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Logistical applications traditionally aim to decrease the cost of logistical activity. In accordance, researchers
developed several techniques to compute economical routes for vehicles generating least costs. However,
transportation companies experience a shift of emphasis in their planning nowadays. Due to the highly
competitive nature of transportation, customer preferences play a more and more important role in planning.
In our multi-agent model we chose to model customers as agents to emphasize their importance in planning.
This is different from traditional models, where only vehicles are modeled. To have a package transported,
a customer agent has to negotiate a contract with a transport agent. Any negotiation technique can be used
to establish the contracts. To enable agents to adapt to changes, contracts can be broken and re-negotiated
resulting in new agent plans.
This paper describes a multi-agent system where customer and vehicle agents dynamically change their
contracts, hence change their planning. They use negotiation techniques like auctioning and decommitment
to manipulate the contracts. Additionally, agents form coalitions to provide more sophisticated services,
like multi-modal transportation.
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1 Introduction

Transportation companies use several computer
systems to support their planning and execution
activities, but the planning actually is still made
mostly by humans. Depending on the size of
the problem, this may or may not lead to effi-
cient plans. Since logistical problems have been
in the center of interest for decades now, there are
many different methods researchers have explored
to solve the logistical planning problem (semi-
)automatically. In this paper we describe a multi-
agent system, where agents can use different nego-
tiation strategies to perform distributed continual
planning.

At first, we briefly introduce coordination and
planning in multi-agent systems, and the necessity
of distributed continual planning. We discuss the
possible role of different negotiation and game the-
ory mechanisms in multi-agent planning. Then we
introduce our multi-agent model and discuss the
implementation of it. Finally we propose experi-
ments that will be carried out using a multi-agent
system and in the end conclusions are drawn.

As agent modeling became popular to describe
complex systems, more and more researchers ap-
plied the multi-agent paradigm to logistical plan-
ning. In a multi-agent system every agent has its

own goals that it pursues. Every agent is only con-
cerned with its own goals, so system-level behavior
emerges from interactions of the different agents.
One way to coordinate agents and ensure consis-
tent system behavior is to find a joint plan. How-
ever, if agents also carry out their own planning,
then the planning activities themselves need to be
coordinated.

How we define cooperation between agents de-
pends on what we model as an agent, especially
w.r.t. granularity. Guo, Muller and Bauer [1]
model different parts of a supply chain by agents
to predict delays in delivery. Dorer and Calisti [2]
cluster transportation vehicles by areas and make
one agent responsible for one area. The finest
grained model is provided by BrÃijckert, Fischer
and Vierke [3] who employ a holonic multi-agent
approach. Trucks, drivers, trailers are modeled by
agents that form holons to perform transportation.
The degree of modeling granularity corresponds to
the degree of decentralization in the model. The
finer the model, the more it is decentralized and the
bigger the need for coordination is. Since we are
particularly interested in coordination our agents
represent low level entities like humans, trucks,
etc.

Since demand for more and more realistic plan-
ning systems appeared, researchers have been
looking for a way to distribute planning and to



make plan creation and execution concurrent. The
need for distributed, continual planning was first
identified by desJardins et al., and a summary of
what had been done up to that was published in [4].
Durfee and Lesser proposed Partial Global Plan-
ning [5] (generalized by Decker and Lesser [6]),
while Clement and Barrett proposed Shared Activ-
ity Coordination [7] as a solution for the problem.
All these techniques solve the coordination prob-
lem differently, using partial plans or shared activ-
ities. Our solution differs from these in using ne-
gotiation mechanisms for coordination.

In our research we are also seeking solutions
to facilitate distributed continuous planning. We
model customers as well as transportation vehicles
as agents that make plans. Agents make their plans
according to their preferences, and they cab change
their plans to react to changes in their environment
(in other agents’ plans). This holds not only for ve-
hicle agents, but also for customer agents. To co-
ordinate the changes of agents’ plans we use con-
tracts. Customer agents and vehicle agents make
contracts to commit to a certain transportation task.
Once the contracts are given, agents can safely per-
form planning within the terms of the contracts,
and the resulting plans will be consistent.

There is a wide literature on negotiation, on how
to deal with contracts. Contracts are traditionally
binding [8][9], which leads to suboptimal task al-
location due to unexpected future events. To en-
able incorporation of future events leveled com-
mitment contracts were introduced by Sandholm
and Lesser [10]. They showed that the decommit-
ment possibility increases each agent’s expected
payoff under very general assumptions. Anderson
and Sandholm [11] analyzed different agent behav-
iors at different penalty levels and found that with
proper penalty levels individual myopic agents per-
form nearly as good as social welfare maximiz-
ing agents. Pieter Jan ’t Hoen et al. studied de-
commitment in a logistical setting [12], and they
showed that there is a range in transportation ca-
pacity (compared to the amount of load to trans-
port) where decommitment raises company profit.
These results in the field of negotiations applied to
coordination of the planning activities promise so-
lutions for the continual planning problem.

