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Abstract. A profile describes a set of properties, e.g. a set of skills a
person may have or a set of skills required for a particular job. Profile
matching aims to determine how well a given profile fits to a requested
profile. The research taken in this paper uses a knowledge base grounded
in description logic to represent the knowledge about profiles. Thus, pro-
files can be defined by filters in the underlying lattice of the concepts in
the TBox of the knowledge base. Matching can be realised by assigning
values in [0,1] to pairs of such filters: the higher the matching value the
better is the fit. Conversely, given a set of filters together with match-
ing values determined by some human expert, the question is, whether a
matching measure can be determined such that the computed matching
values preserve the rankings given by the expert. In the paper plausi-
bility constraints for the values given by an expert are formulated. If
these plausibility constraints are satisfied, the problem of determining
an appropriate matching measure can be solved in an order-preserving
way.

1 Introduction

A profile describes a set of properties, and profile matching is concerned
with the problem to determine how well a given profile fits to a requested
one. Profile matching appears in many application areas such as matching
applicants for jobs to job requirements, matching system configurations
to requirements specifications, etc.
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Austrian Ministry for Transport, Innovation and Technology, the Federal Ministry
of Science, Research and Economy, and the Province of Upper Austria in the frame
of the COMET center SCCH. [FFG: 844597]
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Taking the profile just as a set of unrelated items is usually not ap-
propriate for the problem, even though many distance measures between
sets such as Jaccard or Sørensen-Dice [10] have proven to be useful in
ecological applications. The reason is that many dependencies between
the properties have to be taken into account. Therefore, in the human
resources application area many taxonomies for skills, competences and
education such as DISCO [2], ISCED [8] and ISCO [9] have been set
up. On the grounds of these application-oriented dictionaries for profile
matching a lattice structure for the individual properties can be assumed.
This has been exploited by Popov and Jebelean in [14] defining a different
asymmetric matching measure on the basis of filters in such lattices.

However, it can well be argued that the hierarchical dependencies
in lattices are still insufficient for capturing the exact meaning of the
properties in a profile. For instance, it is not common to request just
“programming in Java” as a required skill, but it is more likely that fur-
ther attributes are given such as years of experience associated with the
skill, level of complexity of problems addressed with the skill, etc. There-
fore, it appears favourable to not only assume a lattice structure, but
to exploit sophisticated knowledge representation features for semantic
matching problems as advocated by Falk, Mochol and others [3, 12]. In
our research we adopt this basic assumption how to represent knowledge
about properties. That is, we exploit description logics [1] as the basis
for knowledge representation using a rather expressive language similar
to SROIQ(D). With this the automatic classification of properties such
as skills and competences can be supported, which is necessary in view
of the frequent changes to such a knowledge base, which makes manual
management of dependencies almost impossible.

This raises first the question how matching can be generalised from
filters in lattices to knowledge bases. Using just the lattice defined by the
named concepts can be used as a starting point, but it would ignore the
fine-tuning of the knowledge that is obtained through the roles. There-
fore, we exploit “blowing-up” roles, which means to enrich the concept
lattice by inverse images defined by the roles [13]. In Section 2 we give
a brief account on our general approach to profile matching in knowl-
edge bases, formally defining a knowledge representation language and
matching measures based on filters.

The second question, which is the core problem handled in this pa-
per concerns the relationship of rankings obtained through the matching
measures and the judgements of human experts. An initial idea based on
formal concept analysis [6, 5, 4] was already presented in [11] aiming to
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enrich the knowledge base by additional concepts that would justify the
judgement of the human expert. Here we investigate the learning of the
matching measure. Start from the set of filters together with matching
values or simply rankings determined by some human expert. Some plau-
sibility constraints should nonetheless be satisfied to exclude unjustified
bias that is grounded in the valuation of facts not represented in a knowl-
edge base. We then use formal concept analysis on a family of binary
relations on the set of filters determined by the expert rankings. We show
that all these rankings permit to determine a suitable matching measure.
This key contribution will be presented in Section 3. We conclude with a
brief summary.

