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The regulation of hydrogen ion concentration (pH) is fundamental to cell viability,
metabolism, and enzymatic function. Within the nervous system, the control of pH is also
involved in diverse and dynamic processes including development, synaptic transmission,
and the control of network excitability. As pH affects neuronal activity, and can also itself
be altered by neuronal activity, the existence of tools to accurately measure hydrogen
ion fluctuations is important for understanding the role pH plays under physiological and
pathological conditions. Outside of their use as a marker of synaptic release, genetically
encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with
network activity. By combining whole-cell patch clamp with simultaneous two-photon or
confocal imaging, we quantified the amplitude and time course of neuronal, intracellular,
acidic transients evoked by epileptiform activity in two separate in vitro models of temporal
lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH
sensors: deGFP4, E2GFP, and Cl-sensor for investigating activity-dependent pH changes
at the level of single neurons.
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INTRODUCTION
Green fluorescent protein (GFP), derived from Aequorea victo-
ria, has become one of the most popular fluorescent reporters
for monitoring protein localization and gene expression (Tsien,
1998). This popularity stems from the fact that GFP is genetically
encoded, enabling it to be targeted to particular cell types, subcel-
lular compartments, or single proteins. Whilst its use as a simple
label has been spectacularly successful, GFP’s value as a biosensor
is arguably just as important. For instance, protein engineering
via targeted mutagenesis of GFP has resulted in variants sensitive
to specific ion species, which are relevant to biological mech-
anisms. These include genetically encoded reporters of Ca2+,
Cl−, and H+ ion concentrations (Miyawaki et al., 1997; Kuner
and Augustine, 2000; Bizzarri et al., 2006; Markova et al., 2008;
Arosio et al., 2010; Zhao et al., 2011). The negative logarithm
of H+ ion concentration (pH) is a fundamental cellular param-
eter that is critical to a series of processes including cell division,
metabolism, apoptosis, and cell migration (Opie, 1965; Denker
and Barber, 2002; Putney and Barber, 2003; Abad et al., 2004).
Within the nervous system, the control of pH has particular rel-
evance for synaptic transmission and the modulation of network
excitability (Drapeau and Nachshen, 1988; Tabb et al., 1992; Dulla
et al., 2005). Whilst pH affects neuronal activity, neuronal activity
itself can generate sizeable shifts in intracellular pH (Ahmed and
Connor, 1980; Xiong et al., 2000). This reciprocal relationship
means that tools to accurately measure hydrogen ion concentra-
tion are important for understanding the role pH plays during the
evolution of both physiological and pathological network states.
Although GFP-based pH indicators have gained popularity as a
marker of synaptic release (Miesenböck, 1998), to our knowl-
edge they have not been utilized to study intracellular hydrogen

ion fluxes associated with network activity. Previous work inves-
tigating the effect of spiking activity and neuronal depolarization
on intracellular pH has relied either on pH-sensitive micro-
electrodes or pH-sensitive fluorescent dyes (Rose and Deitmer,
1995; Xiong et al., 2000). Genetically encoded, GFP-based pH
reporters offer several potential advantages over these techniques,
including single-cell or subcellular targeting, enhanced spatial
resolution, no fluorophore leakage and reduced interference with
endogenous H+ transport mechanisms (Gatto and Milanick,
1993; Bizzarri et al., 2009).

On this basis we set out to assess a number of genetically
encoded pH sensors in terms of their ability to report absolute
shifts in intracellular neuronal pH associated with heightened
network activity. We chose two genetically encoded ratiomet-
ric pH reporters: “deGFP4” (Hanson et al., 2002) and “E2GFP”
(Bizzarri et al., 2006), as well as a pH-sensitive chloride indica-
tor, “Cl-sensor” (Markova et al., 2008). With each reporter we
quantified the amplitude and time course of neuronal, intracel-
lular, acidic transients associated with epileptiform activity. Two
in vitro models of epilepsy revealed that seizure-induced intracel-
lular acidic transients are likely to be an order of magnitude larger
than previous estimates, which were based upon measurements
made across regions of tissue. Our findings demonstrate the util-
ity of employing GFP-based, genetically encoded pH indicators
for investigating activity-dependent pH changes at the single-cell
level.