Besides contracts, another way to coordinate
multi-agent planning is the formation of coalitions.
When coalitions are formed before the planning
activities, then it imposes such constraints on the
planning activities, that the produced plans will be
coordinated without any further effort. The field
of forming coalitions of cooperating agents orig-
inates from game theory but it is also studied by
multi-agent systems researchers [13, 14, 15, 16].

How the agents form the coalitions or how the pay-
off is distributed are the key issues in this field.
Coalition formation has some particular applica-
tion in logistical planning. Multi-modal or multi-
hop transportation can be realized by coalitions of
agents.

The exploitation of negotiation and coalition
formation techniques naturally follows from the
choice of multi-agent modeling. Agents are ex-
pected to behave autonomously and the only way
to influence their behavior (their planning) is to
communicate (negotiate) with them. This way
heterogeneous agents provided (designed, imple-
mented) by different companies can also partici-
pate in the planning without sharing (too much)
sensitive information.

Thus a multi-agent model of logistics enables us
to choose a new approach to the logistical problem.
Involving customers into the planning process and
giving them a way to directly influence the plan-
ning puts the traditional problem into new light.
Customers are not modeled anymore by a static set
of preferences, but they actively participate in the
planning process as agents along with the vehicle
agents. They can change their behavior according
to vehicle agents’ behavior and influence them by
their plans.

2 The Model

In this section we introduce our logistical multi-
agent model, and discuss how it differs from the
usual formal models.

In a multi-agent system customers are repre-
sented by agents that are responsible for enforcing
solutions that satisfy the customer. In our formal
multi-agent model packages or sets of packages as-
sociated with one customer order are represented
by an agent (order agent). These agents negotiate
transportation with vehicle agents, which results
in contracts between order and vehicle agents (see
figure 1).

A contract between a vehicle and an order agent
defines the commitment of the two agents for the
transportation task. High commitment level ex-
presses strong intention to undertake the trans-
portation task, while low commitment level of ei-
ther party means that this contract is not so impor-
tant for him. Once contracts are given every vehi-
cle agent has to solve a traditional logistical prob-
lem where the set of orders (O) consists only of
those orders the given vehicle has contract with.
The value of such a set of contract is the value of



V : {v0,v1, . . . ,vn}

O : {o0,o1, . . . ,om}

L : {loc0, . . . , lock}

oi :< locp, locd >

contracti j :< vi,o j,commi,comm j >

C : {contracti j| j = 0..m}
Pvi : Lvi ⊂ L,

∀o j(locp, locd) : ∃contracti j,

locp ∈ Lvi → locd ∈ Lvi ,

min(goal(P))

Figure 1: Logistical multi-agent model

the final solution vehicle agents compute based on
the contracts. This value is only comparable to val-
ues obtained using the same method to compute the
subproblems per vehicle agent. The global goal is
to find the set of contracts that defines feasible sub-
problems that can be solved by the individual ve-
hicle agents.

The formal model does not go further than defin-
ing contracts and how they partition the logistical
problem into subproblems that are solved by the
vehicle agents. Our multi-agent system, however,
considers contracts with commitment levels that
can change due to changes in the environment of
the agents. As an extreme case, agents may decide
to break the agreement. In these situations con-
tracts serve as coordination devices through which
agents can handle the change. E.g. a truck agent
may choose another package instead of a current
one because it is more beneficial. Then breaking
the contract with the current order agent will trig-
ger a search for another truck and will result in a
new contract. Additionally, the contract-breaking
agent has to pay some penalty to its partner, which
penalty is proportional to the other’s commitment
level.

Every agent is free to choose its commitment
levels for different contracts. If agents experience
a shortage in possible contracts, they can choose
to raise their commitment levels. This means that
their partners will have to pay more penalty in case
they want to break the agreement. Thus, raising
commitment levels yield in less broken contracts.
On the other hand, if agents see lots of opportuni-
ties, they can lower their commitment level, allow-
ing more changes in contracts, and generating even
more opportunities for other agents.

In our model commitment levels are modeled by
penalties. Penalties attached to contracts defines
the payment the agents should receive in case the
other party breaks the agreement. High penalty ex-
presses strong commitment – the contract is im-

portant for the agent –, low penalty implies weak
commitment. There are some basic penalty models
described in the literature (fixed penalty, penalty as
a function of contract value and/or time [11]) that
can serve as comparisons.

In our first penalty model agents use one of the
existing models, but they learn the proper value of
the parameters of the model by consecutive turns.
In every turn, they receive a feedback signal and
modify their parameter values accordingly. The
feedback signal can be based on individual agent
performance or on group performance.

In another model agents actively monitor their
environment to estimate how ’risky’ their environ-
ment is. If they experience lots of opportunities,
they can easily find new contracts in case a part-
ner agents break their contract. In this case they
can lower their penalties, since probably they can
compensate their losses with new contracts. On the
other hand, when there are few opportunities for
new contracts, agents should insist on their current
agreements, since it could be difficult to replace a
lost contract. In this case agents should raise their
penalty levels.

3 Evaluation and Experiments

The formal and actual multi-agent models are de-
veloped simultaneously. This section evaluates the
two models so far and outlines future experiments
for further evaluation.

