=diag

(
σ1√
N1

, ...,
σk√
Nk

)
,

where σ1, ..., σk are fixed positive constants and N1, ...,Nk are positive integers, i.e., the simulation

output is assumed to be normally distributed with standard deviation σi, and Ni being the number

of experiments allocated to alternative i.

3.1. Geometric Approximation of the Probability of Correct Selection

From (3), we have z =Qµ+QΛw, so z ∼N (Qµ,QΛ2QT ). Let Pi,j =Qi∗,j−Qi,j, and definem= Pµ

and Σ= PΛ2P T . Then, the joint distribution of the vector {zi∗−zi, i ̸= i∗} is N (m−i∗ ,Σ−i∗), where

the mean vector m−i∗ is obtained by deleting the i∗th element of m, and the covariance matrix

Σ−i∗ is obtained by deleting the i∗th row and column of Σ. Suppose P−i∗ , defined similarly, has full

rank. By the Cholesky decomposition, we can represent Σ=UTU , where U = [Ui,j]k×k is an upper

triangular matrix. We are interested in the probability that argmaxi zi = argmaxi µi, which means

that the correct alternative is identified by using the S-index for selection. The corresponding PCS

is given by

PCS(z) =

(
1√
2π

)k−1 ∫
· · ·
∫
{
∑i

j ̸=i∗ Uj,iwj≥−mi,i̸=i∗}

∏
i ̸=i∗

e
−w2

i
2 dwi (4)

Since the terms in the integrand in (4) decay exponentially, the region near the origin dominates the

value of the integral (Fu et al. 2007). Therefore, (4) can be approximately optimized by maximizing
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the volume of the hypersphere contained inside the domain of integration and centered at the origin.

This approximation methodology was also used in Peng et al. (2018) for a traditional ranking and

selection problem.

The distance from the origin to the hyperplane
∑i

j ̸=i∗ Uj,iwj =−mi, i ̸= i∗ is given by

mi√∑i

j ̸=i∗ U
2
j,i

=
mi√
Σi,i

, (5)

where Σi,i =
∑k

j=1

σ2
j

Nj
P 2

i,j. To maximize the volume of the hypersphere, it is sufficient to solve

min∑k
i=1 Ni=M
Nj≥0

max
i ̸=i∗

1

(Pi
Tµ)2

k∑
j=1

σ2
j

Nj

P 2
i,j, (6)

which is equivalent to maximizing the smallest distance to any of the hyperplanes. The quantity

M represents the total experimental budget; alternatively, one could set M = 1 and interpret Nj

as the proportion of the budget to assign to alternative j. The objective in (6) can be linearized,

giving rise to the equivalent problem

minimize ξ

subject to
k∑

j=1

ai,j
Nj

≤ ξ, i ̸= i∗, (7)

N1 +N2 + · · ·+Nk =M,

Nj ≥ 0 j = 1,2, . . . , k,

where ai,j =
σ2
jP

2
i,j

(Pi
T µ)2

, i ̸= i∗, j = 1, ..., k.

From the properties of convex functions (Boyd and Vandenberghe 2004), it is easy to see that the

mapping x 7→
∑k

j=1

aj
xj
, where aj ≥ 0, is convex on Rk

+. If we allow Nj to be continuous, (7) will be a

convex program, guaranteed to have a unique optimal solution. In general, this solution cannot be

computed analytically, with the exception of the special case k= 3, treated in the following result.
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Proposition 1. Let i1, i2 ̸= i∗ be denote the two distinct suboptimal alternatives in {1,2,3}, and

define r (γ) =
∑3

j=1

ai1,j−ai2,j√
γai1,j+(1−γ)ai2,j

. Let

γ∗ =


1 if r(0)> 0 and r(1)> 0

0 if r(0)< 0 and r(1)< 0

γ0 otherwise,

where γ0 is the solution of r (γ) = 0, which can be efficiently obtained using a bisection algorithm.

Then for k= 3, the optimal solution of (7) is given by

N∗
j =

√
γ∗ai1,j +(1− γ∗)ai2,j∑3

j′=1

√
γ∗ai1,j′ +(1− γ∗)ai2,j′

M, j = 1,2,3.

Whether or not we are in this special case, however, the solution depends on the unknown values

µ (as well as on σ, which may also be unknown), and thus cannot be implemented directly. Instead,

one might replace the unknown parameters in (7) with plug-in estimators computed from past

experiments, and use the solution of the resulting approximate problem to allocate a portion of the

budget. By iteratively resolving (7) with updated estimators, one will eventually arrive at the true

optimal solution. If k > 3, the computational cost will be fairly high, due to the need to repeatedly

solve convex programs, but it is possible to do this in principle using a solver such as CVX (Grant

and Boyd 2014).

Algorithm 1 gives one possible implementation, which we call SIOCBA (S-index optimal com-

puting budget allocation), where ei denotes a k-vector of zeroes with the ith coordinate equal to

1. For simplicity, we treat σ as being known; in practice, the variances can be estimated using

sample variances and updated as more data are collected. In the nth stage of sampling, Mn is the

total budget spent thus far, yn is the current vector of sample means, with zn = Qyn being the

corresponding vector of S-indices. We denote by i∗,n = argmaxj(Qy
n)j the index of the alternative

currently believed to be the best (note that S-indices are used to identify this alternative), and use

the quantities P n
i,j =Qi∗,n,j −Qi,j and ani,j =

σ2
j (Pn

i,j)
2(

(Pn
i )

T
yn

)2 , for all i ̸= i∗,n, in the computation. The

inputs i∗, ai,j and M in (7) are replaced by i∗,n, ani,j and Mn, respectively. The next experiment
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Algorithm 1: S-index optimal computing budget allocation (SIOCBA).

Input: number of alternatives k, variances σ2
i , total budget M , number of initial

samples n0, matrix Q.
Output: final selection i∗,M .
Initialization: n= 0, Nn

j = n0, j = 1, ..., k, M 0 = kn0.
Collect n0 samples for each alternative and calculate sample means y0.
while M 0+n<M do

i∗,n← argmaxj(Qy
n)j ; // find the best alternative using current S-index

P n← kron(Q(i∗,n, :),ones(k,1)) ; // update the optimization problem

ani,j←
σ2
j(Pn

i,j)
2

((Pn
i )T yn)2

, i ̸= i∗,n, j = 1, .., k;

Mn←Mn +1;
Nn,∗← optimal solution of the updated optimization problem (7);

jn = argmaxj
N∗,n

j

Nn
j
;

Nn+1←Nn + ejn;
Sample alternative jn and update the sample means yn+1;
n← n+1;

end
i∗,M ← argmaxj(Qy

M)j

is then allocated to alternative jn = argmaxj

N
∗,n
j

Nn
j
, which favors those alternatives whose actual

sample sizes Nn
j are small relative to the estimated optimal xn

j (i.e., they are under-sampled).

Of course, even if the unknown values were known, the objective of (7) is based on an approx-

imation of (4), not the exact PCS. However, it can be shown that the geometric approximation

produces an asymptotically exact solution in the regime where M →∞. To show this, we turn to

the asymptotic convergence rates of the probability of incorrect selection.

3.2. Large Deviations Analysis of Probability of Incorrect Selection

Let us now increase the experimental budget in a way that satisfies limM→∞
NM

j

M
= xj for each j,

where each xj > 0 is a strictly positive constant. In other words, the budget becomes large, but

each alternative receives a certain prespecified, nonzero proportion of it in the long term. For now,

let us view the proportions xj as fixed, but our ultimate goal will be to optimize them in a sense

to be formalized later.

For i ̸= i∗, define the “error set” Ei = {z : zi ≥ zi∗}. We interpret z ∈Ei as a vector of possible S-

indices under which the suboptimal alternative i appears to be better than the true best alternative
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i∗. Let zM =QyM be the (random) vector of S-indices obtained after M experiments have been

conducted. Then,

1−PCS
(
zM
)
= P

(
zM ∈

⋃
i

Ei

)
,

that is, we select an incorrect alternative if zM estimates at least one suboptimal alternative as

being better than i∗. In the following, we will show that a certain Ri > 0 satisfies

lim
M→∞

1

M
logP

(
zM ∈Ei

)
=−Ri, i ̸= i∗, (8)

where, by the arguments in Glynn and Juneja (2004), it straightforwardly follows that

lim
M→∞

1

M
logP

(
zM ∈

⋃
i

Ei

)
=−min

i ̸=i∗
Ri. (9)

In words, for large M , P (zM ∈Ei) behaves like e−Ri·M , and the overall probability of incorrect

selection is governed by the smallest (slowest) of the rate exponents across i ̸= i∗.

The derivation of (8) uses the Gärtner-Ellis theorem, as laid out in Ch. 1 of Dembo and Zeitouni

(2009). Using this result, we can compute

Ri = inf
z∈Ei

I (z) , (10)

where I is the large deviations rate function of the sequence {zM}. Since, for anyM , zM =QyM is a

linear transformation of a vector of independent normal random variables, it follows a multivariate

normal distribution, and therefore I can be computed in closed form, as shown in the following

result.

Proposition 2. The sequence {zM} obeys a large deviations law with rate function

I (z) =
1

2
(z−Qµ)T QΓ−1QT (z−Qµ) ,

where Γ is a diagonal matrix with Γj,j =
σ2
j

xj
.

Thus, the right-hand side of (10) is the optimal value of a convex optimization problem with

a quadratic objective and a single linear constraint vTi z ≤ 0, where vi is a vector of zeros with
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vi,i =−1 and vi,i∗ = 1. Applying results in Section 2 of Zhou and Ryzhov (2022), we arrive at the

closed-form solution

Ri =
(vTi Qµ)

2

vTi QΓQTvi
. (11)

Note that Ri depends on the vector x of proportions through the diagonal matrix Γ.3 One can

then formulate the concave maximization problem

maximize min
i̸=i∗

Ri(x) (12)

subject to 1Tx= 1, xj ≥ 0, j = 1, ..., k.

Recalling (9), we can see that the objective function in (12) is the rate exponent for the probability

of incorrect selection. By maximizing this quantity, this probability is made to converge to zero at

the fastest possible rate.

At the same time, using the notation from Section 3.1, it is easy to see that Ri (x) = 1/
∑k

j=1

ai,j
xj

.

Therefore, (12) is equivalent to (6) with the experimental budget scaled to 1. This proves that,

by using the geometric approximation of PCS, we obtain a budget allocation that optimizes the

asymptotic convergence rate of the probability of incorrect selection.

Within the simulation community, there is an entire stream of literature studying large

deviations-based problems similar to (12), beginning with the seminal work of Glynn and Juneja

(2004), with some representative papers being Hunter and Pasupathy (2013), Pasupathy et al.

(2014) and Gao et al. (2017). We find it is closely connected to the geometric approximation of

Section 3.1, and the derivation of the optimal allocation under S-index selection is completely new.

3.3. A Provably Convergent Sequential Implementation Under S-index Selection (SIGD)

We have proposed SIOCBA to approximately maximize PCS when selecting with S-indices. How-

ever, when k is large, solving the nonlinear optimization problem (7) is expensive. Therefore, in this

3 If S = 0, and consequently Q= I, we are back in the setting of classical ranking and selection, and it is easy to see

that (11) reduces to the rate function derived in Example 1 of Glynn and Juneja (2004).
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section, we propose a new sequential allocation policy that is more computationally efficient. We

begin by deriving the convex dual of (7), since it will be more convenient to solve sequentially than

the primal. We normalize M = 1, since we are interested in learning the asymptotically optimal

solution as the budget becomes large.

Theorem 4. The primal problem

min
x

max
i ̸=i∗

k∑
j=1

ai,j
xj

subject to xj ≥ 0, j = 1, ..., k, (13)

1Tx= 1,

has the convex dual problem

max
γ

k∑
j=1

√∑
i ̸=i∗

γiai,j

subject to γi ≥ 0, i ̸= i∗, (14)

1Tγ = 1,

and strong duality holds.

Using the KKT optimality conditions of these problems, one finds that the optimal primal-dual

pair (x∗, γ∗) satisfies

x∗
j =

√∑
i ̸=i∗ γ

∗
i ai,j∑k

j=1

√∑
i ̸=i∗ γiai,j

, j = 1, ..., k, (15)

which allows us to easily convert a dual solution into a primal one. Of course, the index i∗ and the

inputs ai,j depend on the unknown values µ, so the dual solution still cannot be solved exactly.

As in Section 3.1, one could potentially resolve it with the true values replaced by estimates, thus

converging to the optimal solution over time, but we would like to avoid the cumbersome cost of

solving a sequence of convex programs.

At a high level, our approach is based on the following concept. In nonlinear programming,

one would typically solve (14) using an iterative gradient descent method, which repeats certain
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computations on the same problem instance until the iterates appear to converge (and one knows

from theory that their limit must be a stationary point of the optimization problem). Our sequential

procedure resembles such a method, but we now run only one iteration of it in each stage of

sampling. In other words, given estimates yn, we perform a single iteration of the gradient algorithm

on problem (14) with µ replaced by yn. This yields a new iterate γn, which is likely not optimal

for the current dual problem (if we wanted to solve it to optimality, we would need to run many

iterations). We then use γn to choose an alternative for the next experiment, with the precise

manner of this choice to be described further down. The results of the experiment produce a new

vector yn+1 of estimates, and the process is repeated. In other words, each iteration of the gradient

algorithm is performed on a slightly different problem, namely, the dual with a different set of

estimates. Doing this is much faster than solving each individual problem to optimality, yet we

prove that in this way the true solution of (14) is still recovered asymptotically.