MATERIALS AND METHODS
SLICE PREPARATION AND DNA TRANSFECTION
Rat organotypic hippocampal slice cultures were prepared using
a method similar to that described by Stoppini et al. (1991).
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Briefly, 7-day-old male Wistar rats were killed in accordance with
the UK Animals Scientific Procedures Act 1986. The brains were
extracted and placed in cold (4◦C) Geys Balanced Salt Solution
(GBSS), supplemented with D-glucose (34.7 mM). All reagents
were purchased from Sigma-Aldrich, unless stated. The hemi-
spheres were separated and individual hippocampi were removed
and immediately sectioned into 350 µm thick slices on a McIlwain
tissue chopper. Slices were rinsed in cold dissection media, placed
onto Millicell-CM membranes and maintained in culture media
containing 25% EBSS, 50% MEM, 25% heat-inactivated horse
serum, glucose, and B27 (Invitrogen). Slices were incubated at
36◦C in a 5% CO2 humidified incubator before transfection.
To prevent excessive growth of glial cells, the antimitotic agent
ARA-C (10 µM) was added to the culture media on day five or six
in culture. Neurons were biolistically transfected after 5–6 days
in vitro using a Helios Gene Gun (120 psi; Bio-Rad). The target
DNA was either E2GFP as part of pcDNA3-ClopHensor (gener-
ously provided by Daniele Arosio, University of Trento; Addgene
plasmid #25938), deGFP4 in pEGFP-N1 (generously provided by
Jim Remington, University of Oregon) or Cl-sensor in pEGFP-C1
(generously provided by Piotr Bregestovski, INMED, Marseille).
50 µg of target DNA was precipitated onto 25 mg of 1.6 µm
diameter gold microcarriers and bullets generated in accordance
with the manufacturer’s instructions (Bio-Rad). This resulted in
sparse transfection rates (typically less than 10 cells per slice)
and recordings were performed 2–4 days post-transfection. At the
time of recording therefore, transfected neurons were equivalent
to postnatal day 14–17.

ELECTROPHYSIOLOGICAL RECORDINGS
Hippocampal slices were transferred to a recording chamber
and continuously superfused with 95% O2/5% CO2 oxygenated
artificial cerebro-spinal fluid (aCSF), warmed to 32–35◦C. The
composition of the “standard” aCSF was (in mM): NaCl (120),
KCl (3), MgCl2 (2), CaCl2 (2), NaH2PO4 (1.2), NaHCO3 (23),
D-Glucose (11). The pH was adjusted to be between 7.35 and 7.40
using NaOH. Two seizure models were used: a “0 Mg2+ model”
and a “0 Cl− model.” Seizures were induced either by switching
bath perfusion of slices with normal aCSF to nominally Mg2+-
free aCSF (0 Mg2+ model: Mg2+ omitted from standard aCSF) or
nominally Cl− free aCSF (0 Cl− model: NaCl, MgCl2, and CaCl2
of standard aCSF replaced with 120 mM sodium D-gluconate,
1 mM MgSO4, and 3 mM calcium D-gluconate, respectively).
The 0 Mg2+ seizure model is a well-described in vitro model
of epilepsy, which promotes excitation by removing the voltage
dependent Mg2+ block on NMDA receptors (Anderson et al.,
1986; Mody et al., 1987; Gutiérrez et al., 1999; Avoli et al., 2002).
The 0 Cl− model of seizures represents the first in vitro model
of epilepsy reported in the literature and has since been widely
utilized (Yamamoto and Kawai, 1967, 1968, 1969; Chamberlin
and Dingledine, 1988; Avoli et al., 1990). It is mechanistically
similar to the well-described seizure models that use pharmaco-
logical blockade of GABAARs to reduce the efficacy of GABAergic
inhibition (Hablitz, 1984; Straub et al., 1996). Removal of Cl−
from the aCSF has the added advantage of preventing poten-
tial Cl− fluxes that may complicate pH measurements from the
pH and Cl− sensitive genetic reporters such as the Cl-sensor

