Focusing on Patient Outcomes Through

Deep Block and Improved Visual Field in Laparoscopic Surgery –

What More Can Be Done?

Chairman:
Jacob Rosenberg (Denmark)
Welcome and Introductions

Jacob Rosenberg (Denmark)
Please switch off all mobile devices

No photography or audio recording of the meeting is permitted

Questions cards are included in your welcome materials. Hostesses will be available to collect your question cards throughout the meeting

You will find an evaluation form in your welcome materials. This form should be completed during the meeting and handed to a hostess at the end of this session
Agenda

12:15 – 12:25 *Welcome and Introductions*
Jacob Rosenberg

12:25 – 12:40 *Challenges in the Surgical Field*
Olav Istre

12:40 – 12:55 *Benefits of Deep Neuromuscular Blockade*
Jan Mulier

12:55 – 13:10 *Achieving Optimal Surgical Conditions*
Olav Istre

13:10 – 13:25 *Advancing Practice with Predictable NMB Management*
Jan Mulier

13:25 – 13:40 *Surgeon-Anaesthetist Collaborative Question and Answer Session*
Jacob Rosenberg

13:40 – 13:45 *Closing Comments*
Jacob Rosenberg
Urologist

Surgeon

Anesthesiologist

Urine

Blood

coffee
daily problems around NMB

- hesitation around routine use of deep NMB
- most surgeons have never experienced a truly deep block throughout the procedure
- all surgeons have asked for additional blockade because of contractions in abdominal wall or even movement of arms etc.
surgeon’s perspective on deep NMB

- typical scenario is that surgeon asks for more blockade but (nurse) anaesthetist says that blockade is OK – why?
- who is right and who is wrong?
- lack of knowledge on pharmacodynamics of NMB
combined surgical and anaesthesiological goals

• “do no harm” !!!
 • best possible outcomes of treatment
 • maximize surgical view
 • no sudden contractions
 • minimize residual blockade
 • ensure reasonable OR turnover
• this is a safety issue!
• even the slightest muscle tone in the abdominal wall will decrease the field of view
• gradual changes may not be noticed till errors and lack of operative efficiency have arisen
• how do you know there is a problem: the fat or bowel suddenly ”grows” in the surgical field
the fat or bowel suddenly "grows" in the surgical field
safety – no coughing or sudden contractions

- part of training program for laparoscopic surgery to immediately remove instruments when coughing
immediately remove instruments when coughing
safety – no coughing or sudden contractions

- special problem in robotic surgery
what is the value in maintaining NMB through to the end of abdominal surgery?

- if NMB is given towards end of operation, then OR turnover may be severely impaired
- sometimes NMB or deep anaesthesia is required to close the abdomen – both during laparotomy and laparoscopy
NMB necessary for extraction of excised tissues

- this is often at the end of surgery...
- we therefore need relaxation also very late in the operation
- thus, another indication for a reversal agent
conclusions - introductions

- during surgery there are numerous clinical problems that may be solved by intense NMB continued to the very end of procedure
- impractical to do without an effective reversal agent
Chairman: Jacob Rosenberg (Denmark)
Challenges in the Surgical Field

Olav Istre (Denmark)
CHALLENGE IN THE SURGICAL FIELD

Olav Istre MD, DMSc.
Head of Gynecology Aleris-Hamlet Hospital, Scandinavia
Professor in Minimal Invasive Gynecology
University of Southern Denmark
SUMMARY

- Selecting patients for surgery
- Entry technique
- High pressure-low pressure
- Complications
- Closure technique
- Port placement
SUCCESSFUL ENDOSCOPY

- Operating rooms
- Equipment
- Dedicated nursing staff
- Smooth hospital environment
- A `´nerd´` Doctor burning for it,
- Anaesthesiologist
- Training, training, suturing suturing
- Low complication rate
- Good follow up and control of data
- Satisfied patients
Basic Instruments
EQUIPMENT