2 Profile Matching in Knowledge Bases

In this section we present the formal definitions underlying our approach
to profile matching in knowledge bases. We will start with the general
approach to knowledge representation, proceed with the representation
of profiles, and discuss filter-based matching.

2.1 Knowledge Representation

For the representation of knowledge we adopt the fundamental distinction
between terminological and assertional knowledge that has been used in
description logics since decades. For the former one we define a language,
which defines the TBox of a knowledge base, while the instances define a
corresponding ABox.

A TBox consists of concepts and roles. In addition, we will permit the
denotation of individuals as supported by SROIQ(D) [1] and OWL2 [7].
For this assume that C0, I0 and R0 represent not further specified sets of
basic concepts, individuals and roles, respectively. Then concepts C and
roles R are defined by the following grammar:

R = R0 | R−0 | R1 ◦R2

A = C0 | > | ≥ m.R (with m > 0) | {I0}
C = A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C

Definition 1. A TBox is a finite set T of assertions of the form C1 v C2

with concepts C1 and C2 as defined by the grammar above.

Each assertion C1 v C2 in a TBox T is called a subsumption axiom.
Note that Definition 1 only permits subsumption between concepts, not
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between roles, though it is possible to define more complex terminologies
that also permit role subsumption. As usual, we use several shortcuts:

– C1 ≡ C2 can be used instead of C1 v C2 v C1.

– ⊥ is a shortcut for ¬>.

– {a1, . . . , an} is a shortcut for {a1} t · · · t {an}.
– ≤ m.R is a shortcut for ¬ ≥ m + 1.R, and = m.R is a shortcut for
≥ m.R u ≤ m.R.

The semantics of a TBox is defined by structures.

Definition 2. A structure S for a TBox T consists of a non-empty set
O together with subsets S(C0) ⊆ O and S(R0) ⊆ O × O for all basic
concepts R0 and basic roles R0, respectively, and individuals ā ∈ O for
all a ∈ I0. O is called the base set of the structure.

We first extend the interpretation of basic concepts and roles and
to all concepts and roles as defined by the grammar above, i.e. for each
concept C we define a subset S(C) ⊆ O, and for each role R we define a
subset S(R) ⊆ O ×O as follows:

S(R−0 ) = {(y, x) | (x, y) ∈ S(R0)}
S(R1 ◦R2) = {(x, z) | ∃y.(x, y) ∈ S(R1) ∧ (y, z) ∈ S(R2)

S(>) = O
S({a}) = {ā}

S(≥ m.R) = {x ∈ O | #{y | (x, y) ∈ S(R)} ≥ m}
S(¬C) = O − S(C)

S(C1 u C2) = S(C1) ∩ S(C2)

S(C1 t C2) = S(C1) ∪ S(C2)

S(∃R.C) = {x ∈ O | (x, y) ∈ S(R) for some y ∈ S(C)}
S(∀R.C) = {x ∈ O | (x, y) ∈ S(R)⇒ y ∈ S(C) for all y}

Definition 3. An ABox for a TBox T is a finite structure S, such that
S(C1) ⊆ S(C2) holds for all assertions C1 v C2 in T .

For the following we always consider a concept C in a TBox as repre-
sentation of abstract properties, e.g. “knowledge of Java”, and individuals
in the ABox as concrete properties such as the “Java knowledge of Lara”.
Therefore, given an ABox a profile is simply a subset of the base set O.
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2.2 Profiles as Filters

Obviously, the concepts in a TBox define a lattice with u and t as op-
erators for meet and join, and v for the partial order. So let us abstract
for a moment from the specific definition of the knowledge base by TBox
and ABox and assume to be given a lattice (L,≤).

Definition 4. A filter in a lattice (L,≤) is a non-empty subset F ⊆ L,
such that for all C,C ′ with C ≤ C ′ whenever C ∈ F holds, then also
C ′ ∈ F holds.