(Markova et al., 2008). Only data from seizures that were com-
patible with the imaging protocols (i.e., seizure duration < 100 s)
were analyzed. Patch pipettes of 3–5 M� tip resistance were pulled
from filamental borosilicate glass capillaries (1.2 mm outer diam-
eter, 0.69 mm inner diameter; Harvard Apparatus Ltd), using
a horizontal puller (Sutter P-97). The pipettes were filled with
an internal solution containing (in mM): K-gluconate (130),
NaCl (10), CaCl2 (0.1333), MgCl2 (2), EGTA (1), KCl (4), and
HEPES (10). Osmolarity was adjusted to 290 mOsM and the
pH was adjusted to 7.38 with KOH. Neurons were visualized
under a 40×, water-immersion objective (Leica SP2 or Olympus
BX51WI). Hippocampal CA1 or CA3 pyramidal neurons in
close proximity to the transfected neuron of interest (<200 µm
between somata) were targeted for whole-cell recordings. All
recordings were made in current clamp mode using an Axopatch
1D or Axoclamp 2B amplifier (Axon Instruments). Data was
acquired with WinWCP Strathclyde Whole-Cell Analysis soft-
ware (V.3.9.7; University of Strathclyde) and later combined
with pH imaging data during off-line analysis using MATLAB
(MathWorks).

RECORDING INTRACELLULAR pH
Concurrent with electrophysiological recordings, the intracellular
pH of a transfected CA1 or CA3 pyramidal neuron was measured
using the following imaging techniques. For E2GFP transfected
neurons, imaging was performed using an upright Leica SP2
AOBS laser scanning confocal microscope equipped with a 40×
water immersion objective (NA 0.8). Sequential excitation of
E2GFP at 458 and 488 nm was achieved with a multiline argon
laser. Emitted fluorescence was detected between 500 and 550 nm
using a single photomultiplier tube (PMT) at a constant voltage.
To compensate for fluctuations in laser intensity, a custom built
laser power sensor (sample rate 10 kHz) was used to record laser
power output during imaging (Zucker and Price, 2001; Arosio
et al., 2010) and the resulting data was used to correct fluorescence
ratios offline.

For deGFP4 and Cl-sensor transfected neurons, imaging
was performed using an Olympus FV300 confocal microscope
(Olympus, Japan), custom-converted for two-photon imaging
and equipped with a MaiTai-HP Ti:sapphire femtosecond pulsed
laser (Newport Spectra-Physics, USA). Images were acquired on
a PC using Fluoview software (version 5.0, Olympus, Japan).
The two-photon system was mounted on an Olympus BX51
upright microscope equipped with a 40× water immersion objec-
tive (NA 0.80). Fluorescence was detected using two externally
mounted PMTs (R3896, Hamamatsu, Japan). An excitation wave-
length of 810 or 850 nm was used for deGFP4 or Cl-sensor,
respectively. Emitted fluorescence from deGFP4 was separated
using a dichroic mirror at 495 nm and filtered for detection by
the two PMTs at 450–490 and 500–550 nm. Emitted fluorescence
from Cl-sensor was separated using a dichroic mirror at 510 nm
before being filtered for detection at 460–500 and 520–550 nm.
Images were exported to the MATLAB environment where back-
ground was subtracted and fluorescence averaged within regions
of interest selected from the soma of single neurons. Excitation
or emission fluorescence ratios (RpH) were converted to pH
according to calibration curves collected for each construct.
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pH CALIBRATION
Intracellular pH was controlled by equilibrating extra and intra-
cellular ion concentrations using the K+/H+ exchanger nigericin
(10 µM) and the Cl−/OH− exchanger tributyltinchloride in a
high K+ aCSF containing (in mM) potassium D-gluconate (123),
HEPES (23), D-glucose (11), NaH2PO4 (1.2), MgSO4 (2), and
calcium D-gluconate (2) (Boyarsky et al., 1988). pH was adjusted
with small aliquots of NaOH and, to avoid CO2 dependent pH
buffering, aCSF was bubbled with 100% O2. After each adjust-
ment of pH, at least 15 min were allowed for intracellular and
extracellular compartments to equilibrate. For each indicator,
either an excitation (E2GFP) or emission (deGFP4, Cl-sensor)
fluorescence ratio (R) was measured at different intracellular pHs:

R = SN

SD

SN and SD are the numerator and denominator of the calcu-
lated fluorescence ratio, respectively. The formation of a 1:1
analyte-sensor complex results in an equilibrium described by
the Grynkiewicz equation (Grynkiewicz et al., 1985; Arosio et al.,
2010), which can be written as follows:

pHi = pKa + log

(
R − RA

RB − R

)
+ log

(
SD,A

SD,B

)

RA and RB are the values of R for the ratiometric indicator in its
most acidic and basic forms, respectively. Likewise, SD,A and SD,B

reflect SD in its acidic and basic form. pKa is the acid dissocia-
tion constant of the indicator. Calibration data was fitted using
the following rearranged version of the above equation:

R = RB10
pH−pKA−log

(
SD,A
SD,B

)
+ RA

1 + 10
pH−KA−log

(
SD,A
SD,B

)

This allowed the pKa of each construct to be determined and pHi

to be calculated from measured fluorescence ratios (R) during
subsequent experiments.