The formal statement of the procedure is given in Algorithm 2. We first explain the notation

used in the statement, and motivate the steps of the algorithm, before proceeding to the main

convergence results. Denote by g (γ;y) =−
∑k

j=1

√∑
i ̸=i∗(y) γiai,j (y) the objective function of the

dual problem (14) with a generic vector y in place of µ, and the dependence of i∗, ai,j on y made

explicit.

The initialization of the algorithm involves two small constants κ0 and η, which are used for

numerical stability and do not require any additional assumptions on the problem. In the nth

iteration, Step 0 updates the inputs of the dual problem using the current estimates yn. Step 0′ is

included for numerical stability, due to the nondifferentiability of g on the boundary of the dual

feasible region; as will be argued in our proof, this step will be invoked at most finitely many times

and thus does not play a major role in convergence analysis.

Step 1 selects an index hn for which γn−1
hn > 0, using a small threshold η for numerical stability.

This index is needed to determine a descent direction in which to move. It is not necessary to

consider all possible directions; Lin et al. (2009) has shown that it is sufficient to consider elements

of the set

Dh (γ) = {ei− eh : i ̸= h}
⋃
{eh− ei : i ̸= h,γi > 0} , (16)
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Algorithm 2: Sequential gradient descent algorithm for the dual problem (SIGD).

Input: A small constant κ0 and η < 1
k−1

. Number of initial budgets N0 for each
alternative. Total Budget M .
Output:: Sample means yM−kN0+1.
Initialization: Compute y1 using a first-stage sample (e.g., by running N0

experiments for each alternative).
Repeat the following steps for n= 1,2, . . . ,M − kN0:
Step 0: Let i∗,n = argmaxi[Qy

n]i, compute ai,j (y
n).

Step 0’: Check whether minj

∑
i ̸=i∗,n γ

n−1
i ai,j (y

n)> 0. If this inequality does not
hold, perturb γn−1 to ensure the gradient is well defined.
Step 1: Choose some hn ∈

{
i ̸= i∗,n : γn−1

i ≥ η
}
with equal probability.

Step 2: Compute the descent direction dn

argmin
d∈Dhn (γn−1)

smax
(
d, γn−1

)
∇g
(
γn−1;yn

)T
d,

where Dhn
(γn−1) is as in (16), and smax (d, γn−1) is computed using (17). Let

V n =∇g (γn−1;yn)
T
dn.

Step 3: If V n does not satisfy (18) or (19), let γn = γn−1. Otherwise, choose
sn =LineSearch (dn, smax (dn, γn−1) , γn−1, yn) and let γn = γn−1+ sndn.
Step 4: Compute xnj using (15) with inputs γn and ai,j (y

n).

Step 5: Choose jn = argmaxj
xn
j

Nn
j
, set Nn+1

j =Nn
j +1{j = jn}. Sample alternative jn

and compute updated sample means yn+1.

for any h satisfying γh > 0. See Appendix A.2 for the details. This reduction of the set of feasible

directions to the much smaller set Dh motivates a 2-coordinate descent algorithm. For any direction

d∈Dh (γ), we define smax (d, γ) to be the largest stepsize s such that γ+s ·d remains dual-feasible.

This quantity can be explicitly computed as

smax (d, γ) =



γh, if d= ej − eh, j ̸= h and ∇g(γ;y)Td< 0,

γj, if d= eh− ej, j ̸= h and ∇g(γ;y)Td< 0,

0, if ∇g (γ;y)T d≥ 0.

(17)

Step 2 performs this computation for all Dhn
(γn−1) and selects the direction dn of steepest descent.

In the numerical optimization literature, techniques that minimize a first-order linear approxima-

tion of the objective are known as reduced gradient methods (Bazaraa et al. 2013).

Step 3 then determines how far to go in this direction. First, recall that yn changes in every

iteration, which can be seen as introducing noise into the gradient. For this reason, we prefer
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not to change the iterate at all if the gradient appears to be small; we only update γn−1 when

V n =∇g(γn−1;yn)Tdn satisfies

V n ≥ max

{
−κ0,−

(
logn

n

)1/4
}
, (18)

smax
(
dn, γn−1

)
V n ≥ max

{
−κ0,−

(
logn

n

)1/2
}
, (19)

where the rate logn
n

is chosen to mitigate the effect of estimation error. When both conditions are

satisfied, we update γn = γn−1+sndn, where the stepsize sn is chosen using Algorithm 3. Essentially,

this procedure performs a line search to identify s satisfying conditions (20)-(22). Condition (20)

ensures that the gradient is well-defined at the new dual solution, while (21)-(22) are based on the

well-known Wolfe conditions (Nocedal and Wright 2006). It can be shown that Algorithm 3 will

terminate in a finite number of iterations.

Step 4 uses (15) to convert the updated dual solution γn into a primal solution xn, which

represents an approximation of the optimal budget allocation. Finally, Step 5 allocates the next

experiment to alternative jn = argmaxj

xnj
Nn

j
, which again favors under-sampled alternatives.

Although Algorithm 2 appears to involve more technical complications than SIOCBA (Algorithm

1), in practice it is much more efficient, since it does not require the use of any convex programming

Algorithm 3: LineSearch(d, smax, γ, y)

Input: Descent direction d, maximum feasible stepsize smax, dual solution γ,
estimated values y, parameters α,α′ > 0 and τ ∈ (0,1).
Output: Stepsize s.
Let s= smax.
while Any of the conditions

min
j

∑
i ̸=i∗

γiai,j (y) > 0, (20)

g (γ+ s · d;y) ≤ g (γ;y)+αs∇g (γ;y)T d, (21)

∇g (γ+λd;y)T d ≤ α′
∣∣∣∇g (γ;y)T d∣∣∣ , if ∇g (γ+λd;y)T d> 0. (22)

not satisfied do
s← τs

end



Zhou, Fu, and Ryzhov: Sequential Learning With a Similarity Selection Index
20 Article submitted to Operations Research

solver. Instead of separating estimation and optimization, so that one has to solve a new problem

for each set of sample means, we integrate these two aspects into a single iterative algorithm, which

provably converges to the optimal solution (x∗, γ∗) of (13)-(14). The first major result establishes

the consistency of the procedure: each alternative will receive a nonzero proportion of the budget

asymptotically, ensuring that yn→ µ.

Theorem 5. Under Algorithm 2, lim infn→∞ xn
j > 0 for all j = 1, ..., k.

Theorem 5 simplifies the subsequent analysis, since we will have i∗,n = i∗ for all sufficiently large

n after some transient period of random length. We can then obtain the main convergence result,

which is that Algorithm 2 learns the true optimal allocation of the budget in the limit. Note that

Theorem 6 is much stronger than Theorem 5, as it implies through (15) and strong duality that,

for any j, xn
j → x∗

j , where x
∗
j is the optimal solution of the true primal problem (13). The highly

technical proofs are detailed in the Appendix.

Theorem 6. Let {γn} be the sequence of iterates generated by Algorithm 2. Every limit point of

this sequence is a stationary point of the true dual problem (14).

These results show that the SIGD algorithm learns the asymptotically optimal budget allocation,

without tuning, and without the need for a convex programming solver. Recent work in ranking

and selection has considered similar goals (e.g., the top-two method of Qin et al. 2017 or the

tuning-free technique of Chen and Ryzhov 2019), but our setting here is much more complicated,

because the objective in (14) is not separable across alternatives: each yi affects multiple terms

in the sum. The SIGD algorithm has little in common with the aforementioned methods, instead

being based on numerical optimization techniques, and thus constitutes a novel contribution in its

own right.

4. Myopic Allocation Under S-index Selection (SIMA)

In this section, we offer a different strategy for allocating the experimental budget, based on

Bayesian value-of-information methodology. Since the S-index is itself a new selection criterion,
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there are no existing allocation methods that can serve as natural benchmarks for the procedure

proposed in Section 3.3. The myopic Bayesian procedure developed here provides such a benchmark,

but is itself a very promising method.

Let {W n
i } be a sequence of i.i.d. samples from the distribution N (µi, σ

2
i ), representing the output

of repeated experiments with alternative i. This time, however, we use the Bayesian model µi ∼

N
(
y0i , (σ

0
i )

2
)
, with µi and µj independent for all i ̸= j. Let {jn}∞n=0 be a sequence of alternatives

chosen for experimentation, and denote by Fn the σ-algebra generated by j0,W 1
j0
, ..., jn−1,W n

jn−1 .

We allow jn ∈ Fn, meaning that decisions are made adaptively. It is well known (DeGroot 2005)

that the conditional distribution of µi given Fn is N
(
yni , (σ

n
i )

2
)
, and the parameters can be

updated recursively using

yn+1
i =


(σn

i )
−2

yn+σ−2
i Wn+1

i

(σn
i )

−2
+σ−2

i

i= jn,

yni i ̸= jn.

(
σn+1
i

)2
=


(
(σn

i )
−2

+σ−2
i

)−1

i= jn,

(σn
i )

2
i ̸= jn.

It can also be shown that the predictive distribution of yn+1
i , conditional on Fn, is N

(
µn
i , (σ̃

n
i )

2
)
,

where (σ̃n
i )

2
= (σn

i )
2−
(
σn+1
i

)2
.

As before, let zn = Qyn be the S-indices computed from our point estimates at time n, with

i∗,n = argmaxi z
n
i being the alternative with the largest S-index. Define

νnj =E
[
µn+1
i∗,n+1 −µn

i∗,n+1 | Fn, jn = j
]
, (23)

to be the expected improvement in the estimated value of alternative i∗,n+1 as a result of allocating

one additional experiment to alternative j. If S = 0 and Q= I, the criterion in (23) becomes very

similar to the knowledge gradient criterion of Frazier et al. (2008), with the difference that we use

i∗,n+1 instead of i∗,n in the second term to simplify the computation; as i∗,n converges a.s., this

difference does not have much practical significance. Since we are trying to identify argmaxi µi,

we use µ to express the value of the selected alternative, but the index of that alternative is now
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determined using S-indices. Under the normality assumption, (23) can be computed in closed form

as

νnj = σ̃n
j ϕ

(
max
i̸=j

zni − znj
σ̃n
j (Qj,j −Qj,i)

)
, (24)

where ϕ is the standard normal density. This formula is obtained by direct computation combined

with the fact, shown in Theorem 1, that Qj,j > Qj,i for j ̸= i. A myopic allocation policy under

S-index selection policy can thus be proposed, which allocates the next experiment to alternative

jn = argmaxj ν
n
j . We call this policy S-index Myopic Allocation (SIMA).

Specifically, when an aligned graph is available, it is possible to characterize the performance of

SIMA in terms of the asymptotic sampling ratios limn→∞
Nn

i
Nn

j
, which describe the limiting propor-

tions limn→∞
Nn

j

n
of the budget allocated to each j. These proportions do not match the optimal

proportions studied in Section 3, in keeping with previous work on ranking and selection (Ryzhov

2016), where methods based purely on expected improvement criteria also generally do not achieve

optimal allocations without additional modifications (Chen and Ryzhov 2019, Peng and Fu 2017).

Theorem 7. Suppose that k ≥ 3 with µ1 > ... > µk for simplicity. Given an aligned graph, the

sampling ratios achieved by SIMA are given by

lim
n→∞

Nn
i

Nn
j

=
σi

(
z1−zj

Qj,j−Qj,1

)
σj

(
z1−zi

Qi,i−Qi,1

) , i, j ̸= 1, (25)

lim
n→∞

Nn
1

Nn
2

=
σ1 (Q1,1−Q1,2)

σ2 (Q2,2−Q2,1)
, (26)

where z =Qµ are the S-indices computed from the true values.

5. Dynamic Updating of the Similarity Graph

Up to this point, we have assumed the availability of a suitable similarity graph (e.g., an aligned

graph). In practice, one might construct a graph S0 from relevant past data before conducting any

new experiments; see Section 6 for examples of how this might be done in specific applications.

In any case, however, such a graph is unlikely to be aligned with respect to the true, unknown

values µ. To avoid misdirecting the allocation procedure with inaccurate similarity information,
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it is desirable to update S0 over time as new information is acquired. At the same time, the

computational cost of the update is a concern, because our algorithms rely heavily on the inverse

matrix Q, and repeated computation of the inverse would compromise the computational efficiency

of SIGD and SIMA.

We propose a simple updating scheme based on the observation that, given any S0, it is possible

to create an aligned graph S by simply permuting the rows and columns of S0. This directly

follows from Definition 1. Moreover, the matrix Q=Q (S;λ) can also be computed by applying the

same permutation operations on Q0 =Q (S0;λ) instead of recomputing the inverse. In this way, we

can update the similarity graph without high computational cost, while guaranteeing that we will

eventually obtain an aligned graph with sufficiently many samples. Although we have mentioned

before that an aligned graph does not guarantee PCS(z) ≥ PCS(y), it does ensure that S-index

selection will reliably identify the best alternative asymptotically.

Formally, let r be an ordering of the alternatives, i.e., a permutation of the integers 1, ..., k with

ri indicating the position of alternative i in the ordering. Given two such orderings r, r′, let E (r, r′)

be a k× k matrix whose (j, j′)th components are equal to 1 if there exists i∈ {1, . . . , k} satisfying

rj = r′j′ = i, and zero otherwise. Such an E is a permutation matrix. Given the estimated values yn

at time n, let r̂n be a ranking of the values yn in descending order, i.e, a larger value of r̂ni means

alternative i has a smaller estimated mean and is ranked lower. Suppose that we then sample

alternative jn. Then, its estimated value will be updated to yn+1
jn , and its position in the ranking

will change to r̂n+1
jn . If r̂n+1

jn ≥ r̂njn , the other alternatives i ̸= jn will be reranked according to the

rule

r̂n+1
i =


r̂ni , if r̂ni > r̂

n+1
jn or r̂ni < r̂

n
jn

r̂ni − 1, otherwise

. (27)

In other words, the ranking can be updated without a sorting algorithm. A similar updating rule

can be derived when r̂n+1
jn ≤ r̂njn . Once r̂n+1 is computed, a permutation matrix Ên+1 =E (r̂0, r̂n+1)

can be created. It is straightforward to show that the similarity matrix Ŝn+1 =
(
Ên+1

)⊤
S0Ên+1
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is aligned with respect to yn+1. Therefore, as n becomes large, Ŝn will converge to a graph that

is aligned with respect to the true means µ, provided that each alternative is sampled infinitely

often.