- Verres cannula or Single port cannula
- Optic
 - 5 mm, 30 degree, High Definition (HD)
- Able for port jumping
 - Change angle (flex scope), special good for single port
 - Big fibroids
 - Difficult endometriosis
 - Coming around the corners
- Graspers and cutting device
 - Bipolar
 - Ultra Sound, thunderbeat (combined ultrasound and bipolar)
 - scissors
Entry with Verres needle
Laparoscopic Entry technique
COMPLICATIONS OF LAPAROSCOPIC SURGERY

- physical and emotional suffering for
 - patients
 - relatives
 - doctors
- financial costs
- legal proceedings
Example:

- during 1984 in the UK: 124548 gynecological laparoscopies.
- We would expect 300-500 serious complications each year.
- Or in the US: 5000 serious complications each year.
COMPLICATIONS OF LAPAROSCOPIC SURGERY

PNEUMOPERITONEUM

1. Emphysema (subcut/preperit/omentumal)
2. Pneumothorax
3. Pneumomediastinum
4. Gas embolism (more freq. with air)
5. Failure to maintain pneumoperitoneum
6. Cardiac arrhythmias (bradycardia)
7. Hypercarbia
COMPLICATIONS OF LAPAROSCOPIC SURGERY
SURGICAL INJURY

1. Thermal injury
2. Dissection injury
3. Inability to complete procedure
4. Vascular injury
5. Bowel injury
6. Bladder/ureteral injury
7. Nerve injury
8. Lymphoedema/lymphocele
1. Anaesthesia related
2. Verres needle and trocar insertions
3. Pneumoperitoneum
4. Surgical injury
5. Closure
First incision cut upwards

- Call for a laparotomy kit. If need be open the patient immediately using a midline incision and put pressure on the bleeder and/or aorta
- Call for help
- Call for blood products
- Call for vascular surgery
- or a general surgeon
- Notify anesthesia immediately
- Do not panic
- Do not freeze
Bowel injuries, use umbilical ultrasound pre op

- Favorable outcome, IF they are recognized intra-operatively
- Mechanical bowel preparation. No improvement in prognosis in the colorectal literature
- Mechanical bowel preparation does not improve visibility during laparoscopy
- MBP does significantly increase patient discomfort, dehydration, nausea, vomiting and abdominal discomfort

During surgery, use 4 hands, and nurse handling the uterine manipulator.
PORT PLACEMENT WORKING CONDITION FOR LARGE UTERI/FIBROIDS
Incarcination of Oment after Laparoscopy
POST OP ILEUS HERNIATION
CLOSURE TECHNIQUE
Sufficient Workspace!

Low pressure entry

High pressure entry
Thanks for your attention
Focusing on **Patient Outcomes** Through

Deep Block and Improved Visual Field in Laparoscopic Surgery –

What More Can Be Done?

Chairman:
Jacob Rosenberg (Denmark)
Benefits of Deep Neuromuscular Blockade

Jan Mulier (Belgium)
Can we do something to improve the situation?

Surgeon: I have not enough workspace.

Anesthesiologist: Your problem. I am okay.

Surgeon: Look at the video screen. I can’t work.

Anesthesiologist: If you want more volume, you should increase the pressure, but an experienced surgeon can handle this.

Surgeon: But it is already 18 mmHg. Do you want me to change to a laparotomy?

Anesthesiologist: The patient has only one TOF response in the AP. Last time this was enough. Why not today with you?

Surgeon: I don’t know what “one TOF response” means. What I said is I can’t work.
Me or my surgeon has insufficient workspace

1. Most frequent at the start of the pneumoperitoneum
2. During the pneumoperitoneum
3. At the end of the pneumoperitoneum
4. Never had this experience

Questionnaire at local meeting of abdominal surgeons and anesthesiologists Leuven Dec 2011
Insufficient NMB during lap: how do you recognize it?