DATA ANALYSIS AND STATISTICS
Data analysis was performed using custom-made programs in
the MATLAB environment. Some statistical analysis was also per-
formed using GraphPad Prism version 5.0 (GraphPad Software).
Data are reported as mean ± SEM.

RESULTS
DETECTING ACTIVITY-DEPENDENT CHANGES IN pH USING
GENETIC REPORTERS
To investigate whether genetic reporters of pH can be used to
detect the effect of neuronal network activity upon intracellular
pH at a single-cell level, we combined whole-cell patch clamp
recordings with simultaneous two-photon or single-photon con-
focal imaging in hippocampal brain slices (Figure 1). The intra-
cellular pH of individual pyramidal neurons within the CA1
and CA3 regions was measured using one of three genetically
encoded ratiometric pH sensors: E2GFP (Bizzarri et al., 2006),
deGFP4 (Hanson et al., 2002), or Cl-sensor (Markova et al.,

2008), which were delivered by biolistic DNA transfection meth-
ods. Hyper-active network states were generated using seizure
models that result in periods of synchronized neuronal dis-
charges (see Materials and Methods). The effects upon neuronal
activity were monitored by performing whole-cell current clamp
recordings from nearby pyramidal neurons (<200 µm between
somata). This provided precise information regarding seizure
onset, offset, and intensity, without disrupting the physiology
of the imaged neuron (Figure 1C). With this arrangement we
found that seizure episodes were associated with marked acidic
pH transients in neurons (see below). The acidic pH tran-
sient typically began at the onset of the seizure (Figure 1C) and
pH continued to decrease before reaching a minimum at, or
shortly following, the end of the seizure. The pH then recov-
ered to baseline levels in the period between seizure events.
Across slices and experiments the network events varied in
terms of duration and the signal to noise of the pH mea-
surements was sufficient to detect acidic transients associated
with relatively brief periods of network activity (see example in
Figure 1C).

CALIBRATING GENETICALLY ENCODED pH SENSORS IN
HIPPOCAMPAL NEURONS
We first assessed the ability of each pH sensor to report steady-
state pH under our imaging conditions. deGFP4, E2GFP, and Cl-
sensor showed robust expression in primary hippocampal neu-
rons following biolistic transfection (Figures 2A–C). Each genetic
reporter was calibrated by systematically varying extracellular pH
in the presence of a proton-permeable ionophore, to achieve
known intracellular pH values (see Materials and Methods).
E2GFP was used as a ratiometric pH indicator by excitation. The
protein was excited sequentially via single-photon excitation at
458 and 488 nm, with emission collected between 500 and 550 nm
using a single PMT. The ratio of fluorescence collected using
the two excitation wavelengths (RpH = F488/F458) was shown
to depend on intracellular pH with a pKa of 7.56 (Figure 2A,
right). deGFP4 was employed as a ratiometric pH indicator by
emission. A two-photon laser at 810 nm was used to excite the
protein, whilst emission was simultaneously recorded at 450–490
and 500–550 nm by two separate PMTs. The fluorescence ratio
between these emission windows (RpH = F500−550/F450−490) was
found to be dependent upon intracellular pH with a pKa of 7.42
(Figure 2B, right). Cl-sensor was also utilized as a ratiometric
pH indicator by emission. This reporter was excited at 850 nm,
whilst emission was simultaneously recorded at 460–500 and
500–550 nm by two separate PMTs. Once again, the fluorescence
ratio (RpH = F500−550/F460−500) was strongly dependent upon
intracellular pH, with a pKa of 7.73 (Figure 2C, right). Under
our imaging conditions the noise associated with the pH signal
was found to be different for the three reporters (P < 10−7, One-
Way ANOVA). Comparing the root mean square (RMS) noise
of the intracellular pH signal under baseline conditions revealed
that E2GFP exhibited the least noise (RMS = 0.01 ± 0.001 pH),
then Cl-sensor (RMS = 0.02 ± 0.001 pH), and deGFP4 exhibited
the greatest signal noise (RMS = 0.04 ± 0.004 pH). Nevertheless,
for all three pH indicators, the calibration curves presented in
Figure 2 allowed absolute neuronal pH to be determined from
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FIGURE 1 | Genetic reporters of pH detect intracellular pH changes