In practice, we may not wish to update the similarity matrix at every iteration, especially in

the early stages where our estimated values are subject to high uncertainty. Furthermore, even if

S0 is not aligned, it may still contain some valuable information about the similarities between

different values. Thus, we may wish to hold off on permuting S0 until there is strong evidence in

favor of doing so. To that end, we define another ranking r̃n which is only updated when there is

a “significant” change in the ordering of the values yn. Once r̃n is created, the similarity matrix

is determined. We initialize r̃n as r̃0 = r̂0. The change in r̂n gives guidance on how we should

change r̃n, but as we discussed earlier, we only follow this guidance when we have high confidence.

Therefore, we propose the following updating scheme of r̃n. Again, suppose that we sample jn at

time n and find that r̂n+1
jn > r̂njn , suggesting that jn should possibly be ranked lower. At this point

we need to decide whether we would like to trust this information and increase r̃njn accordingly.

Define two sets

Ω̃−,n = {i= 1, . . . , k : r̃ni > r̃
n
jn},

Ω̂+,n+1 = {i= 1, . . . , k : yn+1
i > yn+1

jn }= {i= 1, . . . , k : r̂n+1
i < r̂n+1

jn }.
(28)

The set Ω̃−,n contains alternatives that were ranked lower than jn according to r̃n, and Ω̂+,n+1

contains alternatives whose sample means are above jn after the update. For i∈ Ω̃−,n∩ Ω̂+,n+1, the

probability that µi <µjn can be approximated using a normal distribution, and if this probability

is smaller than some small tolerance parameter κtol < 0.5, we have sufficient confidence to rank i

more highly than jn. We can reduce κtol if we wish to update the ranking more conservatively.

Formally, we define

Ω̃n+1 =

i∈ Ω̃−,n ∩ Ω̂+,n+1 : Φ

 yn+1
jn − yn+1

i√
σ2
i

Nn+1
i

+
σ2
jn

Nn+1
jn

<κtol

 , (29)
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where Φ(·) is the standard normal cdf. Then, the new rank of alternative jn is set according to

r̃n+1
jn = max

i∈Ω̃n+1
r̂n+1
i , (30)

so alternative jn is moved to the end of those alternatives that are sufficiently likely to be better

based on both the updated sample means and the previous ranking. For alternatives i ̸= jn, their

belief ranks can be updated following (27) by replacing r̂ with r̃.

For the case where r̂n+1
jn < r̂njn , we can use symmetric computations based on the definitions

Ω̃+,n = {i= 1, . . . , k : r̃ni < r̃
n
jn},

Ω̂−,n+1 = {i= 1, . . . , k : yn+1
i < yn+1

jn }= {i= 1, . . . , k : r̂n+1
i > r̂n+1

jn },

Ω̃n+1 =

i∈ Ω̃+,n ∩ Ω̂−,n+1 : Φ

 yn+1
i − yn+1

jn√
σ2
i

Nn+1
i

+
σ2
jn

Nn+1
jn

<κtol

 .

(31)

For complete details, refer to Algorithm 4, which can be called after the allocation and sampling

step in either of our proposed algorithms.

Our theoretical guarantees for both SIGD and SIMA are preserved when either procedure is

combined with Algorithm 4. This is a consequence of the following result.

Proposition 3. Under any allocation method, Algorithm 4 will update the similarity graph finitely

many times; in other words, there is a random but a.s. finite n0 such that Q̃n = Q̃n0 for n≥ n0.

Furthermore, if every alternative is measured infinitely often, then Q̃n0 must represent an aligned

graph on that same sample path.

By Proposition 3, there is always a finite time n0 after which the allocation method runs under

the same matrix Q̃n0 . The behavior of SIGD and SIMA after time n0 is identical to the situation

where these algorithms are initialized with yn0 at time 0 and run under the fixed matrix Q̃n0 .

Both methods are guaranteed to sample each alternative infinitely often under any fixed Q, so they

will be consistent. Therefore, Q̃n0 must be aligned, whence the results of Theorems 6 and 7 are

easily recovered. As a result, SIGD and SIMA can perform well even in settings where the initial

similarity structure S0 is uninformative or misleading, as will be demonstrated in our numerical

experiments.
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Algorithm 4: Sequential update of Q

Input: Q0 associated with prior similarity matrix S0, estimated means yn,
alternative jn sampled at step n and its new estimated mean yn+1

jn , previous
orders r̂n and r̃n, tolerance parameter κtol.

Output: updated orders r̂n+1 and r̃n+1, updated matrix Q̃n+1 at step n+1.
Find r̂n+1

jn by a binary search of yn+1;
Update r̂n+1 by (27);
r̃n+1
jn ← r̃njn;
if r̂n+1

jn > r̂njn or (r̂n+1
jn = r̂njn and r̂n+1

jn > r̃njn) then

Find Ω̃n+1 by (28) and (29);
r̃n+1
jn ←maxi∈Ω̃n+1 r̂n+1

i if Ω̃n+1 is not empty;
else

if r̂n+1
jn < r̂njn or (r̂n+1

jn = r̂njn and r̂n+1
jn < r̃njn) then

Find Ω̃n+1 by (31);
r̃n+1
jn ←mini∈Ω̃n+1 r̂n+1

i if Ω̃n+1 is not empty;
end

end
Update r̃n+1 similar to (27);
Ẽn+1←E (r̃0, r̃n+1);

Q̃n+1←
(
Ẽn+1

)⊤
Q0Ẽn+1.

6. Numerical Experiments

In this section, we present numerical comparisons on four test problems. The following allocation

methods were implemented:

• SIGD. We use Algorithm 2 to learn the optimal allocation. At the beginning of the sequential

allocation process, we run additional iterations of the coordinate descent algorithm to obtain a

good starting point.

• SIMA. The nth experiment is allocated to alternative argmaxj ν
n
j , where ν

n
j is given by (24).

• Correlated knowledge gradient (CKG) of Frazier et al. (2009). This method, a standard bench-

mark in the literature, models similarity between alternatives using correlated Bayesian beliefs.

For a fair comparison, we set the prior covariance matrix to be a(S + bI), where b is the smallest

positive number such that S+bI is symmetric positive definite and a is a prior variance parameter.

• Optimal computing budget allocation (OCBA). The fully sequential OCBA method of Chen

et al. (2000) is another standard benchmark from the ranking and selection literature.
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Each of these methods is tested using two selection criteria, namely sample (or posterior) means

and S-indices. This allows us to assess the value of using the S-index for selection separately from

any one particular choice of allocation method. Performance is measured in two ways, namely PCS

and the expected opportunity cost (EOC), defined as EOC = maxj µj − EµiM , where iM is the

selected alternative when the total budget is M . In general, allocation procedures use one of the

two metrics in their derivation: in the above list, SIGD and OCBA are derived to optimize PCS,

while SIMA and CKG are specialized for EOC. Empirically, however, we find that each policy

performs similarly (relative to the others) under either criterion. Thus, though there is a version

of OCBA specialized for EOC (He et al. 2007), we did not implement it in these experiments.

In all the experiments, we use λ= 2 as the regularization parameter; in the Appendix, we present

additional numerical results showing that performance is insensitive to this value.

6.1. Experiment 1: A Servo System Selection Problem

A servo system is an automatic control system where the controller provides commands to activate

motions (Zhang 2008). A critical characteristic of a servo system is the rise time, which is the

time required for the signal to change to a higher position. This time depends on the mechanical

configuration of the system, and may be estimated from simulation. Thus, we may consider a

ranking and selection problem where different configurations are alternatives, and performance is

represented by rise time.

Our test problem is adapted from a real-world dataset originating from the UCI Machine Learn-

ing Repository (Dheeru and Casey 2017). The dataset contains 167 instances, each of which has

a distinct configuration of 4 settings (two gain settings and two choices of mechanical linkages).

We randomly choose 35% of these instances to serve as the alternatives in our test problem;

their recorded rise times are treated as their true µi values, and normally distributed noise with

σi = 0.1µi +0.2 is added during experiments.

We construct an initial similarity graph S0 by using the remaining 65% of instances as past

data. We run a random forest algorithm on these data, with the mechanical settings as features,
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Figure 2 Case 1: PCS and EOC results with standard error bounds obtained by 10000 independent runs (40
macro-replications, 250 micro-replications) with a fixed good prior similarity matrix.

and use the predictions made by this model as initial estimated values y0 of the alternatives. Prior

similarities are computed as S0
i,j = e−|y

0
i −y0j |.

Comparisons are conducted on two versions of the problem, which use different randomly chosen

sets of alternatives. Both versions construct S0 in the same way as described above, but the quality

of this similarity structure varies. In Case 1, S0 is “good,” meaning that it is generally accurate

in describing the relationships between the values µi, although the similarity graph is not aligned

with respect to µ. In Case 2, S0 is “bad,” in that it provides little useful guidance about µ. Figures

2 and 3 show empirical results for both cases (averaged over 40 macro-replications) when S0 is fixed

(no dynamic updating) for the duration of the experiment. In Case 1, when S0 is good (though not

aligned), we find that S-index selection always yields better performance than selection based on

Figure 3 Case 2: PCS and EOC results with standard error bounds obtained by 10000 independent runs (40
macro-replications, 250 micro-replications) with a fixed bad prior similarity matrix.
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Figure 4 Case 2: PCS and EOC results with standard error bounds obtained by 10000 independent runs (40
macro-replications, 250 micro-replications) with dynamic updating of a bad prior similarity matrix.

sample means, regardless of which method is used to allocate the simulation budget; furthermore,

SIGD achieves the best performance overall, with SIMA coming in second.

However, in Case 2, S-index selection performs poorly for all of the methods, because S0 is

providing little useful information and may even be misleading. To solve this problem, we apply

dynamic updating using Algorithm 4 with κtol = 0.1. Figure 4 shows that the updating strategy

greatly improves the performance of S-index selection in Case 2, so that SIGD and SIMA are once

more outperforming the other benchmarks. In this way, we see that S-index selection can offer

significant advantages over sample mean-based selection, even when a good similarity structure is

not available ahead of time.

6.2. Experiment 2: A Dose Selection Problem

The objective of a dose-finding clinical trial is to identify the maximal response to a drug (Nas-

rollahzadeh and Khademi 2020). The literature has shown that different factors, such as gender

and age, often exert great impact on the dose-response curve. Often, two such curves for different

patient categories may be accurately represented using different parameter values within the same

model (Xue et al. 1999).

For the purposes of this example, suppose that there are two age groups. For Age Group 1,

clinical trials have been conducted and the dose-response curve χ1(v), for doses v ∈ {v1, . . . , vk},

is known. We now wish to find the dose vi∗ that achieves the maximal response for Age Group 2.
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Figure 5 Settings for the dose selection problem. χ1(v) = χ(v; [2,80,0.3,600,4]), χ2(v) = χ(v; [2,100,0.2,400,5]).

Figure 6 PCS and EOC results with standard error bounds for Experiment 2 obtained by 10000 independent
runs (40 macro-replications, 250 micro-replications)

Then, we can use y0i = χ1(vi) as the prior estimates of the dose response values µi = χ2 (vi) for Age

Group 2, and construct S0 from these values in the same way as in Experiment 1. This similarity

graph is unlikely to be aligned with respect to the true dose-response values for Age Group 2, so

we will use dynamic updating in this experiment.

We assume that the underlying dose-response curves for both groups follow the Brain-Cousens

model χ(v; c) = c1 +
c2−c1+c3v

exp(1+c5(log(v)−log(c4)))
with different parameters (Ritz et al. 2015), as shown in

Figure 5. We randomly choose k= 10 doses from U [0,1000] as alternatives. Each of them has mean

µi = χ2(vi) and standard deviation σi = 0.1µi + 2, i = 1, . . . , k. Figure 6 shows that SIGD with

S-index selection achieves the best performance.

6.3. Experiment 3: M/G/1 Queues

This experiment is taken from Qu et al. (2015) with a few modifications. There are 20 alternatives,

each of which corresponds to a first-come-first-serve (FCFS) M/G/1 queue. Arrivals to each queue
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Figure 7 PCS and EOC results with standard error bounds for Experiment 3 based on 10000 independent repli-
cations (20 macro-replications, 250 micro-replications.

follow a Poisson process with rate 0.05, and the service times of the ith queue are i.i.d. according

to a generalized Pareto distribution with scale parameter ςi, i= 1, ...,20, set as 1
0.15+0.005i

, location

parameter li =
ςi(0.1i+1)

10
and shape parameter 1

4
. We assume that we know the true steady-state

waiting time of the last 5 queues, and our objective is to find the slowest queue among the first

15. The true mean steady-state waiting time (used as the value µi) can be calculated using the

Pollaczek-Khinchin formula.

For each queue, a single experiment consists of simulating the queue until 500 customers have

been served and averaging the waiting time of the last 200 customers. Note that this value may not

be exactly normally distributed. We run 200000 macro-replications in advance to estimate the true

variance. Prior values y0i for the 15 queues with unknown waiting times are obtained by applying

simple linear regression to the 5 queues with known waiting times, and S0 is constructed from

these values in the same way as in Experiments 1-2. We apply dynamic updating of the similarity

structure with κtol = 0.05. The results are shown in Figure 7. The best performance is achieved by

SIGD with either selection criterion.