If P ⊆ O is a profile, then P defines in a natural way a filter F of the
lattice L of concepts:

F = {C ∈ L | ∃p ∈ P. p ∈ S(C)}

Therefore, for determining matching relations we can concentrate on
filters F in a lattice.

2.3 Filter-Based Matching

In the following let (L,≤) be a lattice, and let F ⊆ P(L) denote the set
of filters in this lattice.

Definition 5. A relative weight measure on L is a function m : P(L)→
[0, 1] satisfying

(1) m(L) = 1, and

(2) m(
⋃

i∈I Ai) =
∑

i∈I m(Ai) for pairwise disjoint Ai (i ∈ I).

A matching measure is a function µ : F × F → [0, 1] such that
µ(F1,F2) = m(F1 ∩ F2)/m(F2) holds for some relative weight measure
m on L.

Note that the definition implies that also m(L−A) = 1−m(A) must
hold for a relative weight measure on L and any A ⊆ L.

Example 1. The matching measure µpj defined in [14] uses simply car-
dinalities:

µpj(F1,F2) = #(F1 ∩ F2)/#F2

Thus, it is defined by the relative weight measure m on L with m(A) =
#A/#L.
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It is easy to see that every matching measure µ is defined by weights
w(C) = m({C}) ∈ [0, 1] for the elements C ∈ L. With this we immediaely
obtain m(F) =

∑
C∈F w(C) and thus

µ(F1,F2) =
∑

C∈F1∩F2

w(C) ·

 ∑
C∈F2

w(C)

−1 .
Example 2. Taking a simple lattice L with only five elements: L =
{C1, C2, C3, C4, C5}. The lattice structure is shown in Figure 1.

C5

C4

C2 C3

C1

Filters F:
〈C1〉 = {C1}
〈C2〉 = {C1, C2}
〈C3〉 = {C1, C3}
〈C2, C3〉 = {C1, C2, C3}
〈C4〉 = {C1, C3, C4}
〈C2, C4〉 = {C1, C2, C3, C4}
〈C5〉 = {C1, C2, C3, C4, C5}

Fig. 1. A simple lattice and its filters

Then we obtain seven filters for this lattice, each generated by one or
two elements of the lattice. These filters are also shown in Figure 1.

If we now define weights w(C1) = 1
10 , w(C2) = 3

10 , w(C3) = 1
5 ,

w(C4) = 3
10 , w(C5) = 1

10 , then we obtain the matching measure val-
ues µ(F ,G shown in Table 1. In the table the row label is F and the
column label is G.

Note that in general matching measures are not symmetric. If µ(F1,F2)
expresses how well a given profile F1 matches a required profile F2, then
µ(F2,F1) measures what is “too much” in the given profile F1 that is not
required in profile F2 [13].

Example 3. Take the filter L from Example 2 shown in Figure 1. Let
G = 〈C2, C3〉 be the filter that represents the requirements. If we take
filters F1 = 〈C3〉 and F2 = 〈C4〉 representing given assets, then we have

µ(F1,G) = µ(F2,G) =
1

2
,
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〈C1〉 〈C2〉 〈C3〉 〈C2, C3〉 〈C4〉 〈C2, C4〉 〈C5〉

〈C1〉 1 1
4

1
3

1
6

1
6

1
9

1
10

〈C2〉 1 1 1
3

2
3

1
6

4
9

2
5

〈C3〉 1 1
4

1 1
2

1
2

1
3

3
10

〈C2, C3〉 1 1 1 1 1
2

2
3

3
5

〈C4〉 1 1
4

1 1
2

1 2
3

2
5

〈C2, C4〉 1 1 1 1 1 1 9
10

〈C5〉 1 1 1 1 1 1 1

Table 1. A matching measure µ on the lattice L

i.e., both given filters match the requirements equally well. However,
if we also consider

µ(G,F1) = 1 and µ(G,F2) =
1

2
,

then we see that F1 matches “better”, as F2 contains C4, which is not
required at all.