- At the first insufflation with the verres needle
 - High abd pressure to start > 8 mmHg.
 - No flow is going inside.
 - Multiple attempts to reposition.
- Insufficient space to reach certain areas
 - Flat abdomen, no view
- Patient start to press suddenly
 - Abdominal wall, diaphragm movements
 - ventilator alarm
 - Coughing or breathing against ventilator
 - insufflator alarm
 - IAP sudden > set pressure.
Various Depths of Blockade

- Intense blockade: no response to either TOF or PTC stimulation
- Deep blockade: response to PTC but not to TOF stimulation
- Moderate blockade: reappearance of response to TOF stimulation

PTC, posttetanic count; TOF, train-of-four.

Surgeon: Now I have very good surgical conditions

Anesthesiologist: The patient is OK

Surgeon: Look at the screen. I have enough workspace and the IAP is low

Anesthesiologist: The patient is now on a deep neuromuscular block

Surgeon: How many PTCs has the patient in the adductor pollicis?

Anesthesiologist: only 3 PTCs. I will keep him on a deep NMB until the end of surgery

Surgeon: Thanks. Then we will end in time and can have drink together.
In 1912, Läwen demonstrated the clinical usefulness of curarine by injecting it i.m. to achieve abdominal relaxation for peritoneal surgery.

Difference Between Diaphragm and Adductor Pollicis

- Monitoring of the peripheral muscles often overestimates the degree of diaphragmatic relaxation, but is a safe predictor of recovery.

- The diaphragm is more resistant than the adductor pollicis to rocuronium and has a faster recovery of the twitch height.
 - Cantineau JP *Anesthesiology*. 1994;81:585
Time difference when bolus NMB given between abdomen – adductor pollices

Sensibilité à l’atracurium des muscles abdominaux latéraux

K. Kirov, C. Motamed, X. Combes, P. Duvaldestin, G. Dhoneur

Objective: To study the effect of atracurium on the electromyographic activity of the lateral abdominal muscles and adductor pollicis in anaesthetized subjects.

Lateral abdominal muscles blockade have a faster onset and recovery than adductor pollicis

Solution to Both Problems: Continuous Infusion to a Deep Block

Deep NMB could remain in place for duration of procedure followed by rapid predictable reversal.
What Is the Value in Maintaining NMB Through the End of Abdominal Surgery?

- May provide sufficient relaxation of abdominal muscles to maintain good surgical conditions and workspace.
- May avoid the need for high insufflation pressure to achieve adequate workspace.
- Potential to allow lower insufflation pressures and reduce the associated risks of higher pressures.

NMB=neuromuscular blockade.
NMBA Decreases Frequency of Poor Surgical View Conditions

In a randomized, blinded, placebo-controlled study of 120 patients undergoing radical retropubic prostatectomy, patients received an infusion of NMBA (n=59) or saline (placebo, n=61) beginning 5 minutes after fascial incision. At 15 minute intervals, the surgical field was graded from 1 (excellent) to 4 (unacceptable). Patients who were graded as having an unacceptable surgical field received rescue NMBA.

\[P < 0.001 \text{ placebo vs NMBA} \]

NMBA= neuromuscular blocking agent.

Limited Ability to Reverse NMBAs Has Led to moderate blockade or the Use of Substitutes.

- Historically, there has been limited ability to reverse deeper levels of NMB,
 - Allowing spontaneous reversal toward the end.
- Reversal agents interfering with cholinergic nervous system have adverse side effects.
- The difficulty in managing the reversal of NMBAs has led to the use of alternate therapies as a substitute.
 - The high doses required for these substitutes to achieve “NMB”-like effects may have an increased risk of side effects.
 - Opiates
 - Inhalation hypnotics
 - They Prevent active contraction, never have relaxation effects.

NMBAs=neuromuscular blocking agents; NMB=neuromuscular blockade.