6.4. Experiment 4: Rosenbrock Test Function

The Rosenbrock function is a well-known benchmark in the continuous optimization literature. The

function is defined on R2 as f (u) = (1−u1)
2 +100(u2−u2

1)
2. For the purposes of this experiment,

suppose that our alternatives correspond to pairs of values taken from the set {0,0.25,0.5,0.75,1}.
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Figure 8 PCS and EOC results with standard error bounds for Experiment 4 based on 10000 independent repli-
cations (20 macro-replications, 250 micro-replications.

Thus, there are 25 alternatives; the mean of alternative i is the negative of the corresponding

Rosenbrock function value, and the standard deviation of the simulation noise is given by σi =

0.2µi +2.

We further suppose that we already know the true function values for 9 other points whose

coordinates are chosen randomly from U [0,1]. We perform 2-degree polynomial regression on these

values to obtain predictions y0i for the 25 alternatives of interest. The initial similarity structure S0

is constructed from these values in the same way as in the other experiments. The results, shown

in Figure 8, show that SIGD and SIMA with S-index selection achieve the best performance, with

SIGD performing better in the early stages of sampling, and SIMA pulling ahead later.

6.5. Summary of Results and Computation Time

In Experiment 1, we saw that our proposed algorithms can outperform the benchmark methods

when the prior similarity matrix S0 is sufficiently informative. In practice, it is unlikely that

prior information is sufficient to provide accurate information about the relationships between the

unknown performance values. We have seen, however, that the advantages of SIGD and SIMA can

Table 1 Average computation time (ms) (including

simulation) over 100 independent macro-replications.

k SIGD SIMA OCBA CKG
Experiment 1 31 0.22 0.13 0.09 2.09
Experiment 2 10 0.25 0.09 0.10 0.64
Experiment 3 15 0.32 0.18 0.21 1.18
Experiment 4 25 0.21 0.08 0.12 1.24
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be recovered when the similarity matrix is updated using the permutation strategy of Section 5.

Furthermore, both methods are more computationally efficient than CKG, the only benchmark

method with the ability to consider similarity information, because CKG uses a time-consuming

sorting step when calculating the expected value of information. The average computation time

for each experiment, conducted on a 3.6 GHz Intel Core i7 PC with 16 GB of RAM, is reported in

Table 1.

7. Conclusion

We have presented a new framework for using similarity between alternatives in ranking and selec-

tion to enable more efficient identification of the best alternative. Because the S-index similarity

measure is built into the selection step, we retain the computational efficiency of traditional meth-

ods that model each alternative independently of the others.

In addition, we have developed two allocation methods adapted to the new selection criterion.

The first is based on a mathematical program that optimizes the probability of correct selection.

To avoid having to repeatedly solve the mathematical program to optimality, we have developed a

novel sequential algorithm based on reduced gradient methods from numerical optimization. The

second approach uses a simple myopic calculation based on the Bayesian value of information. Both

approaches can be integrated with a scheme for dynamically updating the similarity structure based

on new information, thus avoiding the need to rely on inaccurate or misleading prior information.

Numerical experiments show that both procedures perform well with this additional subroutine.

In practice, the quality of the similarity information used to calculate S-indices is critical. Our

dynamic updating scheme was effective in utilizing this information to learn the similarity (or Q)

matrix, but developing ways to tailor the similarity structure to specific problem settings is key

to practical implementation of the algorithms developed here and thus an important avenue for

future research.
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Appendix A: Convergence Analysis of Algorithm 2

Theorems 5 and 6 are proved below, in Sections A.3 and A.4. Before proceeding to these proofs,

we first give some necessary background and preliminary technical results in Sections A.1 and A.2.

The proofs of other results stated in the paper are deferred to Section B.

A.1. Properties of the Dual Objective Function

We now show some useful properties of the dual objective g (· ; yn). First, note that ȳ= limn→∞ yn

is always well-defined: if Nn
j →∞, then ynj → µj, whereas if supnN

n
j <∞, the sample mean is only

updated finitely many times. Theorem 5 will show that ȳ= µ, but at the moment this has not yet

been established.

Let i′ = argmaxj [Qȳ]j be the alternative selected under the limiting estimates ȳ. Similarly, let

āi,j = ai,j (ȳ). From the definition of ai,j, it is easy to see that

|ai,j (yn)− āi,j| ≤Ka∥yn− ȳ∥, j = 1, ..., k, i ̸= i′. (32)

Consequently, we have ai,j (y
n)→ āi,j, so the sequence {ai,j (yn)} is bounded. We can therefore let

amax
i,j = sup

n
ai,j (y

n) , amin
i,j = inf

n
ai,j (y

n) ,

and we will have amin
i,j > 0 for any i ̸= i′ satisfying Qi′,j ̸= Qi,j. This fact leads to the following

technical lemma establishing a kind of uniform convergence of g.

Lemma 1. There exists a constant Kg > 0 such that, for all n,

|g(γ;yn)− g(γ; ȳ)| ≤Kg∥yn− ȳ∥, ∀γ ∈ G.

Consequently, g(γ;yn) converges uniformly to g(γ; ȳ) on G.

Proof. For any γ ∈ G,

|g (γ;yn)− g (γ; ȳ)| =

∣∣∣∣∣∣
k∑

j=1

√∑
i ̸=i′

γiai,j (yn)−
k∑

j=1

√∑
i ̸=i′

γiāi,j

∣∣∣∣∣∣
≤

k∑
j=1

∑
i ̸=i′ γi |ai,j (yn)− āi,j|√∑

i ̸=i′ γiai,j (y
n)+

√∑
i̸=i′ γiāi,j

≤
k∑

j=1

∑
i:Qi′,j ̸=Qi,j

γi |ai,j (yn)− āi,j|√
γiai,j (yn)+

√
γiāi,j

=
k∑

j=1

∑
i:Qi′,j ̸=Qi,j

√
γi |ai,j (yn)− āi,j|√
ai,j (yn)+

√
āi,j

≤
k∑

j=1

∑
i:Qi′,j ̸=Qi,j

|ai,j (yn)− āi,j|√
āi,j

(33)

≤ k2Ka√
mini:Qi′,j ̸=Qi,j

amin
i,j

∥y− ȳ∥, (34)
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where (33) is obtained by γi ∈ [0,1] and ani,j ≥ 0, and (34) holds from (32) and the boundedness of

{ai,j (yn)}. □

Lemma 2. There exist constants 0< b1 < b2 such that 0< b1 ≤ g (γ;yn)≤ b2 for all n and all γ ∈ G.

Proof: By Lemma 1, it suffices to show that g (γ; ȳ) is bounded between two negative numbers.

It is easy to see that for any γ ∈ G,

g (γ; ȳ) =−
k∑

j=1

√∑
i ̸=i′

γiāi,j ≥−
k∑

j=1

√∑
i̸=i′

āi,j,

meaning that g (γ; ȳ) is bounded below by a strictly negative number. For the upper bound, we

have

g (γ; ȳ) =−
k∑

j=1

√∑
i̸=i′

γiāi,j ≤−
√∑

i ̸=i′

γiāi,i′ −
∑
j ̸=i′

√
γj āj,j < 0.

The proof is thus completed. □

Lemma 3. Let {γn} be the sequence generated by Algorithm 2, and suppose that

lim inf
n→∞

∑
i̸=i′

γn−1
i ai,j (y

n)> 0 (35)

for all j. Then, there exists a constant K > 0 such that, for all n,

∥∇g
(
γn−1;yn

)
−∇g

(
γn−1;µ

)
∥ ≤K∥yn−µ∥.

Proof. From (32), for any j and γn−1 ∈ G, we have∣∣∣∣∣∣
∑
i ̸=i′

γn−1
i ai,j (y

n)−
∑
i̸=i′

γn−1
i ai,j (µ)

∣∣∣∣∣∣=
∣∣∣∣∣∣
∑
i ̸=i′

γn−1
i (ai,j (y

n)− ai,j (µ))

∣∣∣∣∣∣≤Ka∥yn−µ∥. (36)

From (35), it also follows that

lim inf
n→∞

∑
i̸=i′

γn−1
i ai,j (µ)> 0.

Therefore, there exists a constant b > 0 such that∑
i ̸=i′

γn−1
i ai,j (y

n)> b,
∑
i̸=i′

γn−1
i ai,j (µ)> b

for all n and for all j. Then, for i ̸= i′,∣∣[∇g (γn−1;yn
)]

i
−
[
∇g
(
γn−1;µ

)]
i

∣∣
=

∣∣∣∣∣
k∑

j=1

ai,j (y
n)∑

i ̸=i′ γ
n−1
i ai,j (yn)

−
k∑

j=1

ai,j (µ)∑
i ̸=i′ γ

n−1
i ai,j (µ)

∣∣∣∣∣
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≤
k∑

j=1

∣∣∣ai,j (yn)(∑i ̸=i′ γ
n−1
i ai,j (y

n)
)
− ai,j (µ)

(∑
i ̸=i′ γ

n−1
i ai,j (µ)

)∣∣∣(∑
i ̸=i′ γ

n−1
i ai,j (yn)

)(∑
i ̸=i′ γ

n−1
i ai,j (µ)

)
≤ 1

b2

k∑
j=1

∣∣∣∣∣∣ai,j (yn)
∑

i ̸=i′

γn−1
i ai,j (y

n)

− ai,j (µ)
∑

i ̸=i′

γn−1
i ai,j (µ)

∣∣∣∣∣∣
≤ 1

b2

k∑
j=1

∣∣∣∣∣∣ai,j (yn)
∑

i ̸=i′

γn−1
i ai,j (y

n)

− ai,j (yn)
∑

i ̸=i′

γn−1
i ai,j (µ)

∣∣∣∣∣∣+∣∣∣∣∣∣ai,j (yn)
∑

i ̸=i′

γn−1
i ai,j (µ)

− ai,j (µ)
∑

i ̸=i′

γn−1
i ai,j (µ)

∣∣∣∣∣∣


≤ 1

b2

k∑
j=1

max
Qi′,j ̸=Qi,j

amax
i,j

∣∣∣∣∣∣
∑

i̸=i′

γn−1
i ai,j (y

n)

−
∑

i ̸=i′

γn−1
i ai,j (µ)

∣∣∣∣∣∣+ |ai,j (yn)− ai,j (µ)|


≤
2kKamaxj maxQi′,j ̸=Qi,j

amax
i,j

b2
∥yn−µ∥,

which completes the proof. □

A.2. Properties of Algorithm 2

Below, we discuss several properties of the sequential algorithm that explain various design choices

used in its construction. We also prove properties that will be important later for showing the main

results.

Nondifferentiability of g. Step 0′ of Algorithm 2 is designed to avoid instability resulting from

γn−1 being too close to the boundary of the feasible region

G =
{
γ ∈Rk−1 : γi ≥ 0, 1Tγ = 1

}
.

This is because g (γ;y) is nondifferentiable only on the boundary, as we will now show. First, from

the definition of g it follows that ∇g is not well-defined if and only if there exists j ∈ {1, ..., k} such

that ∑
i ̸=i∗(y)

γiai,j (y) = 0, (37)

where i∗ (y) = argmaxi yi.

We first observe that ai,j > 0 for all j and i ̸= i∗. Since Qi∗,i∗ −Qi,i∗ > 0 by Theorem 1, we have

ai,i∗ > 0. On the other hand, for j ̸= i∗, we have Qi∗,j −Qj,j < 0 by the same result, so aj,j > 0.

Since all γi, ai,j ≥ 0, it follows that (37) can hold if and only if γj = 0. This motivates Step 0′, in

which we perturb γn−1 to avoid this situation. Nonetheless, the issue of nondifferentiability is not

critical to the long-term performance of the algorithm, as shown in the following result.
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Lemma 4. Let γ ∈ G and suppose that
∑

i ̸=i∗ γiai,j (y)> 0 for all j. Then,
∑

i ̸=i∗ γiai,j (y
′)> 0 for

all j and y′.

Proof. From the premise, we know that for each j, there exists at least one i with both

γi, ai,j (y)> 0. Note that ai,j (y) =
σ2
jP

2
i,j

(PT
i y)

2 , so changing y to y′ will not change whether or not ai,j

is zero or nonzero. The conclusion then follows. □

Since i∗,n converges to i′, for all sufficiently large n, the sum
∑

i ̸=i∗ γiai,j (y) will be computed for

a fixed i′. Once this happens, Lemma 4 ensures that Step 0′ will no longer be invoked after some

finite number of iterations.

Sufficiency of reduced direction set. Because the dual problem (14) has a fairly simple feasible

region, verifying the optimality of a dual solution can also be simplified. Given γ ∈ G, the set of all

feasible directions is given by

D (γ) =
{
d∈Rk−1 : 1Td= 0, di ≥ 0 if γi = 0

}
.

However, Lin et al. (2009) showed that D (γ) can be generated by a much smaller set

Dh (γ) = {ei− eh : i ̸= h}
⋃
{eh− ei : i ̸= h,γi > 0}

for any h with γh > 0. In other words, Cone (Dh (γ)) =D (γ). Consequently, we obtain the following

simplified optimality condition.

Lemma 5. (Lin et al. 2009) Fix any h with γh > 0. A dual solution γ ∈ G is a stationary point of

(14) if and only if ∇g (γ;y) is well-defined and

∇g (γ;y)T d≥ 0, ∀d∈Dh (γ) .

Lemma 5 motivates the use of a reduced direction set in Step 2 of Algorithm 2, as well as the

arbitrary selection of h in Step 1. Note that, for η small enough, there will always be at least one

h with γh ≥ η due to the equality constraint in G.