The primarily goal of the formal model is to pro-
vide a clear definition of the problem. The cur-
rent definition (in section 2) is turned into a Prolog
program for verification. The program executes a
full search of the problem space on two levels. On
the top level, it searches the space of possible con-
tracts, and for every set of contracts it computes the
routes and schedules. This algorithm finds the op-
timal solution by enumerating all solutions. This
is, of course, not feasible for any reasonably sized
problem, since the number of contracts to check
is exponential in the number of customer orders.
In the future we will use this model and imple-
mentation to study the approximation algorithms
that will be developed in connection with the ac-
tual multi-agent system.

In the multi-agent model we emphasize the abil-
ity of agents to choose their commitment levels.
We study adaptive algorithms to set and change
the commitment levels to achieve better results in
finding the right contracts. In the following we de-
scribe the multi-agent platform that is used to im-



plement the agents and some experiments that are
considered future work.

The order and vehicle agents are implemented in
the Common Hybrid Agent Platform (CHAP) [17]
that is developed in the Distributed Engine for Ad-
vanced Logistics (DEAL) project. This platform
is based on a thread pooling library that detaches
agents from threads. This enables the existence of
more agents than the number of allowed threads in
the operating system, and also makes the execution
more efficient. Agents are initialized from XML
descriptions, thus they can be initialized from any
data source that can be converted o XML (e.g. a
database). This flexibility helps to design exper-
iments based on different problem instances like
standardized benchmark sets, or the operational
database of a commercial (logistic) company.

Once instantiated, truck agents are ready to plan
transportation of packages. Order agents are in-
stantiated sequentially in given times. Every order
agent organizes an auction to choose the cheapest
truck. Once it is chosen, a contract is bound and
the chosen vehicle agent modifies its plan to in-
clude the new order. This way all the orders are
assigned to vehicles one-by-one. Decommitment
of an order can occur in various situations. Should
any unforeseen incident happen (traffic jam, truck
breakdown, etc.), order agents might be forced to
chose another vehicle. Upon bidding for an order, a
vehicle agent could decide to decommit one of its
existing contracts in favor of the new one. Order
agent, monitoring the vehicle agents, could find a
cheaper truck and decommit their current contract
in favor of the other one. Given such agent behav-
iors, we study how can agents dynamically adapt to
new situations, and what effect of this adaptability
has on the resulting plans.

In the first two sets of experiments we will study
the penalty setting models described in section 2.
We expect to see the penalty settings for all agents
to follow the changes in their environment. Our
goal is to see if adaptability results in better overall
performance.

Being able to set penalty (commitment) levels
independently for every contract gives rise to an
interesting opportunity to model companies as a
group of agents. Suppose that a couple of vehicle
agents form a group (or coalition) – a company –,
and apply special rules inside the group. If an agent
tries to break a contract with one of these agents,
the penalty it has to pay depends on which other
agent it will choose to contract with. If the new
contract will involve another agent from the same
group (company), a lower (possibly zero) penalty
is due. If the new contractor will be an agent not

in the company, a higher penalty may apply. This
setting enable us to run simulations closer to real
life.

The last set of experiments will aim to study
how multi-modal transportation can be realized by
coalition formation. Transport vehicles of differ-
ent modes can form coalitions to transport orders
which cannot be handled by any individual vehi-
cle. These coalitions are very dynamic by nature
and may exist only for the time of the transporta-
tion of one order. On the other hand long term
agreements are also possible in which case posi-
tive synergy with the group-based decommitment
strategy is expected.

4 Conclusions

The tough competition in logistics necessitates that
planners take customer preferences into account
when planning the routes of vehicles. In multi-
agent systems this can be modeled by customer
agents whose goal is to have the packages trans-
ported within conditions that are acceptable to the
customer. This partly turns planning into a nego-
tiation process where customer agents and vehicle
agents set up transportation contracts.

Introducing contracts in the model enables the
use of negotiation techniques, like decommitment,
that enables on-line planning. Any event occur-
ring in the system is handled by re-negotiating the
contracts, making the system robust with respect to
common errors (truck breakdown, traffic jam, etc.).
On the other hand the system always maintains fea-
sible plans that can be more or less optimal, but are
always executable.

A formal model is developed and implemented
to provide a quality measure for the multi-agent
system solutions. The centralized Prolog imple-
mentation searches through all solutions generat-
ing first the contracts, then the routes and sched-
ules for the agents. Since it finds all solutions it
is possible to measure the quality of a solution pro-
vided by the multi-agent system by comparing it to
the solutions provided by the model.

Once the reference model matured, we plan to
conduct several experiments to study different ne-
gotiation strategies and coalition formation algo-
rithms that can provide robust, good quality so-
lutions for the logistical problem. Strategies to
set the decommitment penalty will be studied such
as fixed penalty, penalty as a function of contract
value and/or time, and especially adaptive penalty
setting. Experiments with coalition formation add



the interesting perspective of inter company and in-
tra company relations and also provides a way to
implement multi-modal transportation.
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