during epileptiform activity. (A) A schematic of the experimental setup.
A hippocampal pyramidal neuron transfected with a genetically encoded pH
indicator was imaged using either two-photon or single-photon confocal
microscopy. This allowed dynamic measurement of intracellular pH.
A whole-cell patch recording from a neighboring neuron (cell somata
<200 µm apart) provided simultaneous readout of seizure activity within the
hippocampal slice. (B) A confocal image of a CA3 pyramidal neuron
expressing the pH indicator E2GFP. The dashed rectangle demarcates the

region of interest used to estimate intracellular pH. (C) Dynamic intracellular
pH measurements imaged from the neuron in “b” (lower trace). A neuron in
close proximity was whole-cell patched and the membrane potential
recorded over time in current clamp mode (upper trace). Perfusion of the
slice with 0 Mg2+ induced periods of epileptiform activity characterized by
membrane depolarization and high frequency firing, the onset of which is
depicted by red dashed lines. Note the marked acidic shifts in pH that are
associated with epileptiform activity. Even brief periods of activity were
associated with detectable acidic transients (indicated by asterisks).

fluorescence ratios (RpH), independent of protein expression
levels.

GENETIC pH REPORTERS REVEAL ACIDIC INTRACELLULAR TRANSIENTS
DURING 0 Mg2+ INDUCED EPILEPTIFORM ACTIVITY
Previous work using pH-sensitive electrodes or dyes has shown
that neurons exhibit acidic shifts during heightened network
activity (Rose and Deitmer, 1995; Xiong et al., 2000). Here we
made use of pharmacological models of temporal lobe epilepsy
to examine whether the ratiometric genetic reporters were able to
capture dynamic shifts in pH during seizure activity. Omission
of Mg2+ from the brain slice perfusate removes the voltage
dependent Mg2+ block on NMDA receptors, which predis-
poses hippocampal slices to periods of synchronized hyperex-
citability (Anderson et al., 1986; Mody et al., 1987; Gutiérrez
et al., 1999; Avoli et al., 2002) and resulted in ictal-like seizure
events of different durations (mean duration of analyzed seizures
was 32.3 ± 1.6 s). Using this epilepsy model, we were able to

demonstrate that the genetic pH reporters E2GFP and deGFP4
are able to detect a highly significant negative shift in pH dur-
ing epileptiform activity (E2GFP: P < 10−10, n = 40, deGFP4:
P < 10−7, n = 19, paired t test). As Figures 3A,B demonstrate,
intracellular pH for CA3 pyramidal neurons decreases from
baseline following the onset of epileptiform activity reaching a
minimum at, or shortly following, seizure cessation. Neuronal
pH then gradually re-alkalinizes to pre-seizure levels. To com-
pare the pH responses recorded by the two pH reporters, we
investigated the relationship between seizure length and the
amplitude of maximum pH shift. When utilizing both E2GFP
and deGFP4 we observed a strong correlation between seizure
duration and maximum pH change (E2GFP: r = −0.8270, P <

0.0001, deGFP4: r = −0.6056, P = 0.0060, Pearson Correlation,
Figure 3C). This relationship was indistinguishable for the two
genetic reporters (P = 0.4534, Analysis of Covariance), which
corroborated the magnitude of the pH shifts that were detected.
As such, a linear fit could be applied to the pooled data from
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FIGURE 2 | Calibration of pH-sensitive GFP variants. (A) A confocal
image of a hippocampal CA3 pyramidal neuron expressing E2GFP (left).
Calibration curve relating the fluorescence ratio of E2GFP expressing
neurons to their intracellular pH (right; n = 4). E2GFP was used as an
excitation ratiometric reporter, with excitation at two separate wavelengths
(458 and 488 nm) and emitted light collected from a single window
(500–550 nm). Intracellular pH was systematically varied by controlling
extracellular pH in the presence of a proton-permeable ionophore (see
Materials and Methods). Data was fit using established equations
(Grynkiewicz et al., 1985; Arosio et al., 2010; see Materials and Methods) and
pKa was found to be 7.56. (B) A confocal image of a hippocampal CA3
pyramidal neuron expressing deGFP4 (left). Calibration curve relating the