Modified line search. Step 3 in Algorithm 2 uses the modified line search procedure in Algorithm

3. We now prove that this procedure terminates in finite time. The proof is based on Proposition

4.1 in Lin et al. (2009) and Lemma 3.1 in Nocedal and Wright (2006), and also uses Lemmas 5

and 3 from Section A.1.

Note that, in Step 3 of Algorithm 2, we may not call the line search procedure in every time

stage n. Thus, technically, the following result should be applied to the subsequence of time stages

at which line search is called; however, to avoid overcomplicating the notation, we work with the

sequence of distinct iterates obtained from line search and relabel their indices as {1,2, ...}.
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Lemma 6. Let γn be the solution obtained from the nth time that line search is called (thus, γn−1

denotes the dual solution obtained from the previous call, yn is the vector of most recent sample

means, and dn is the most recent descent direction). Then:

(i) At step n, a stepsize sn can always be found in a finite number of iterations such that

conditions (20), (21) and (22) are satisfied with γ = γn−1 and y= yn.

(ii) Suppose that γn→ γ̄ and

lim
n→∞

g
(
γn−1;µ

)
− g

(
γn−1 + sndn;µ

)
= 0.

Then,

lim
n→∞

smax
(
dn, γn−1

)
∇g
(
γn−1;µ

)T
dn = 0 (38)

lim
n→∞

smax
(
dn, γn−1

)
∇g
(
γn−1;yn

)T
dn = 0. (39)

Proof. We know that ∇g (γn−1;yn)
T
dn < 0 by Lemma 5. Since minj

∑
i ̸=i∗,n γiai,j (y

n) = 0 can

only occur on the boundary of G, condition (20) must be satisfied for any s ∈ (0, smax (dn, γn−1)).

Since g (· ; yn) is smooth on G, there must exist some s0 > 0 such that ∇g(γn−1 + sdn ; yn)Tdn <

0 for any s ∈ (0, s0). In other words, when the stepsize is small enough, condition (22) can be

neglected. Since g (·;yn) is bounded below by Lemma 2, while the mapping ℓ (s) = g (γn−1;yn) +

αs∇g (γn−1;yn)
T
dn is unbounded below, it follows that ℓ (s) must intersect g (γn−1 + sdn;yn). Let

s1 be the smallest such intersection point; then, for any s∈ (0, s1), condition (21) must be satisfied.

It is easy to see that there exists some positive integer m such that

τmsmax
(
dn, γn−1

)
<min

{
smax

(
dn, γn−1

)
, s0, s1

}
,

which is sufficient to establish (i).

With regard to (ii), (38) follows directly from Proposition 4.1(ii) in Lin et al. (2009), while (39)

follows from Lemma 3. □

A.3. Proof of Theorem 5

Proof. To establish the main result, it is sufficient to show

lim inf
n→∞

∑
i̸=i′

γn
i ai,j (y

n)> 0, (40)

and apply (15) together with Lemma 2. Note that we have replaced i∗,n in (40) by i′ = limn→∞ i∗,n

as in Section A.1. In the following, we assume without loss of generality that i∗,n = i′, as this will

be true for sufficiently large n and we are interested in the asymptotic behaviour of the algorithm.
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When j = i′, (40) follows from the boundedness of {ai,j (yn)}, established previously. Thus, it is

sufficient to handle the case j ̸= i′. We proceed by contradiction: suppose that there exists j ̸= i′

with

lim inf
n→∞

∑
i̸=i′

γn
i ai,j (y

n) = 0.

Then, there exists a subsequence {nt} such that
∑

i ̸=i′ γ
nt
i ai,j (y

nt)→ 0. Because {ai,j (yn)} is uni-
formly bounded, it must be the case that γnt

i → 0 for all i satisfying Qi′,j ̸=Qi,j.

Define

C = max
i ̸=i′

k∑
j′=1

√
amax
i,j′ ,

C1 =
mini:Qi′,j ̸=Qi,j

(
amin
i,j

)2∑
i:Qi′,j ̸=Qi,j

amax
i,j

,

c0 =
C1

C2
η.

Note that C1
C2 ≤ 1 and c0 ≤ η. Letting b1, b2 be the values in Lemma 2, choose ε satisfying

0< ε<min

 C1

C2

(
1+α′
√
η
+ α′

√
c0

)2 ,
C1(√

3
2
C
η
+ 3α′(b2−b1)

αη

)2 , c0,
η

3

 . (41)

There exists t0 such that, for any t > t0, γ
nt
i ≤ ε. Since the direction is in the form of eh − eh′ ,

h ̸= h′, h,h′ ̸= i′, the value of γnt−1 must be described by one and only one of the following three

cases:

1) For all i satisfying Qi′,j ̸=Qi,j, γ
nt−1
i ≤ c0.

2) There exists i satisfying Qi′,j ̸=Qi,j such that γnt−1
i ∈ (c0, η) and γnt−1

j′ ≤ ε for j′ ̸= i satisfying

Qi′,j ̸=Qj′,j.

3) There exists i satisfying Qi′,j ̸=Qi,j such that γnt−1
i ≥ η, and γnt−1

j′ ≤ ε for j′ ̸= i satisfying

Qi′,j ̸=Qj′,j.

We consider each case separately.

In case 1), ∑
i ̸=i′

γnt−1
i ant

i,j ≤ c0
∑

Qi′,j ̸=Qi,j

ant
i,j ≤ c0

∑
Qi′,j ̸=Qi,j

amax
i,j .

By assumption, γnt−1
i ≤ c0 ≤ η for all i satisfying Qi′,j ̸=Qi,j, and therefore the index hnt selected

in Step 1 of Algorithm 2 cannot be such an i. The corresponding component of the gradient

∇g(γnt−1;ynt) must then be bounded below, as can be seen from

[
∇g(γnt−1;ynt)

]
hnt

= −1

2

k∑
i=1

ahnt ,i (y
nt)√∑

j′ ̸=i′ γ
nt−1
j′ aj′,i (ynt)
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≥ −1

2

k∑
i=1

ahnt ,i (y
nt)√

γnt−1
hnt ahnt ,i (ynt)

= −1

2

k∑
i=1

√
ahnt ,i (ynt)

γnt−1
hnt

≥ − 1

2
√
η

k∑
i=1

√
ahnt ,i (ynt)

≥ − C

2
√
η
. (42)

On the other hand, for i satisfyingQi′,j ̸=Qi,j, the corresponding component of the gradient satisfies

[
∇g(γnt−1;ynt)

]
i
= −1

2

k∑
j′=1

ai,j′ (y
nt)√∑

j′′ ̸=i′ γ
nt−1
j′′ aj′′,j′ (ynt)

≤ − ai,j (y
nt)

2
√∑

j′′ ̸=i′ γ
nt−1
j′′ aj′′,j (ynt)

≤ −
amin
i,j

2
√
c0
∑

j′′:Qi′,j ̸=Qj′′,j
amax
j′′,j

≤ −
Camin

i,j

2
√
ηminj′′:Qi′,j ̸=Qj′′,j

amin
j′′,j

≤ − C

2
√
η

≤
[
∇g(γnt−1;ynt)

]
hnt

.

Therefore, the direction dnt chosen in Step 2 cannot be ehnt − ei. Consequently, γnt
i ≥ γ

nt−1
i , i.e., if

γnt−1
i ≤ c0 and Qi′,j ̸=Qi,j, then the ith component of γnt−1 cannot decrease at step nt. Therefore,

the only possible way to have
∑

i ̸=i′ γ
nt
i ai,j (y

nt)→ 0 is γnt
i ≡ 0 for all i satisfying Qi′,j ̸=Qi,j, but

this is prevented by Step 0′ of Algorithm 2 and condition (20).

In case 2), similarly, we have hnt ̸= i for any i satisfying Qi′,j ̸= Qi,j. To have γnt
i ≤ ε for all

such i, the direction dnt chosen in Step 2 must be ehnt − ei with maximum feasible stepsize

smax (dnt , γnt−1) = γnt−1
i along this direction, so that the Algorithm can enter into the line search

step at nt. Furthermore, the selected stepsize snt must satisfy snt ≥ c0− ε and the modified Wolfe

condition

∇g (γnt ;ynt)
T
dnt > 0 ⇒ ∇g (γnt ;ynt)

T
dnt ≤ α′

∣∣∣∇g (γnt−1;ynt
)T
dnt

∣∣∣ , (43)

where γnt = γnt−1 + sntdnt . Since dnt = ehnt − ei, we have γnt
hnt ≥ γnt−1

hnt ≥ η. Similarly to (42), we

can obtain [
∇g
(
γnt−1;ynt

)]
hnt
∈
[
− C

2
√
η
,0

]
, [∇g (γnt ;ynt)]hnt ∈

[
− C

2
√
η
,0

]
.
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Similarly, since γnt−1
i > c0, we also have

[
∇g
(
γnt−1;ynt

)]
i
∈
[
− C

2
√
c0
,0

]
.

Then (43) yields

[∇g (γnt ;ynt)]i ≥ [∇g (γnt ;ynt)]hnt −α′
∣∣[∇g (γnt−1;ynt

)]
hnt
−
[
∇g
(
γnt−1;ynt

)]
i

∣∣
≥ [∇g (γnt ;ynt)]hnt −α′ (∣∣[∇g (γnt−1;ynt

)]
hnt

∣∣+ ∣∣[∇g (γnt−1;ynt
)]

i

∣∣)
≥ − C

2
√
η
−α′

(
C

2
√
η
+

C

2
√
c0

)
= −C

2

(
1+α′

√
η

+
α′
√
c0

)
. (44)

Since, by assumption, we have γnt
i ≤ ε for any i satisfying Qi′,j ̸=Qi,j, it follows that∑
i ̸=i′

γnt
i ai,j (y

nt)≤ ε
∑

i:Qi′,j ̸=Qi,j

amax
i,j ,

and, consequently,

[∇g (γnt ;ynt)]i ≤−
amin
i,j

2
√
ε
∑

i:Qi′,j ̸=Qi,j
amax
i,j

<−C
2

(
1+α′

√
η

+
α′
√
c0

)
, (45)

which contradicts (44). Therefore, for case 2), it is not possible to have γnt
i ≤ ε for all i satisfying

Qi′,j ̸=Qi,j.

In case 3), there are two subcases: either (i) Qi′,j =Qhnt ,j, or (ii) i= hnt . Subcase (i) is handled

similarly to case 2, resulting in the desired contradiction. Therefore, we can focus on the second

subcase i= hnt , and we have [
∇g
(
γnt−1;ynt

)]
i
≥− C

2
√
η

since γnt−1
i > η. It is necessary for the value of γnt−1

i to decrease such that γnt
i ≤ ε, which implies

that dnt = ei′′ − ei for some i′′ ̸= i, i′ and

snt ≥ η− ε≥ 2η

3
> ε.

First of all, notice that i′′ cannot satisfy Qi′,j ̸=Qi′′,j, otherwise we would have γnt
i′′ = γnt−1

i′′ +snt > ε.

Then, condition (21) yields

g (γnt ;ynt) ≤ g
(
γnt−1;ynt

)
+αsnt∇g

(
γnt−1;ynt

)T
dnt

= g
(
γnt−1;ynt

)
+αsnt

(
∇
[
g
(
γnt−1;ynt

)]
i′′
−
[
∇g
(
γnt−1;ynt

)]
i

)
.
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Then,

0 > ∇
[
g(γnt−1;ynt)

]
i′′
−
[
∇g(γnt−1;ynt)

]
i

≥ 1

αsnt

(
g (γnt ;ynt)− g

(
γnt−1;ynt

))
≥ −b2− b1

αsnt

≥ −3 (b2− b1)
2αη

,

where the third line is obtained by Lemma 2, and the fourth line is due to the fact that snt ≥ 2η
3
.

Since γnt
i′′ = γnt−1

i′′ + snt ≥ 2η
3
, we have

[∇g (γnt ;ynt)]i′′ ≥−
√
3C

2
√
2η
.

Then, repeating the arguments of (43) and (44), we have

[∇g (γnt ;ynt)]i ≥ [∇g (γnt ;ynt)]i′′ −α
′
∣∣[∇g (γnt−1;ynt

)]
i′′
−
[
∇g
(
γnt−1;ynt

)]
i

∣∣
≥ −

√
3C

2
√
2η
−α′

(
3 (b2− b1)

2αη

)
. (46)

By the definition of ε, similar to (45), we find that (46) contradicts the assumption that γnt
i ≤ ε

for any i satisfying Qi′,j ̸=Qi,j. This completes the proof. □

A.4. Proof of Theorem 6

With Theorem 5, we can now replace i∗,n by i∗ in all calculations made by the algorithm, since

we now know that limn→∞ yn = µ. We first prove a technical lemma showing that ∇g is Lipschitz

continuous in γ (previously Lemma 3 considered Lipschitz continuity in the estimated value y).

Lemma 7. Let {γn} be the sequence generated by Algorithm 2, and define Bn =Conv ({γn−1, γn}),

n= 1,2, .... There exists a constant Kγ > 0, such that for all n,

∥∇g (γ;yn)−∇g (γ′;yn)∥ ≤Kγ∥γ− γ′∥, ∀γ, γ′ ∈Bn.