2.4 Role-Enriched Filter-Based Matching

The matching measures introduced so far are based solely on filters in
a lattice, but a TBox is more than its concept lattice. In order to fully
exploit the knowledge represented in a TBox we integrate the TBox by
blow-up operators. Formally, if C is a concept, for which C v ∃R.C ′
holds, then for any subconcept C ′′ v C ′ we can define the subconcept
blR,C′′(C) = C u ∃R.C ′′ of C, which is called the result of the blow-up of
R with respect to C ′′ on the concept C.

In particular, this becomes relevant, if C ′′ is defined by individuals, say
C ′′ = {a1, . . . , an}. Any subsumption between subconcepts of C ′ naturally
induces subsumption on these blown-up subconcepts of C, i.e. we have

C1 v C2 ⇒ blR,C1(C) v blR,C2(C) .

By means of the blow-up operators we bring the information carried
by the roles into additional concepts, to which the matching measures as
discussed before can be applied.

At this point a few pragmatic remarks concerning the matching pro-
cess in practice are due. In particular, in the model application area deal-
ing with matching between candidate profiles (represented by filters F)
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and requested job profiles (represented by filters G) first very few roles
are used. That is, the matching will be based first only on lattices of
named concepts plus their intersections and unions. Such lattices arise
from the taxonomies given by DISCO [2], ISCED [8], ISCO [9] and others
by adding the missing joins and meets.

In a second step a more fine-tuned matching may be required such as
considering years of experience with a particular skill, level of application
knowledge, etc. For this a slightly enlarged knowledge base containing
roles may be exploited. Matching on top of such a knowledge would exploit
the concepts resulting from the blow-up operators, but most likely the
concept C ′ defining the co-domain of the role R to be blown-up on concept
C, i.e. C v ∃R.C ′, will be defined by a finite set of individuals, say
C ′ = {a1, . . . , an}. Consequently, the enrichment of the knowledge base
will mainly contain such blown-up subconcepts of C.

In a third step the “overqualification” may be considered as empha-
sised in Example 3. That is, profiles that equally (or almost equally) well
match the requirements, may be subjected to a second ranking with re-
spect to the inverted matching. However, it might as well be the case that
concepts in the given profiles that do not appear in the requirements may
as well be considered as secondary assets instead of being considered not
to be needed. That is, an additional secondary matching may be based
on extensions to the requested profile G. Such a process can be repeated
with tertiary and in general nth-ary matchings as long as needed.

Finally, a certain personal bias can never be fully excluded. This can
be captured by additional concepts – let us call them biases B1, . . . , Bk –
that are added to the required profile. Bias concepts may also be added to
some of the given profiles to ensure that the resulting matching coincides
with expectations.

3 Matching Analysis

Let L be a lattice with profiles defined by filters. Let F denote the set of all
filters. Note that each filter F ∈ F is uniquely determined by its minimal
elements, so we can write F = 〈C1, . . . , Ck〉. The matching knowledge of a
human expert can be represented be a partial mapping h : F×F→ [0, 1].
Though human experts will hardly ever provide complete information, we
will assume in the sequel that h is total.

The general question is whether there exists a matching measure µ
on F as defined before such that µ(F ,G) = h(F ,G) holds for all pairs
of filters. As the matching values as such are merely used to determine

8



rankings whereas their concrete value is of minor importance, this prob-
lem can be weakened to find a ranking-preserving matching measure µ on
F, i.e. the matching measure should imply the same rankings.

Definition 6. A matching measure µ on F is called ranking-preserving
with respect to h : F× F→ [0, 1] iff

(1) for all filters µ(F1,G) ≥ µ(F2,G) holds, whenever h(F1,G) ≥ h(F2,G)
holds, and

(2) for all filters µ(F ,G1) ≥ µ(F ,G2) holds, whenever h(F ,G1) ≥ h(F ,G2)
holds.