What is most effective for you to increase the laparoscopic workspace

A. Don’t know, never paid attention
B. High dose inhalation
C. High dose morphine (ultiva: remifentanil)
D. Deep muscle relaxation

![Bar chart showing percentage responses](chart.png)
Opioids Did Not Provide Complete Muscle Relaxation, Even at Higher Doses1,a

<table>
<thead>
<tr>
<th>Remifentanil Dose, (\mu\text{g/kg/min})b</th>
<th>Probability of Movement, %c</th>
<th>95% Confidence Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>65.4</td>
<td>(48.6, 79.0)</td>
</tr>
<tr>
<td>0.12</td>
<td>56.9</td>
<td>(44.0, 68.6)</td>
</tr>
<tr>
<td>0.14</td>
<td>47.9</td>
<td>(38.3, 57.7)</td>
</tr>
<tr>
<td>0.16</td>
<td>39.1</td>
<td>(30.6, 48.3)</td>
</tr>
<tr>
<td>0.18</td>
<td>31.0</td>
<td>(21.9, 41.9)</td>
</tr>
<tr>
<td>0.20</td>
<td>23.9</td>
<td>(14.2, 37.1)</td>
</tr>
<tr>
<td>0.21</td>
<td>20.7</td>
<td>(11.2, 35.1)</td>
</tr>
</tbody>
</table>

Higher doses of remifentanil decreased the risk of movement in the absence of neuromuscular blockade but increased frequency of hypotension and bradycardia.

Even at maximum dose (0.21 \(\mu\text{g/kg/min}\)), there is a 20\% chance of movement.

a In this study, 131 patients undergoing elective craniotomy received one of 12 remifentanil dose regimens (0.10 to 0.21 \(\mu\text{g/kg/min}\)).

b Normal doses range from 0.1–0.5 \(\mu\text{g/kg/min}\).

c Logistic regression results.

Example of Difference between active muscle contraction and relaxation

- Active contraction very small compliance C
- Relaxation by NMB IAP drops with same C
Clinical Example of a Laparoscopy in a Patient With BMI of 46

- More Workspace with NMBAs at Similar Insufflation Pressure
 - 3 liter workspace without NMBAs
 - IAP 15 mmHg
 - 4 liter workspace with NMBAs
 - IAP 14 mmHg

NMBAs=neuromuscular blocking agents; IAP=intra-abdominal pressure.
Measurement of abd Compliance

Volume 1 L Pressure 8
Volume 2 L Pressure 9
Volume 3 L Pressure 10

PV0 : 7 mmHg
E: 1 mmHg/L
C: 1 L/mmHg

J Mulier, B Dillemans, M Crombach, C Missant, A Sels
On the abdominal pressure volume relationship.
Fast Guess using Inflated volume:
1.2 L versus 7.2 L

Deep continuous NMB absolutely needed

NMB needed?
Yes and drop the IAP
Impact of patient’s body position on the laparoscopic workspace

<table>
<thead>
<tr>
<th>Position</th>
<th>E (mmHg/L)</th>
<th>PV0 (mmHg)</th>
<th>IAV (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse Trendelenburg</td>
<td>3.6</td>
<td>4.8</td>
<td>2.99</td>
</tr>
<tr>
<td>Beach chair</td>
<td>2.6</td>
<td>4.8</td>
<td>3.76</td>
</tr>
</tbody>
</table>

Decreased Level of Insufflation Pressure With NMB-Induced Relaxation¹

- NMB-induced relaxation maintained the integrity of pneumoperitoneum without increased CO₂ insufflation pressure

- Low-pressure pneumoperitoneum gives Less shoulder pain
 The Cochrane Library 2009, Issue 2

Visual field during a laparoscopic procedure approaching recovery from NMB (top) and deep NMB (bottom).