Proof. From the boundedness of {ai,j (yn)}, we can see that, for any j and any γ, γ′ ∈ G,∣∣∣∣∣∑
i̸=i∗

(γi− γ′
i)a

n
i,j

∣∣∣∣∣≤ max
i,j :Qi∗,j ̸=Qi,j

amax
i,j ∥γ− γ′∥∞ ≤Kr∥γ− γ′∥, (47)

for some constant Kr > 0. Combining (40) with (47), we have

lim inf
n→∞

∑
i ̸=i∗

γn
i ai,j (y

n)> 0.
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Therefore, there exists a constant br > 0 such that

∑
i ̸=i∗

γn−1
i ai,j (y

n)≥ br,
∑
i ̸=i∗

γn
i ai,j (y

n)≥ br

for all j and all n. Since γ 7→
∑

i ̸=i∗ γiai,j (y
n) is an affine function, we have

∑
i ̸=i∗

γiai,j (y
n)≥ br

for any γ ∈Bn. Now, for any i ̸= i∗ and any γ, γ′ ∈Bn, we obtain

|[∇g (γ;yn)]i− [∇g (γ′;yn)]i| =

∣∣∣∣∣
k∑

j=1

ai,j (y
n)∑

i ̸=i∗ γiai,j (y
n)
−

k∑
j=1

ai,j (y
n)∑

i̸=i∗ γ
′
iai,j (y

n)

∣∣∣∣∣
≤

k∑
j=1

ai,j (y
n)

∣∣∣∑i̸=i∗ γ
′
iai,j (y

n)−
∑

i ̸=i∗ γiai,j (y
n)
∣∣∣(∑

i̸=i∗ γiai,j (y
n)
)(∑

i ̸=i∗ γ
′
iai,j (y

n)
)

≤
kKrmaxi,j:Qi∗,j ̸=Qi,j

amax
i,j

b2r
∥γ− γ′∥,

which completes the proof. □

We now prove Theorem 6. Let γ̄ ∈ G be a limit point of {γn−1}, so that there exists a subsequence

γnt−1→ γ̄. We can pick h such that γ̄h ≥ η and D (γ̄) =Cone (Dh (γ̄)). Furthermore, there exists t0

such that, for all t > t0, this same h satisfies γnt−1 ≥ η. Since hnt is chosen from among all such h

with equal probability, we can further extract a subsequence {nu} ⊆ {nt} such that hnu ≡ h for all

sufficiently large u.

Suppose that γ̄ is not a stationary point of (14) under the true values µ. Then, there is a feasible

d̄∈Dh (γ̄) such that

∇g (γ̄;µ)T d̄ < 0. (48)

By the convergence of {γnu−1}, we have d̄ ∈Dh (γnu−1) for all sufficiently large u. Since yn→ µ,

we can find c1 > 0 such that

∇g
(
γnu−1;ynu

)T
d̄≤−c1 < 0 (49)

for all sufficiently large u. Combining the convergence of {γnu−1} with Proposition A.1 in Lin et al.

(2009), we obtain a constant c2 > 0 such that smax
(
d̄, γnu−1

)
≥ c2 for all sufficiently large u. Then,

at iteration nu, Step 2 of Algorithm 2 yields

smax
(
dnu , γnu−1

)
∇g
(
γnu−1;ynu

)T
dnu ≤ smax

(
d̄, γnu−1

)
∇g
(
γnu−1;ynu

)T
d̄≤−c1c2 < 0. (50)
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Define three subsequences

E1 =

{
n : V n ≥max

{
−κ0,−

(
logn

n

)1/4
}}

,

E2 =

{
n : smax

(
dn, γn−1

)
V n ≥max

{
−κ0,−

(
logn

n

)1/2
}}

,

E3 = {1,2, ...} \ (E1 ∪E2) .

Notice that the line search method is invoked, and thus γn is updated, only along E3. We also

observe that

lim inf
n∈E1

smax
(
dn, γn−1

)
V n ≥ 0, lim inf

n∈E2

smax
(
dn, γn−1

)
V n ≥ 0. (51)

Along E3, we do line search, which terminates when sn satisfies (21)-(22).

Using Lemma 7 and the convexity of g (·;yn), we obtain

g
(
γn−1 + sdn;yn

)
≤ g

(
γn−1;yn

)
+ s∇g

(
γn−1;yn

)T
dn +

s2Kγ

2
∥dn∥22.

Then, (21) will be satisfied if we choose s such that

g
(
γn−1;yn

)
+ s∇g

(
γn−1;yn

)T
dn +

λ2Kγ

2
∥dn∥22 ≤ g

(
γn−1;yn

)
+αs∇g

(
γn−1;yn

)T
dn,

so

s≤ (α− 1)∇g (γn−1;yn)
T
dn

Kγ

=
(α− 1)V n

Kγ

.

Define sK,n = (α−1)V n

Kγ
and s∗,n = argmins g (γ

n−1 + sdn). Let sW,n be the largest s that satisfies

(22). By the convexity of g (·;yn), we have sW,n ≥ s∗,n.

Now suppose that smax (dn, γn−1)≤min{sK,n, sW,n}. It follows that sn = smax (dn, γn−1) and

g
(
γn−1;yn

)
− g (γn;yn)≥−αsmax (dn)V n. (52)

On the other hand, if smax (dn, γn−1) >min{sK,n, sW,n}, we consider two cases. In the first case,

sW,n ≥ sK,n, so sn ≥ τsK,n, and

g
(
γn−1;yn

)
− g (γn;yn)≥ ατ (1−α) (V n)

2

Kγ

. (53)

In the second case, sK,n ≥ sW,n. Then sn ∈ [τs∗,n, sW,n]. Since g(·;yn) is convex, we have

g
(
γn−1 + sndn;yn

)
≤max

{
g
(
γn−1 + τs∗,ndn;yn

)
, g
(
γn−1 + sW,ndn;yn

)}
.
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Since

g
(
γn−1;yn

)
− g

(
γn−1 + τs∗,ndn;yn

)
≥ g

(
γn−1;yn

)
−
(
(1− τ)g

(
γn−1;yn

)
+ τg

(
γn−1 + s∗,ndn;yn

))
= τ

(
g
(
γn−1;yn

)
− g

(
γn−1 + s∗,ndn;yn

))
≥ τ

(
g
(
γn−1;yn

)
− g

(
γn−1 + sK,ndn;yn

))
≥ ατ (1−α) (V n)2

Kγ

,

and, similarly,

g
(
γn−1;yn

)
− g

(
γn−1 + sW,ndn;yn

)
≥ g

(
γn−1;yn

)
− g

(
γn−1 + sK,ndn;yn

)
≥ α (1−α) (V n)

2

Kγ

,

we again obtain (53). Combining (52) and (53), we arrive at

g
(
γn−1;yn

)
− g (γn;yn)≥min

{
ατ (1−α) (V n)2

Kγ

,−ατsmax
(
dn, γn−1

)
V n

}
.

Combining Lemma 1 with the law of the iterated logarithm, we have

g
(
γn−1;µ

)
− g (γn;µ)

= g
(
γn−1;µ

)
− g

(
γn−1;yn

)
+ g

(
γn−1;yn

)
− g (γn;yn)+ g (γn;yn)− g (γn;µ)

≥ min

{
ατ (1−α) (V n)

2

Kγ

,−ατsmax
(
dn, γn−1

)
V n

}
+
(
g
(
γn−1;µ

)
− g

(
γn−1;yn

))
+(g (γn;yn)− g (γn;µ))

= min

{
ατ (1−α) (V n)

2

Kγ

,−ατsmax
(
dn, γn−1

)
V n

}
+O

(√
log logn

n

)
.

By the definition of E3, we have

g
(
γn−1;µ

)
− g (γn;µ)≥Ω

(√
logn

n

)
+O

(√
log logn

n

)
, n∈E3,

which implies that, for sufficiently large n ∈ E3, we have g (γn−1;µ) ≥ g (γn;µ). In other words,

the effect of estimation error is removed along E3, and the objective value becomes monotonically

decreasing.

Let w (n) =max{w0 ∈E3 :w0 <n}. Since γn is updated only along E3, we have

g
(
γw(n);µ

)
= g

(
γw(n)+1;µ

)
= · · ·= g

(
γn−1;µ

)
≥ g (γn;µ) . (54)

Since g(·;µ) is bounded below, the sequence {g (γn;µ) : n∈E3} converges. Since g (γ;µ) is contin-
uous in γ ∈ G, it follows that {γn : n∈E3} also converges to some limit γ̂ ∈ G. Taking limits of

both sides of (54) yields

lim
n∈E3

g
(
γn−1;µ

)
− g

(
γn−1 + sndn;µ

)
= 0.
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Applying Lemma 6(ii), we have

lim
n∈E3

smax
(
dn, γn−1

)
V n = 0. (55)

From (51) and (55), we have lim infn→∞ smax (dn, γn−1)V n ≥ 0, which contradicts (50). Therefore,

γ̄ must be a stationary point.

Appendix B: Other Proofs

Below, we give the full proofs for results that were stated in the text.

B.1. Proof of Theorem 1

Proof. (1) can be directly concluded from the fact that the inverse of Q, I + λL, is positive

semidefinite and has largest eigenvalue 1 with eigenvector 1.

To show (2), we recall that Sun et al. (2019) showed that the linear system (I + λL)z = y can

be solved using an iterative algorithm

z(0) =y, z(t) = z(t−1) + a
(
y− (I +λL)z(t−1)

)
, t≥ 1, (56)

which is guaranteed to converge to the true solution if a > 0 is sufficiently small. For any i, (56)

can be rewritten as

z
(t)
i =ayi +

(
1− a− a

∑
j ̸=i

Si,j

)
z
(t−1)
i + aλ

∑
j ̸=i

Si,jz
(t−1)
j . (57)

Consequently, when a is sufficiently small, yi ≥ 0 implies z
(t)
i ≥ 0, i= 1, ..., k. This implies that every

entry of Q is non-negative.

For (3), let Q= [Q1,Q2, ...,Qk], we have (I + λL)Ql = el, where el = [0, ...,0,1,0, ...,0]T , 1 is the

lth element. From (3), we know Ql is the solution to the following optimization problem:

argmin
x∈Rk

k∑
i ̸=l

x2
i +(xl− 1)2 +

λ

2

∑
1≤i,j≤k

Si,j(xi−xj)
2. (58)

Then we prove the results by contradiction. Assume the optimal solution is x∗ and define Ω1 = {i :
x∗
i >x

∗
l }. Suppose x∗

l ̸=maxi x
∗
i , i.e., Ω1 ̸= ∅. Now we construct x̄ by

x̄i =

{
x∗
i , i /∈Ω1

x∗
l , i∈Ω1

.

Denote the value of the objective in (58) by ψ(x) for a given x. Then,

ψ(x̄) =
k∑

i ̸=l

x̄2
i +(x̄l− 1)2 +

λ

2

∑
1≤i,j≤k

Si,j(x̄i− x̄j)
2 (59)

<
k∑

i ̸=l

(x∗
i )

2 +(x∗
l − 1)2 +

λ

2

∑
1≤i,j≤k

Si,j(x̄i− x̄j)
2. (60)

Now we discuss the term Si,j(x̄i− x̄j)
2 for four cases.
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1) for i /∈Ω1 and j ∈Ω1, we have x∗
i ≤ x∗

l <x
∗
j , therefore, (x̄i− x̄j)

2 = (x∗
i −x∗

l )
2 < (x∗

i −x∗
j )

2;

2) for i∈Ω1 and j /∈Ω1, same as case (1);

3) for i /∈Ω1 and j /∈Ω1, (x̄i− x̄j)
2 = (x∗

i −x∗
j )

2;

4) for i∈Ω1 and j ∈Ω1, (x̄i− x̄j)
2 = (x∗

l −x∗
l )

2 = 0≤ (x∗
i −x∗

j )
2.

In summary, we have

ψ(x̄)<
k∑

i ̸=l

(x∗
i )

2 +(x∗
l − 1)2 +

λ

2

∑
1≤i,j≤k

Si,j(x
∗
i −x∗

j )
2 =ψ(x∗),

which contradicts the assumption that x∗ is optimal. Therefore, x∗
l =maxj x

∗
j . We further prove

that x∗
l >maxi̸=l x

∗
i . From (1) and (2) in this theorem, we know that x∗

i ∈ [0,1] and x∗ can’t be a

multiple of 1. Therefore, there must be a positive gap between x∗
l and some other component of

x∗. Let Ω2 = {i ̸= l : x∗
i = x∗

l } and suppose Ω2 ̸= ∅. Let ε be a positive number less than min{x∗
l −

maxj∈Ωc
2\{l} x

∗
j ,mini∈Ω2

{ 2x∗l
1+λSl,i

}}. Construct x̄ by

x̄i =

{
x∗
i , i /∈Ω2

x∗
l − ε, i∈Ω2

.

Notice that for i∈Ω2 and j ∈Ωc
2 \ {l},

(x̄i− x̄j)
2 < (x∗

i −x∗
j )

2.

Then we have

ψ(x̄)−ψ(x∗)<
∑
i∈Ω2

x̄2
i −

∑
i∈Ω2

x∗2
i +λ

∑
i∈Ω2

Sl,i(x
∗
l − x̄i)

2

=
∑
i∈Ω2

(
(x∗

l − ε)2− (x∗
l )

2 +λSl,i(x
∗
l − (x∗

l − ε))2
)

=
∑
i∈Ω2

ε ((1+λSl,i)ε− 2x∗
l )< 0,

which leads to a contradiction. □

B.2. Proof of Theorem 2

Here, we give a corrected version of the proof of Theorem 2 (Sun et al. 2019), which had Di,i =∑
j ̸=iSi,j, where Si,i is not included in the sum. In their proof, they manipulated Si,i such that

Di,i =Dj,j, i ̸= j, which is not consistent with their setting. We follow the same general arguments,

but correct the technical issues.