3.1 Plausibility Constraints

We are looking for plausibility constaints for the mapping h that should
be satisfied in the absence of bias, i.e. the assessment of the human ex-
pert is not grounded in hidden concepts. If such plausibility conditions
are satisfied we explore the existence of a ranking-preserving matching
measure µ. First we show the following simple lemma.

Lemma 1. Let µ be a matching measure on F. Then for all filters F ,F1,
F2,G ∈ F the following conditions hold:

(1) µ(F ,G) = 1 for G ⊆ F .

(2) µ(F ,G) ≤ µ(F ,G − {C}) holds for C /∈ F .

(3) µ(F ,G) ≤ µ(F ∪ {C},G ∪ {C}).
(4) If F ∩ F1 ∩ G = F ∩ F2 ∩ G holds, then

µ(F1,G) > µ(F2,G)⇔ µ(F ,F1 ∩ G) < µ(F ,F2 ∩ G).

Proof. Property (1) is obvious from the definition of matching measures
(Definition 5), as in this case F ∩ G = G holds.

For property (2) let C ∈ G without loss of generality. Then we have

µ(F ,G) =
m(F ∩ (G − {C}))
m(G − {C}) + w(C)

≤
m(F ∩ (G − {C}))

m(G − {C})
= µ(F ,G − {C}) .

For property (3) the case C /∈ F is trivial. In case C ∈ G − F holds,
we get

µ(F ,G) =
m(F ∩ G)

m(G)
≤
m(F ∩ G) + w(C)

m(G)
= µ(F ∪ {C},G ∪ {C}) .
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In case C /∈ G first note that for any values a, b, c with a ≤ b we get

ab+ ac ≤ ab+ bc and thus
a

b
≤
a+ c

b+ c
. Thus, we get

µ(F ,G) =
m(F ∩ G)

m(G)
≤
m(F ∩ G) + w(C)

m(G) + w(C)
= µ(F ∪ {C},G ∪ {C}) .

For property (4) the both sides of the equivalence is equivalent to
m(F1 ∩ G) > m(F2 ∩ G), which completes te proof. ut

Informally phrased property (1) states that whenever all requirements
in a requested profile G (maybe even more) are satisfied by a given profile
F , then F is a perfect match for G. Property (2) states that if a require-
ment not satisfied by a given profile F is removed from the requested
profile G, the given profile will become a better match for the restricted
profile. Property (3) covers two cases. If C ∈ G holds, then simply the
profile F∪{C} satisfies more requirements than F , so the matching value
should increase. The case C /∈ G is a bit more tricky, as the profile G∪{C}
contains an additional requirement, which is satisfied by the enlarged pro-
file F ∪{C}. In this case the matching value should increase, because the
percentage of requirements that are satisfied increases. Property (4) states
that if the given profile F1 is better suited for the required profile G than
the given profile F2, then relative to G the profile F2 is less over-qualified
than F1 for any other required profile F , provided the intersections of
F ∩ G with the two given profiles coincide.

Thus, disregarding for the moment our theory of matching measures,
all four properties in Lemma 1 appear to be reasonable. Therefore, we
require them as plausibility constraints that a human-defined mapping
h : F× F→ [0, 1] should satisfy:

(1) h(F ,G) = 1 for G ⊆ F ,
(2) h(F ,G) ≤ h(F ,G − {C}) for any concept C /∈ F , and
(3) h(F ,G) ≤ h(F ∪ {C},G ∪ {C}) for any concept C.
(4) If F ∩ F1 ∩ G = F ∩ F2 ∩ G holds, then

h(F1,G) > h(F2,G)⇔ h(F ,F1 ∩ G) < h(F ,F2 ∩ G).

3.2 Derivation of Matching Measures

We want to show the following:

Theorem 1. Let h be a human-defined matching measure that satisfies
the plausibility constraints. Then there esists a matching measure µ that
is ranking-preserving with respect to h.
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.

So let h be a human-defined matching measure that satisfies the
plausibility constraints. Assume the lattice L contains n + 2 elements
C0, . . . , Cn+1 with top- and bottom elements C0 and Cn+1, respectively.