NMB=neuromuscular blockade; CO₂=carbon dioxide.
1. I use always the same insufflation pressure like 15 mmHg for a pneumoperitoneum.
2. I try to use lower pressure when possible.
3. I try to use the highest pressure possible to be sure to have sufficient space.
4. I adapt my IAP to get just enough workspace.
Continuous infusion of NMBAs to a deep block

- Helps to improve Laparoscopic workspace
- Allows to work at lower insufflation pressure
- Avoids abdominal or diaphragmatic movements.

Only possible today.
Focusing on **Patient Outcomes** Through

Deep Block and Improved Visual Field in Laparoscopic Surgery –

What More Can Be Done?

Chairman:

Jacob Rosenberg (Denmark)
Achieving Optimal Surgical Conditions

Olav Istre (Denmark)
Summary

- Equipment, video, HD, Robotic
- Trendelenburg position
- Flow, pressure
- Assistant, training
- Pain management
- Practical tricks
- Deep block
Comparing HD versus sd video
Robotic surgery

Facilitates
- View
- Handling
- Suturing
- Short learning curve

However
- Expensive
- Prolonged or time
- Setup procedure
The Key Component of Laparoscopic Surgery Is the Creation of a PPT (pneumo peritoneum)

- Allows for proper visualization of intra-abdominal structures through elevation of the anterior abdominal wall
- Higher pressure results in a better surgical view. But at what physiological changes to the patient?
Why deep block anaesthesia during laparoscopy

- Stable condition throughout the procedure
- Shorter surgical time
- Reduction in insufflation pressure
 - Reduced Pain (50% reduction in shoulder pain)
 - Reduced Ventilation problems
 - Reduced Hemodynamic problems
- Reduction in surgical complications
 - More workspace, less damage to other organs
 - During Closure
 • Avoids herniation
Trendelenburg Position Creates Anaesthetic Challenges

Ventilation challenges due to:
- Upward movement of the diaphragm
- Thoracic compliance reduced and inspiration pressure increased
 - High Intraocular pressure
 - High Intracranial pressure

Perfusion challenges
- Hemodynamics
- Volume dynamics

Increases the need for improved communication between surgeon and anaesthesiologist

NMB May Improve Access and Visualization While Allowing for the Use of Lower Insufflation Pressure

- NMB may facilitate introduction of instruments into the cavity and extraction of tissue\(^1,^3\)
- NMB created a more open surgical field for greater mobility\(^1,^2\)

3 Williams MT Anestesia 2003,58,571-596

Postoperative Analgesic Benefits of dNMB and Lower Insufflation Pressures

- Postlaparoscopic pain is often caused by:
 - Trocars
 - Surgical dissection
 - Pneumoperitoneum expansion under high pressure

- Lower peritoneal pressure results in less postoperative pain, lower incidence of shoulder tip pain and improved QOL during the first 5 postoperative days.

- Lower peritoneal pressure requires less analgesics and allows for a shorter hospital stay.

References:
Pressure related adhesion formation during laparoscopy

- A low IPP (8 mmHg) may be better than the standard IPP (12 mmHg) to minimize the adverse impact on the surgical peritoneal environment during a CO₂ pneumoperitoneum.

- Expression levels of connective tissue growth factor (CTGF), matrix metalloproteinase-9, E-selectin, chemokine (C-X-C motif) ligand 2 (CXCL-2), Hyal-1 and Hyal-2 were significantly lower in 8 mmHg group

Potential for less adhesion formation

Similar Intra-abdominal Distances at Lower Pressure with NMB

Data shown as mean ± standard deviation. From Istre 2012 non published data
Pneumo peritoneum measurement
Lower abdominal laparoscopy with decreased abdominal pressure was facilitated by deep neuromuscular block

- creates an optimal working environment,

- allows the surgeon to properly maneuver instrumentation and organs
Chairman: Jacob Rosenberg (Denmark)
Advancing Practice with Predictable NMB Management

Jan Mulier (Belgium)
The General Anaesthesia Triad: Balanced anaesthesia

Relaxation: Provides Optimal Intubating and Surgical Conditions
NMBAs (neuromuscular blocking agents)

General Anaesthesia

Analgesia: Is Needed to Block Pain
Opioids, non opioids, alpha agonists, LRA

Hypnosis: Creates Amnesia and sleep
Propofol, Inhalation Agents, ketamine,
History of NMB reversal

• 1955: Neostigmine 5 mg is integral part of the ‘Liverpool anaesthetic technique’, because of repeated reports of incomplete recovery at the end of surgery.