Proof. At iteration 0, let z(0) = y, we have z
(0)
1 ≥ z

(0)
2 ≥ · · · ≥ z

(0)
k . At iteration t > 0, assume

z
(t−1)
1 ≥ z(t−1)

2 ≥ · · · ≥ z(t−1)
k holds, using the iterative algorithm in (56), we need to show that

z
(t)
i ≥ z

(t)
i+1 holds for any 1≤ i≤ k− 1. Since

z
(t)
i = ayi +(1− a)z(t−1)

i + aλ
∑
j ̸=i

Si,j

(
z
(t−1)
j − z(t−1)

i

)
, (61)

z
(t)
i+1 = ayi+1 +(1− a)z(t−1)

i+1 + aλ
∑
j ̸=i+1

Si+1,j

(
z
(t−1)
j − z(t−1)

i+1

)
, (62)
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taking the difference, we have:

z
(t)
i − z

(t)
i+1 =a(yi− yi+1)+ (1− a)

(
z
(t−1)
i − z(t−1)

i+1

)
+aλ

(∑
j ̸=i

Si,j

(
z
(t−1)
j − z(t−1)

i

)
−
∑
j ̸=i+1

Si+1,j

(
z
(t−1)
j − z(t−1)

i+1

))
.

Since∑
j ̸=i

Si,j

(
z
(t−1)
j − z(t−1)

i

)
−
∑
j ̸=i+1

Si+1,j

(
z
(t−1)
j − z(t−1)

i+1

)
=
∑
j<i

Si,j

(
z
(t−1)
j − z(t−1)

i

)
−
∑
j<i

Si+1,j

(
z
(t−1)
j − z(t−1)

i+1

)
+
∑

j>i+1

Si,j

(
z
(t−1)
j − z(t−1)

i

)
−
∑

j>i+1

Si+1,j

(
z
(t−1)
j − z(t−1)

i+1

)
− 2Si,i+1

(
z
(t−1)
i − z(t−1)

i+1

)
=
∑
j<i

Si,j

(
z
(t−1)
j − z(t−1)

i

)
−
∑
j<i

Si+1,j

(
z
(t−1)
j − z(t−1)

i+1

)
+
∑

j>i+1

Si+1,j

(
z
(t−1)
i+1 − z

(t−1)
j

)
−
∑

j>i+1

Si,j

(
z
(t−1)
i − z(t−1)

j

)
− 2Si,i+1

(
z
(t−1)
i − z(t−1)

i+1

)
=
∑
j<i

Si,j

(
z
(t−1)
j − z(t−1)

i

)
−
∑
j<i

Si+1,j

(
z
(t−1)
j − z(t−1)

i + z
(t−1)
i − z(t−1)

i+1

)
+
∑

j>i+1

Si+1,j

(
z
(t−1)
i+1 − z

(t−1)
j

)
−
∑

j>i+1

Si,j

(
z
(t−1)
i − z(t−1)

i+1 + z
(t−1)
i+1 − z

(t−1)
j

)
− 2Si,i+1

(
z
(t−1)
i − z(t−1)

i+1

)
=
∑
j<i

(Si,j −Si+1,j)
(
z
(t−1)
j − z(t−1)

i

)
+
∑

j>i+1

(Si+1,j −Si,j)
(
z
(t−1)
i+1 − z

(t−1)
j

)
−

(∑
j<i

Si+1,j +
∑

j>i+1

Si,j +2Si,i+1

)(
z
(t−1)
i − z(t−1)

i+1

)
,

we have,

z
(t)
i − z

(t)
i+1 =a(yi− yi+1)+

[
1− a− aλ

(∑
j<i

Si+1,j +
∑

j>i+1

Si,j +2Si,i+1

)](
z
(t−1)
i − z(t−1)

i+1

)
+aλ

[∑
j<i

(Si,j −Si+1,j)
(
z
(t−1)
j − z(t−1)

i

)
+
∑

j>i+1

(Si+1,j −Si,j)
(
z
(t−1)
i+1 − z

(t−1)
j

)]
. (63)

Since Si,j ≥ Si+1,j, z
(t−1)
j ≥ z(t−1)

i when j < i, and Si+1,j ≥ Si,j, z
(t−1)
i+1 ≥ z

(t−1)
j , when j > i+1,∑

j<i

(Si,j −Si+1,j)
(
z
(t−1)
j − z(t−1)

i

)
+
∑

j>i+1

(Si+1,j −Si,j)
(
z
(t−1)
i+1 − z

(t−1)
j

)
≥ 0.

Also, yi ≥ yi+1 and z
(t−1)
i ≥ z(t−1)

i+1 , if a is sufficiently small, we have

z
(t)
i ≥ z

(t)
i+1,

which completes the proof. □
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B.3. Proof of Theorem 3

We use the same induction approach as in the proof of Theorem 2 by assuming z(0) = y. Suppose

that z
(0)
1 ≥ z

(0)
i for any i= 1, . . . , k. Assume that at iteration t− 1, z

(t−1)
1 ≥ z(t−1)

i , then at iteration

t,

z
(t)
1 − z

(t)
i =a(y1− yi)+ (1− a)

(
z
(t−1)
1 − z(t−1)

i

)
+aλ

(∑
j ̸=1

S1,j

(
z
(t−1)
j − z(t−1)

1

)
−
∑
j ̸=i

Si,j

(
z
(t−1)
j − z(t−1)

i

))
=a(y1− yi)+ (1− a)

(
z
(t−1)
1 − z(t−1)

i

)
+aλ

(∑
j ̸=1

S1,j

(
z
(t−1)
j − z(t−1)

1

)
−
∑
j ̸=i

Si,j

((
z
(t−1)
1 − z(t−1)

i

)
+
(
z
(t−1)
j − z(t−1)

1

)))

=a(y1− yi)+ (1− a− aλ
∑
j ̸=i

Si,j)
(
z
(t−1)
1 − z(t−1)

i

)
+λ

(∑
j ̸=1,i

(Si,j −S1,j)
(
z
(t−1)
1 − z(t−1)

j

))

Since Si,j ≥ S1,j, z
(t−1)
1 ≥ z(t−1)

j , if a is sufficiently small, we have

z
(t)
1 ≥ z

(t)
i , i= 1, . . . , k.

Thus, we have shown

{y1 ≥ yi, i= 1, . . . , k} ⊆ {z1 ≥ zi, i= 1, . . . , k} ,

which completes the proof. □

B.4. Proof of Proposition 1

Here, we let M = 1. For a general M , we only need to scale the optimal proportion by M to get

the allocation vector. Then, for k= 3, the optimization problem (6) can be written in the form

min
Ω

max

{
a1
x1

+
a2
x2

+
a3
x3

,
b1
x1

+
b2
x2

+
b3
x3

}
, (64)

where Ω= {x : 0<xj < 1,1Tx= 1}, aj ≥ 0, bj ≥ 0, j = 1,2,3. One can derive, either directly or by

applying Theorem 4, the dual problem

max
γ

(
k∑

j=1

√
γ1aj + γ2bj

)2

subject to γ1 ≥ 0, γ2 ≥ 0, (65)

γ1 + γ2 = 1,



Zhou, Fu, and Ryzhov: Sequential Learning With a Similarity Selection Index
54 Article submitted to Operations Research

which can be further simplified to

max
γ

(
k∑

j=1

√
γ1aj +(1− γ1)bj

)2

(66)

subject to 0≤ γ1 ≤ 1.

Denote by g (γ1) the objective function of (66). It is easy to see that g is concave. Taking the

derivative, we have

g′ (γ1) =

(
k∑

j=1

√
γ1aj +(1− γ1) bj

)
k∑

j=1

(
aj − bj√

γ1aj +(1− γ1) bj

)
. (67)

The primal (64) is convex, and it is easy to see that Slater’s condition (and thus, strong duality)

holds. Neglecting the factor
∑k

j=1

√
γ1aj +(1− γ1)bj > 0 in (67), we obtain the function r (·) in

the statement of the theorem. The results then follow from the properties of one-variable concave

optimization problems on [0,1]. □

B.5. Proof of Proposition 2

Proof. Let

ΨM(θ) =E
[
eθz

M
]
= eθ

TQµ+ 1
2 θ

TQΛ2QT θ

be the moment generating function of zM , where Λ is a diagonal matrix with Λjj =
σj√
xj ·M

. Here the

sample size Nj ≈ xj ·M is allowed to be fractional; however, as we will be passing to an asymptotic

regime, this is not a major issue. Next, we calculate the scaled limit of the log-mgf, given by

Ψ(θ) = lim
M→∞

1

M
logΨM(Mθ)

= lim
M→∞

1

M

(
MθTQµ+

1

2
M 2θTQΛ2QT θ

)
= θTQµ+ lim

M→∞

1

2
θTQ

(
MΛ2

)
QT θ

= θTQµ+
1

2
θTQΓQT θ.

By the Gärtner-Ellis theorem, the rate function is the Fenchel-Legendre transform of Ψ, defined as

I (z) = sup
θ

θT z−Ψ(θ)

= sup
θ

θT (z−Qµ)− 1

2
θTQΓQT θ. (68)

The supremum is achieved at

θ∗ =QΓ−1QT (z−Qµ) ,

and plugging this back into (68) yields the desired result. □
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B.6. Proof of Theorem 4

Proof. As in (7), we can linearize the objective of (13) by adding a scalar variable ξ. We then

obtain the Lagrangian

L(x, ξ, γ,β) = ξ+
∑
i ̸=i∗

γi

(
k∑

j=1

ai,j
xj

− ξ

)
+β

(
k∑

j=1

xj − 1

)
.

The dual function is obtained from the Lagrangian (Ch. 5, Boyd and Vandenberghe 2004) by

computing

g(γ,β) = inf
x,ξ
L(x,γ,β)

= inf
x,ξ

(
1−

∑
i ̸=i∗

γi

)
ξ+

∑
i ̸=i∗

γi

k∑
j=1

ai,j
xj

+β

(
k∑

j=1

xj − 1

)

= inf
x,ξ

(
1−

∑
i ̸=i∗

γi

)
ξ+

k∑
j=1

(∑
i ̸=i∗ γiai,j

xj

+βxj

)
−β. (69)

From (69), we can see that

g(γ,β) =

{
2
√
β
∑k

j=1

√∑
i ̸=i∗ γiai,j −β,

∑
i ̸=i∗ γi = 1 and β ≥ 0,

−∞, otherwise.,

Therefore, the dual problem of (13) is given by

max
γ,β

2
√
β

k∑
j=1

√∑
i ̸=i∗

γiai,j −β

subject to γi ≥ 0, i ̸= i∗, (70)∑
i ̸=i∗

γi = 1,

β ≥ 0.

It is possible to simplify (70) by removing β entirely. Taking the derivative of the dual objective

with respect to β, and setting it equal to zero, we obtain∑k

j=1

√∑
i ̸=i∗ γiai,j

√
β

− 1 = 0

so

β =

 k∑
j=1

√∑
i ̸=i∗

γiai,j

2

.

Substituting this expression back into (70), we obtain (14), as required. It can be easily seen that

the primal problem is strictly feasible, so strong duality holds. □
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B.7. Proof of Theorem 7

We first state three technical lemmas, which will be proved in separate subsections of the Appendix.

Lemma 8. Suppose that k≥ 3 with µ1 > . . . > µk. Given any fixed similarity matrix S with Si,j ≥ 0

and Si,j = Sj,i, i, j = 1, . . . , k, the sampling ratios achieved by SIMA are given by

lim
n→∞

Nn
i

Nn
j

=
cj
ci
,

where

cj =

∣∣∣∣max
u̸=i

zu− zj
σj(Qj,j −Qj,u)

∣∣∣∣ , (71)

and z = (I +λL(S))−1µ=Q(S)µ.

Lemma 9. Let Sk be the set of all real possible similarity matrices S(= [Si,j]k×k) for aligned graphs,

Yk = {y ∈Rk|y1 ≥ y2 ≥ ...≥ yk} and Ωk = {2, ..., k}. Given λ > 0, Dk(S,y, ζ, j) : Sk ×Yk × (R+)k ×

Ωk 7→R is defined by

Dk(S,y, ζ, j) = det ([y,W2, ...,Wj−1,1,Wj+1, ...,Wk]) , (72)

where Wi = [−λSi,1, ...,−λSi,i−1,1 + λDi,i + λζi,−λSi,i+1, ...,−λSi,k]
T (i ∈ Ωk \ {j}) with Di,i =∑

l ̸=iSi,l, and ζ1 = ζj = 0. Then for finite integer k ≥ 3, Dk(S,y, ζ, j)≥ 0 for any S, y, ζ, j in its

domain.

Remark 1. To clarify the slight abuse of notation, we specifically discuss the following two cases:

If j = 2, 1 is right behind y, i.e., there is no W2 in the matrix in (72). If j = k, 1 is the last column

and there is no Wk.

Remark 2. Let B = I+λL, then Wi =Bi+λζiei, where Bi is the ith column of B, meaning that

Wi is obtained by simply adding some non-negative number to the ith component of Bi.

Lemma 10. Given an aligned graph, suppose k= 3,4,5, ..., then for j = 2, ..., k, argmax
u̸=j

zu−zj
Qj,j−Qj,u

=

1, and for j = 1, argmax
u̸=1

zu−z1
Q1,1−Q1,u

= 2.

Lemma 8 gives the asymptotic sampling ratios using SIMA for general similarity graph. Specifically,

when an aligned graph is used, with Lemmas 9 and 10, cj defined in (71) can be computed explicitly

by

cj =

{
z1−z2

σ1(Q1,1−Q1,2)
, j = 1

z1−zj
σj(Qj,j−Qj,1)

, j ̸= 1
.

Then the results in Theorem 7 follow easily.
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B.8. Proof of Proposition 3

We first argue that, under any allocation method, both r̂n and r̃n will be updated finitely many

times. First, we note that, under any policy, the estimated means yn converge to a limit ŷ: if

alternative i is measured infinitely often, then ŷi = µi, otherwise y
n
i will be updated finitely many

times and thus converges trivially. Then, r̂n will converge to a limit r̂ that corresponds to a ranking

of the limiting values of yn. We have ŷi ̸= ŷj for i ̸= j because the true values are distinct, and for

alternatives i that are measured finitely many times, the limiting values ŷi depend on normally

distributed noise. Then, there exists n0 > 0 such that r̂n = r̂ for all n>n0.