Fixing a requested profile G, then h(F1,G) < h(F2,G) defines a linear
inequation of the form

∑
x∈U

x <
∑
x∈V

x with U = {w(C) | C ∈ F1 ∩ G}

and V = {w(C) | C ∈ F2 ∩ G}. In these inequalities we may remove
summands w(C) on both sides for C ∈ F1 ∩F2 ∩ G. In particular, w(C0)
never appears in the inequalities. Without loss of generality we can also
ignore Cn+1, as it only appears for the trivial case.

Analogously, if we fix a given profile F , we also obtain linear inequali-
ties of the form

∑
x∈U

x <
∑
x∈V

x with disjoint sets U and V corresponding to

sets of weights of concepts. If all these inequalities can be satisfied, then
clearly the solution defines a matching measure µ that is order-preserving
with respect to h.

The “worst case” arises, if we have a linear order on the set of all
terms

∑
i∈I xi, where xi represents w(Ci) and I ⊆ {1, . . . , n}. This arises

for the lattice L, in which all Ci (i = 1, . . . , n) are pairwise incomparable.
For all other lattices we can extend the set of inequalities derived from h
to the “worst case”.

So we reduce the problem of proving Theorem 1 to a problem of
solving a set of linear inequalities. Thus, let P be a linear order on the
set of terms {

∑
i∈I xi | I ⊆ {1, . . . , n}}. We say that P is realisable iff

there is a substitution v : {x1, . . . , xn} → R+ of the variables by positive
real numbers such that

∑
i∈I xi precedes

∑
j∈J xj in P iff

∑
i∈I v(xi) <∑

j∈J v(xj) holds. As all sums are finite, it is no loss of generality to
seek substitutions by rational numbers, and further using the common
denominator it suffices to consider positive integers only.

As P is defined by h we can assume that
∑

i∈I xi precedes
∑

j∈J xj

for I ⊂ J . We can then also extend P to a partial order P̂ on multi-
sets of variables by adding the same variable(s) to both sides. Clearly,
P is realisable iff P̂ is realisable. For convenience we introduce the nota-
tion U ≺ V for multisets U, V over {x1, . . . , xn} to denote the inequality∑
xi ∈ UmU (xi)xi <

∑
xj ∈ V mV (xj)xj , where mU and mV are the

multiplicities for the two multisets.

Theorem 2. P is realisable iff there is no positive integer combination
of inequalities in P that results in A ≺ B with B ⊆ A as mutisets, i.e.
mB(xi) ≤ mA(xi) for all i = 1, . . . , n.
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Proof (sketch). The necessity of the condition is obvious. For the suffi-
cuency we use Fourier-Motzkin elimination. ut

We now use Theorem 2 to prove our main result in Theorem 1.

Proof (of Theorem 1). Assume that P is not realisable. Then according
to Theorem 2 there exist inequalities U1 < V1, . . . , Uk < Vk in P such
that V =

⊎
i = 1kVi ⊆

⊎
i = 1kUi = U as multisets and

∑
x∈U

k∑
j=i

mUj (x)x <
∑
x∈V

k∑
j=i

mVj (x)x.

Let this system of inequalities be minimal, so each subset violates the
condition in Theorem 2. Taking the inequalities in the some order let

Ai =
∑
x

i∑
j=1

mUj (x)x and Bi =
∑
x

i∑
j=1

mVj (x)x.

Then for i < k there always exists some x with
∑i

j=1mUj (x) <∑
x

∑i
j=1mVj (x), while Ai ≺ Bi.

On the other hand
∑k

j=1mUj (x) ≥
∑
x

∑k
j=1mVj (x), while Ak ≺ Bk.

Let V ′i be the multiset Bi−Ai, i.e. the multiset of all x with mBi(x) >
mAi(x) such that mV ′

i
(x) = mBi(x) − mAi(x) holds. Each x ∈ V ′i is a

witness for the violation of the condition in Theorem 2. In particular, we
have V ′i 6= ∅ for all i < k, but V ′k = ∅.