fluorescence ratio of deGFP4 expressing neurons to their intracellular pH
(right; n = 7). deGFP4 was used as an emission ratiometric reporter, with
excitation at a single wavelength (810 nm) and emission collected
simultaneously at two separate windows (450–490 and 500–550 nm). The pH
response properties of deGFP4 revealed a pK a of 7.42. (C) A confocal image
of a hippocampal CA1 pyramidal neuron expressing Cl-sensor (left).
Calibration curve relating the fluorescence ratio of Cl-sensor expressing
neurons to their intracellular pH (right; n = 7). Cl-sensor was used as an
emission ratiometric reporter, with excitation at a single wavelength (850 nm)
and emission collected simultaneously at two separate windows (460–500
and 520–550 nm). The pH response properties of Cl-sensor revealed a
pKa of 7.73.
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FIGURE 3 | 0 Mg2+ induced epileptiform activity induces acidic

transients in neurons. (A) The intracellular pH of a hippocampal CA3
pyramidal neuron transfected with E2GFP recorded during an episode of
0 Mg2+ induced epileptiform activity. The onset of epileptiform activity
(dashed line) is correlated with the start of a decrease in intracellular pH. The
pH continues to decrease during the seizure and reaches a minimum around
the time of seizure termination (seizure duration is depicted by the horizontal
gray bar), and then recovers to baseline in the post-seizure period.

(B) Seizure-associated acidic transients of a similar amplitude were recorded
from neurons expressing the pH reporter deGFP4. Although note the greater
variance in the signal with this reporter. (C) The magnitude of intracellular
acidic transients was directly proportional to seizure duration. This
relationship was not dependent on the pH reporter used (P = 0.4534,
Analysis of Covariance). (D) Maximum pH shifts normalized to a 30 s seizure
had an average amplitude of 0.20 ± 0.1 pH units. This was not different for
the two pH reporters (P = 0.3581, t test).

both probes and revealed a seizure-associated population shift
of –0.005 pH units per second of seizure duration (Figure 3C).
When the maximum pH shift from individual seizures was
adjusted for a typical seizure duration of 30 s, the mean pH
shift for E2GFP neurons was −0.19 ± 0.01 (n = 40) and the
mean pH shift for deGFP4 neurons was −0.21 ± 0.03 (n = 19)
(Figure 3D).

GENETIC pH REPORTERS REVEAL ACIDIC INTRACELLULAR
TRANSIENTS DURING 0 CL− INDUCED EPILEPTIFORM ACTIVITY
Having established the ability of genetically encoded reporters
to show pH changes during 0 Mg2+ seizures, we were interested
to test their performance in other models of hyper-excitability.
GABAA receptors are primarily permeable to Cl− (Hamill et al.,
1983). Therefore, by removing Cl− from the aCSF, one is
able to profoundly reduce the efficacy of GABAergic inhibi-
tion (Yamamoto and Kawai, 1967, 1968, 1969; Chamberlin and

Dingledine, 1988; Avoli et al., 1990) Removal of Cl− from
the aCSF has the added advantage of preventing potential Cl−
fluxes that may complicate pH measurements from the pH and
Cl− sensitive genetic reporter Cl-sensor (Markova et al., 2008).
Using the 0 Cl− seizure model we were able to demonstrate
that the genetic pH reporters Cl-sensor and deGFP4 are also
able to measure a highly significant negative shift in pH dur-
ing epileptiform activity (Cl-sensor: P < 10−22, n = 40, deGFP4:
P < 10−14, n = 48, paired t test). The pH response to 0 Cl−
seizure activity was qualitatively similar to that observed in
response to 0 Mg2+ induced seizures, with activity causing an
acidic transient that reached its maximum near the end of
epileptiform episodes, before returning to baseline levels between
seizure events (Figures 4A,B). Once again a strong relationship
between seizure length and the size of maximum pH shift was
apparent for both Cl-sensor and deGFP4 expressing neurons
(Cl-sensor: r = −0.5751, P = 0.0001, deGFP4: r = −0.4575,
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FIGURE 4 | 0 Cl− induced epileptiform activity induces acidic

transients in neurons. (A) The intracellular pH of a hippocampal CA1
pyramidal neuron transfected with Cl− sensor recorded during an episode
of 0 Cl− induced epileptiform activity. Similar to the 0 Mg2+ model, the
seizure onset (dashed line) is correlated with the start of a decrease in
intracellular pH. The pH continues to decrease during the seizure, reaches a
minimum around the time of seizure termination, and then recovers to
baseline during the post-seizure period. (B) Similar acidic transients

were associated with Cl− induced epileptiform activity in neurons
expressing the pH reporter deGFP4. (C) The magnitude of intracellular
acidic transients was directly proportional to seizure duration. This
relationship was not dependent on the pH reporter (P = 0.2721,
Analysis of Covariance, Analysis of Covariance). (D) Maximum pH shifts
normalized to a 30 s seizure had an average amplitude of 0.16 ± 0.1 pH units.
This did not depend on the pH reporter being used (P = 0.4726,
t test).