Next, we argue that r̃n converges. Let Ω be the set of alternatives that are sampled infinitely

often, and take i∈Ω (we know that Ω must be non-empty). Let {nm} be the subsequence of time

stages at which i is sampled.

We first consider the case r̂nm+1
i > r̃nm

i , which is equivalent to the inequality r̂i > r̃nm
i for large

enough m. Because we can further take m to be large enough that no j ∈ Ωc is sampled at any

time n>nm, the set

Ω̄nm+1 :=

j ∈ Ω̂+,nm+1 : Φ

 ynm+1
j − ynm+1

i√
σ2
j

Nnm+1
j

+
σ2
i

Nnm+1
i

<κtol


will cease to be updated (i.e., will contain the same elements) after some sufficiently large m.

Moreover, if Ω̃nm+1 ̸= ∅, Ω̃−,nm+1 ⊊ Ω̃−,nm by the rank updating step (30). Therefore, eventually,

Ω̃nm+1 will become empty, meaning that r̃i will not be updated. The case where r̂i < r̃nm
i can be

handled symmetrically. Since the rank of alternatives in Ωc can only change when there is a change

in the rank of alternatives in Ω, it follows that r̃ni will also be updated finitely many times for

i∈Ωc. Therefore, for all i, the ranking r̃ni will be updated only finitely many times.

Now suppose that all of the alternatives are sampled infinitely often. Clearly, yn→ µ and r̂n→ r,

where r is the true ranking of the alternatives based on the values µ. We also know that there

exists r̃ and some n1 such that, for any n > n1, r̃
n = r̃. Consider an arbitrary alternative j and

suppose that r̃j < r̂j. Then there must exist an alternative i, such that r̃j < r̃i and r̂j > r̂i. The

latter inequality implies µj <µi. For all large enough n>n1, we then have

Φ

 yn+1
j − yn+1

i√
σ2
i

Nn+1
i

+
σ2
j

Nn+1
j

<κtol.

By the updating step (30), we should then change the ranking so that r̃nj > r̃ni , contradicting the

fact that r̃n is no longer updated for n > n1. Therefore, the assumption that r̃j < r̂j cannot hold.

Similar arguments can be made for the case where r̃j > r̂j. Therefore, r̃= r, which means that the

limit of S̃n must be aligned with respect to the true means µ.
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B.9. Proof of Lemma 8

To prove Lemma 8, we basically follow Ryzhov (2016). First consider a modified version of SIMA

policy, which is given by

ν̄nj = σ̃n
j ϕ

(
−max

u̸=j

zu− zj
σ̃n
j (Qj,j −Qj,u)

)
, (73)

where z =Q(S)µ. Suppose Nn
j is the number of measurements of alternative j up to step n, and

let On
j =Nn

j (N
n
j +1), we have σ̃n

j =
σj√
On

j

. By the definition of cj in (71), ν̄nj can be written as:

ν̄nj =
σj√
On

j

ϕ
(
−cj

√
On

j

)
. (74)

Construct a continuous function

ν̄j(w) =
σj√
w
ϕ
(
−cj
√
w
)
, w≥ 0. (75)

When w takes value On
j , (75) becomes (74). Notice that the standard normal p.d.f has the following

property:

Proposition 4. Fix c1, c2 ≥ 0. Then

lim
x→∞

ϕ(−c1
√
x)

ϕ(−c2
√
x)

=


∞, c1 < c2
1, c1 = c2
0, c1 > c2

. (76)

Proof. Since

lim
x→∞

ϕ(−c1
√
x)

ϕ(−c2
√
x)

= lim
x→∞

e−c21x

e−c22x
= lim

x→∞
e−(c21−c22)x,

the results follow easily. □

The remainder of the proof is very similar to Ryzhov (2016), as we only need to replace f(x) =

xΦ(x)+ϕ(x) in that paper by ϕ(x).

B.10. Proof of Lemma 9

Proof. Without loss of generality, we may assume λ= 1, since for λ ̸= 1, we can scale S and ζ

by λ to get the results. We prove the lemma by induction. For k= 3, j = 2,

D3(S,y, ζ,2) =

∣∣∣∣∣∣
y1 1 −S3,1

y2 1 −S3,2

y3 1 1+D3,3 + ζ3

∣∣∣∣∣∣= (y1− y3)(1+D3,3 + ζ3 +S3,2)− (y2− y3)(1+D3,3 + ζ3 +S3,1)≥ 0.

The last inequality holds because S3,2 ≥ S3,1 and y1 ≥ y2. For k= 3, j = 3,

D3(S,y, ζ,3) =

∣∣∣∣∣∣
y1 −S2,1 1
y2 1+D2,2 + ζ2 1
y3 −S2,3 1

∣∣∣∣∣∣= (y1− y3)(1+D2,2 + ζ2 +S2,3)− (y2− y3)(−S2,1 +S2,3)≥ 0.



Zhou, Fu, and Ryzhov: Sequential Learning With a Similarity Selection Index
Article submitted to Operations Research 59

Suppose for k= n−1, the statement is true. Denote the matrix [y,W2, ...,Wj−1,1,Wj+1, ...,Wn] by

A(n). We have:

A(1) =[y,B2, ...,Bj−1,1,Bj+1, ...,Bn] ,

A(t) =A(t−1) + ζtete
T
t , t= 2,3, ..., n,

where Bi, i= 2, .., j−1, j+1, ..., n, is the ith column of B = I+L associated with similarity matrix

S. From Theorem 2, we know there exists z ∈ Yn such that A(1) = B [z, e2, ..., ej−1,1, ej+1, ..., en].

Therefore det(A(1)) = det(B)(z1 − zj) ≥ 0. By the matrix determinant lemma (Ding and Zhou

2007), for t= 2, ..., j− 1, j+1, ..., n,

det
(
A(t)

)
=det

(
A(t−1)

)
+ ζte

T
t

(
adj
(
A(t−1)

))
et =det

(
A(t−1)

)
+ ζt

(
adj
(
A(t−1)

))
t,t
, (77)

where
(
adj
(
A(t−1)

))
t,t

is the (t, t)th component of the adjoint matrix of A(t−1). Notice that the

(t, t)th component is on the diagonal of adj
(
A(t−1)

)
, therefore

(
adj
(
A(t−1)

))
t,t

=det
(
C(t)

)
, where

C(t) =
[
y(t),W

(t)
2 , ...,W

(t)
t−1,B

(t)
t+1, ...,B

(t)
j−1,1,B

(t)
j+1, ...,B

(t)
k

]
for t≤ j− 2,

C(t) =
[
y(t),W

(t)
2 , ...,W

(t)
t−1,1,B

(t)
j+1, ...,B

(t)
k

]
for t= j− 1,

C(t) =
[
y(t),W

(t)
2 , ...,W

(t)
j−1,1,B

(t)
t+1, ...,B

(t)
k

]
for t= j+1,

C(t) =
[
y(t),W

(t)
2 , ...,W

(t)
j−1,1,W

(t)
j+1, ...,W

(t)
t−1,B

(t)
t+1, ...,B

(t)
k

]
for t≥ j+2,

and y(t), W
(t)
i , i≤ t− 1, and B

(t)
i , i≥ t+1, are obtained by deleting the tth component of y, Wi

and Bi, respectively. Then,

W
(t)
i,i =Wi,i = 1+

n∑
l ̸=i

|Wi,l|+ ζi = 1+
n−1∑
l ̸=i

|W (t)
i,l |+Si,t + ζi, i= 2, ..., t− 1,

B
(t)
i,i−1 =Bi,i = 1+

n∑
l ̸=i

|Bi,l|= 1+
n−1∑
l ̸=i−1

|B(t)
i,l |+Si,t, i= t+1, ..., k.

(78)

Here W
(t)
i,i and B

(t)
i,i−1 are on the diagonal of C(t). Denote the matrix obtained by deleting the

tth column and row of S by S
(t)

(n−1)×(n−1). And let ζ(t) be a n− 1 dimensional vector with ζ
(t)
1 =

0. If t ≤ j − 1, let ζ
(t)
j−1 = 0; otherwise, let ζ

(t)
j = 0. All the other components of ζ(t) are set to

be C
(t)
i,i −

(
1+

∑n−1

l ̸=i C
(t)
i,l

)
, which are always non-negative from (78). Define j(t) = j − 1 if t ≤

j − 1; j(t) = j, otherwise. It’s easy to see (S
(t)

(n−1)×(n−1), y
(t), ζ(t), j(t)) ∈ dom(Dn−1) and det(C(t)) =

Dn−1
(
S

(t)

(n−1)×(n−1), y
(t), ζ(t), j(t)

)
. By our assumption that the statement is true for k = n− 1, we

have

(
adj
(
A(t−1)

))
t,t

=det(C(t))≥ 0.
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From (77), we know that if
(
adj
(
A(t−1)

))
t,t
≥ 0 and det

(
A(t−1)

)
≥ 0, then det

(
A(t)

)
≥ 0. Since

det
(
A(1)

)
≥ 0, by induction, we can get that for k= n and any (S,y, ζ, j)∈ dom(Dn),

Dn(S,y, ζ, j) = det
(
A(n)

)
≥ 0.

The proof is completed. □

B.11. Proof of Lemma 10

Proof. For j ̸= 1, if u > j, since z1 ≥ zj ≥ zu and Qj,j >max{Qj,1,Qj,u}, we can easily obtain

z1−zj
Qj,j−Qj,1

≥ zu−zj
Qj,j−Qj,u

. For 1 < u < j, let A = [z, e2, ..., eu−1,1, eu+1, ...ej−1,Qj, ej+1, ..., ek]. Then

z1−zj
Qj,j−Qj,1

≥ zu−zj
Qj,j−Qj,u

is equivalent to det(A)≥ 0. Let B = I +λL and construct Υ by

Υ= [µ,B2, ...,Bu−1,1,Bu+1, ...,Bj−1, ej,Bj+1, ...,Bk].

Since z = Qµ, 1 = Q1 and ei = QBi, we have A = (I + λL)−1Υ = QΥ. Suppose Υ
(j)

(k−1)×(k−1) =

[µ(j),B
(j)
2 , ...,B

(j)
u−1,1,B

(j)
u+1, ...,B

(j)
j−1,B

(j)
j+1, ...,B

(j)
k ] is the matrix obtained by deleting the jth col-

umn and row of Υ, then det(Υ) = det(Υ(j)). By Lemma 9, we have det(Υ(j)) ≥ 0. Furthermore,

det(A) = det(Q)det(Υ) = det(Q)det(Υ(j))≥ 0.

For j = 1, let A = [Q1, z, e3, ..., eu−1,1, eu+1, ..., ek]. Then z2−z1
Q1,1−Q1,2

≥ zu−z1
Q1,1−Q1,u

is equivalent to

det(A)≥ 0. Now construct Υ by

Υ= [e1, µ,B3, ...,Bu−1,1,Bu+1, ...,Bk],

Delete the first row and column of Υ, we obtain Υ
(1)

(k−1)×(k−1) = [µ(1),B
(1)
3 , ...,B

(1)
u−1,1,B

(1)
u+1, ...,B

(1)
k ],

then det(Υ) = det(Υ(1))≥ 0 by Lemma 9 again. Finally, we have

det(A) = det(Q)det(Υ)≥ 0.

The proof is completed. □

Appendix C: Experiments on Sensitivity to λ

We conduct experiments to test the sensitivity to λ of our proposed allocation algorithms combined

with dynamic updating of the similarity structure for the servo system selection problem (Case 2

of Experiment 1). The results are shown in Figures 9 and 10. From those results, we can see that

performances are not very sensitive to λ, especially for large budgets.
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Figure 9 Case 2: Average PCS and EOC results for different values of λ using SIGD, obtained by 10000 inde-
pendent runs (40 macro-replications, 250 micro-replications). Dotted curves represent standard errors.

Figure 10 Case 2: Average PCS and EOC results for different values of λ using SIMA, obtained by 10000
independent runs (40 macro-replications, 250 micro-replications). Dotted curves represent standard
errors.

Appendix D: Handling Alternatives with Equal Values

In this section, we consider the case where there exist alternatives sharing the same value, i.e.,

µi = µj for some i ̸= j. For this special case, the definition of an aligned graph is adapted as follows.

Definition 2. A similarity graph S is aligned if, for any i = 1, . . . , k, we have Si,j ≤ Si,m for

j <m<min{l≤ i : µl = µi} as well as all j >m>max{l≥ i : µl = µi}.

Essentially, Definition 2 ensures that the similarity relationships satisfy the monotonicity require-

ment of Definition 1 for all alternatives whose values are not tied. When there are multiple alter-

natives with the same value, their similarity relationships can have any arbitrary ordering. The

result of Theorem 2 is preserved under Definition 2 if we neglect the relative order of S-indices

between alternatives that have the same true mean. Thus, when yn converges to µ, we can always

select the best alternative i∗ by the S-indices , such that µi∗ =maxi=1,...,k µi.

Moreover, in the dynamic updating strategy of the similarity matrix Sn, to prevent permuting

S infinitely many times, we can set r̂ni < r̂nj only when yni − ynj >Cd

√
logn
n

for some fixed Cd > 0.
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By the law of the iterated logarithm, for any sample path, the similarity matrix will be updated

finitely many times. Consequently, we will obtain an aligned graph in the sense of Definition 2 after

finitely many time steps, on the condition that each alternative is sampled infinitely often on that

same sample path.