• 2009: Reversal should be given at any time without muscarinic side-effects.
 – A. Srivastava Reversal of neuromuscular block
 Br J Anaesth 2009; 103: 115
In search for the Ideal NMBA

- Rapid onset, predictable duration and recovery times, and negligible hemodynamic effects.
An ideal reversal created the ideal NMBA

- At this point, it appears that research should now be directed toward finding a non-depolarizing muscle relaxant with the properties of succinylcholine…

However the ideal was found by the invention of an ideal reversal “cyclodextrine” by Anton Bom “Sugammadex”

Rapid onset and offset even better than succinylcholine, minimal side effects, predictable duration, easy titration and complete recovery possible at every moment.
In this double-blind and randomized multicenter study, 47 patients scheduled for elective surgery requiring general anaesthesia received either 50 µg/kg neostigmine plus 10 µg/kg glycopyrrolate or 2 mg/kg sugammadex when 2 twitch responses were detected after the last dose of rocuronium.

The potentially unsafe period of recovery was significantly longer in the neostigmine group compared with the sugammadex group (10.3 ± 5.5 min vs 0.3 ± 0.3 min, respectively; \(P < 0.001 \)).

Reversal of rocuronium induced NMB with neostigmine or sugammadex

<table>
<thead>
<tr>
<th>Potentially Unsafe Period of Recovery (min)</th>
<th>Neostigmine</th>
<th>Sugammadex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a \) In this double-blind and randomized multicenter study, 47 patients scheduled for elective surgery requiring general anaesthesia received either 50 µg/kg neostigmine plus 10 µg/kg glycopyrrolate or 2 mg/kg sugammadex when 2 twitch responses were detected after the last dose of rocuronium.

\(^b \) Potentially unsafe period of recovery: time gap between the loss of visual fade to the return of a TOF ratio of 0.90 (alternatively, the “no visual fade paralysis period”).

TOF=train of four.

Predictability and Consistency of Sugammadex Reversal in Moderate and Deep NMB

Reversal from 1 to 2 PTCs following rocuronium

NMB=neuromuscular blockade; PTCs=posttetanic counts; TOF=train of four; NEO=neostigmine.

Reversal from T2 following rocuronium

1. Sugammadex 4 mg/kg (n=37)
2. NEO 70 µg/kg (n=37)
3. Sugammadex 2 mg/kg (n=47)
4. NEO 50 µg/kg (n=45)
An ideal reversal agent could be given at any time after the administration of a neuromuscular blocking agent (NMBA), and should have no muscarinic side-effects.

- Rocuronium has a fast onset which provides good intubating conditions

- It allows the anaesthesiologist to achieve the desired level of block

- With sugammadex NMB can be reversed rapidly, completely, and predictably at the end of the surgical procedure
Residual blockade continues to be a common problem, even after just 1 dose of an NMB agent with an intermediate duration of action.1,b

- 45\% of patients had a TOF <0.9 on arrival in the PACU after only a single intubating dose of NMB.1

a \(P<0.01\)

b A single, prospective, open-label, nonrandomized, observational study of 526 adult patients with ASA status I-III undergoing gynecologic or plastic surgery. On arrival in the PACU, an anaesthesiologist and a nurse not involved in the surgery, used TOF ratios <0.7 and <0.9 to assess the presence of residual NMB.

NMBAs=neuromuscular blocking agents; NMB=neuromuscular blockade; TOF=train of four; PACU=postanaesthesia care unit; ASA=American Society of Anesthesiologists.