Let V ′′i+1 = Vi∩Vi+1 as multisets, somV ′′
i+1

(x) = min(mV ′
i
(x),mV ′

i+1
(x)),

i.e. x will at most be added to Bi to gibe Bi+1, but not to Ai. In particular,
V ′′i+1 ⊆ V ′i . Take the complement U ′i+1 such that V ′i = U ′i+1 ] V ′′i+1.

As Ui < Vi is in P, we also have U ′i < Vi in P for all i > 1 (U ′1 is not
yet defined).

Let B′1 = V1 = V ′1 . Then proceed inductively defining Wi = B′i−U ′i+1

as well as

A′i+1 = U ′i+1 ]Wi and B′i+1 = Vi+1 ]Wi,

which gives A′i+1 < B′i+1 in P̂ and B′i = A′i+1. That is, we obtain a
chain

B′1 = A′2 < B′2 = · · · < B′k−1 = A′k < B′k.
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Complement these definitions by U ′1 = B′k ∩ U1 = A′1, and X0 =
B′k − U1 = X1. Proceed inductively defining

C1 = U ′1 ]X0 ≺ V1 ]X1 = B′1 ]X1 = D1

and Xi+1 = Xi − (Ui+1 −A′i+1)

This gives Ci+1 = A′i+1 ]Xi ≺ B′i+1 ]Xi+1 = Di+1 and Ci+1 = Di.
Finally, due to this construction we also have Xi ⊇ Xi+1 for all i and
Xk = ∅. This implies Dk = C1, which means we have a cycle in P̂
contradicting the fact that it is a partial order. Therefore, P must be
realisable. ut

Example 4. (1) To illustrate the construction in the proof take the in-
equalities x1 +x2 < x3 +x4, x2 +x3 < x5, x4 +x5 < x1 +x3 and x3 < x2
in P which satisfy the condition in Theoren 2. From these we construct
first the following inequalities in P̂: x3 + x4 < x4 + x5, x4 + x5 < x1 + x3
and x1 + x3 < x1 + x2. As the last right hand side is U1, we get X0 = ∅,
which defines the additional inequality x1 + x2 < x3 + x4. These four
inequalities define the contradictory cycle in P̂.

(2) If the third inequality had been x4 + x5 < x1 + x2 + x3 instead,
the constructed inequalities in P̂ would have been x3 + x4 < x4 + x5,
x4+x5 < x1+x2+x3 and x1+x2+x3 < x1+2x2, this defines X0 = {x2},
which gives the addition inequality x1 + 2x2 < x2 + x3 + x4 and thre
modified inequality x2 + x3 + x4 < x4 + x5, which again defines a cycle.

Note that our main result only states the existence of a ranking pre-
serving matching measure µ. However, we obtain solutions for the linear
inequations defined by h by minimising x1 + · · ·+ xn − 1 under the con-
ditions

∑
xj∈V xj −

∑
xi∈U xi ≤ ε for a very small constant ε > 0. For

this linear optimisation problem the well-known simplex algorithm can
be exploited.

4 Conclusion

In this paper we addressed the problem to determine matching measures
for profiles that produce rankings, which are in accordance with the mea-
sures given by a human expert or at least imply the same rankings. For
this we analysed linear inequalities that result from the human-defined
rankings. We could show that if certain plausibility rules are obeyed by
the human expert – i.e. the matching and the rankings are not biased
by criteria not represented in the knowledge base – then we can indeed
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create such matching measures, with the help of which the human exper-
tise can be approximated. This shows that the very general approach to
matching based on filters provides the necessary flexibility required for
diverse matching tasks.

This is only a starting point for even more sophisticated matching
analysis aiming at consensus building among different experts and deter-
mination of the most suitable matching measure that is in accordance with
the expert knowledge. We also have to take into account that valuations
given by human experts will never be complete. This will be addressed in
our future research.
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