TOF < 0.9 increases the risk for Obstructive Breathing with Hypoxia

Minimum retroglossal upper airway diameter during forced inspiration

Baseline: 20 mm
TOF 0.5: 15 mm
TOF 0.8: 15 mm
TOF 1.0: 20 mm
TOF 1.0 +15 min.: 15 mm

*P<0.05 versus baseline

TOF < 0.9 increases the risk of Pharynx Dysfunction with Aspiration

Human volunteers
Partially paralyzed

The primary efficacy endpoint was the time from start of sugammadex or placebo administration to recovery of TOF ratio to 0.9

Median times to recovery to a TOF ratio of 0.9 were 2.0 and 95.8 min in the sugammadex (n=69) and placebo groups (n=65), respectively (\(P<0.0001\)).

In this study, anaesthesiologists administering the study drug were not blinded to treatment.

OR=operating room; NMB=neuromuscular blockade; TOF=train-of-four.

Risk Factors for Postoperative Mortality and Severe Morbidity

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Category</th>
<th>Odds Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment check</td>
<td>With/without</td>
<td>0.640</td>
</tr>
<tr>
<td>Documentation of equipment check</td>
<td>Yes/no</td>
<td>0.607</td>
</tr>
<tr>
<td>Reversal of anaesthesia (relaxant)</td>
<td>Yes/no</td>
<td>0.101</td>
</tr>
<tr>
<td>Reach ability of anaesthesiologist</td>
<td>Direct/indirect</td>
<td>0.455</td>
</tr>
<tr>
<td>Intraoperative change of an anaesthetic</td>
<td>Yes/no</td>
<td>0.444</td>
</tr>
<tr>
<td>Presence of anaesthetic nurse</td>
<td>Part time/full time</td>
<td>0.408</td>
</tr>
<tr>
<td>Presence at emergence of anaesthesia</td>
<td>1/2</td>
<td>0.687</td>
</tr>
<tr>
<td>Opiates/local anaesthetics</td>
<td></td>
<td>0.17/0.06</td>
</tr>
<tr>
<td>Epidural/intramuscular</td>
<td></td>
<td>0.23/0.13</td>
</tr>
</tbody>
</table>

869,483 patients, 807 cases and 883 controls

Omitting to reverse residual NMB was associated with a 10-fold increased risk for death or coma.
Surgeons described the implications of sub-optimal blockade as extended surgeries resulting from difficult surgical conditions or potentially delays as re-block takes effect.

Perception of sub-optimal neuromuscular blockade amongst surgeons:

- Surgeons wait for 5-10 minutes while re-block takes effect.
- SURG requests more paralysis (due to involuntary movement / tension; occurs in 20-30% of cases).
- Delay until patient safe to extubate as still deeply blocked at end of procedure.
- End of surgery.
A new neuromuscular management strategy is possible: Relaxant in continuous infusion and a rapid predictable full reversal is always possible.
Achieving deep NMB to the end of the procedure is possible and should become the standard.

- Better visual field, no early wake up or pressing
- Lower insufflation pressures
- No waiting time between surgeries
- No residual block in recovery, less respiratory distress

The Ideal Neuromuscular Block Management Tool Exists Today!
Surgeon-Anaesthetist Collaborative Question-and-Answer Session

Jacob Rosenberg (Denmark)
Closing Comments

Jacob Rosenberg (Denmark)
key take home messages

- talk to your anaesthesiologist!!
- you have to know about anaesthesia
- we have the same goals
 - do no harm
 - improve outcome
- has the potential to benefit patients, administrators, surgeons, and anaesthetists
potential clinical consequences and risks of suboptimal block

- **limited field of view**
 - safety issue
 - operative time
- **sudden contractions**
 - safety issue
- **block is given too late or not reversed**
 - residual blockade
 - slow OR turnover
sugammadex

surgeon

Chairman: Jacob Rosenberg (Denmark)

Chairman: Jacob Rosenberg (Denmark)