P = 0.0011, Pearson Correlation, Figure 4C). The relationship
between seizure length and maximum pH shift was statistically
indistinguishable for the two sensors (P = 0.4534, Analysis of
Covariance), indicating that the values reported were accurate.
And when a linear fit was applied to the pooled data this revealed
a seizure-induced population shift of −0.0043 pH units per sec-
ond of seizure (Figure 4C). When the maximum pH shift from
individual seizures was adjusted for a seizure duration of 30 s, the
mean pH shift for Cl-sensor neurons was −0.16 ± 0.01 (n = 40)
and for deGFP4 neurons the mean was −0.15 ± 0.01 pH units
(n = 48; Figure 4D).

GENETIC REPORTERS REVEAL DIFFERENCES IN THE KINETICS
OF ACIDIC INTRACELLULAR TRANSIENTS
Having established the accuracy and sensitivity of the genetic pH
reporters, we investigated whether they were able to detect differ-
ences in the kinetics of different seizures. We had observed that

0 Cl− induced seizures tended to show a maximum depolarizing
shift in the membrane potential at the onset of the seizure. In
contrast, 0 Mg2+ induced seizures tended to reach maximal mem-
brane depolarization at later stages of the seizure (Figures 5A,B).
Indeed, across the population data the time of peak membrane
potential depolarization relative to seizure duration occurred
significantly earlier in 0 Cl− (27.0 ± 1.3% of seizure duration,
n = 88) as compared to 0 Mg2+ seizures (70.9 ± 3.2% of seizure
duration, n = 59; P < 0.0001, t test, Figure 5C). To address
whether these different seizure kinetics were associated with dif-
ferent intracellular pH dynamics we examined the timecourse of
the acidic transients recorded, pooling data across the three genetic
reporters. Consistent with the membrane potential measurements,
we found that the time of the maximum pH shift occurred sig-
nificantly earlier for 0 Cl− seizures than for 0 Mg2+ seizures (P =
0.0031, t test, Figure 5D). In the case of 0 Cl− the maximum acidic
shift was reached at 109.7 ± 3.2% of seizure duration (n = 88),
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FIGURE 5 | The kinetics of acidic transients and epileptiform activity

differ between seizure models. (A) The membrane potential (upper trace)
of a hippocampal CA1 pyramidal neuron during a 0 Mg2+ induced
seizure episode (seizure duration of 21 s, indicated by the gray bar).
The membrane potential reaches its maximum (red dashed line) midway
through the seizure. Simultaneous recording of a neighboring pyramidal
neuron’s intracellular pH (lower trace) reveals that this does not reach its
minimum (red dashed line) until 35 s after the seizure terminates and
recovers (green dashed line) by approximately 160 s following the end of the
seizure. (B) The membrane potential (upper trace) of a CA1 pyramidal neuron
during a 0 Cl− induced seizure episode (seizure duration of 69 s, indicated by
the gray bar). Unlike the 0 Mg2+ induced seizure, the membrane potential
reaches its peak (red dashed line) almost immediately after the seizure

begins. Simultaneous recording of a neighboring pyramidal neuron’s
intracellular pH (lower trace), reveals that the intracellular pH reaches its
minimum (red dashed line) 23 s before the seizure ends and returns to
baseline (green dashed line) approximately 105 s after the end of
the seizure episode. (C) The time to reach maximum membrane
depolarization as a percentage of seizure duration was significantly
longer for 0 Mg2+ as opposed to 0 Cl− induced seizures (***P < 0.0001,
t test). (D) The time to reach maximum intracellular pH shift as a
percentage of seizure duration was also significantly longer for 0 Mg2+ as
opposed to 0 Cl− induced seizures (**P = 0.0031, t test). (E) Similarly, the
time of pH recovery as a percentage of seizure duration was significantly
longer for 0 Mg2+ as compared to 0 Cl− induced seizures (***P < 0.0001,
t test).

whereas in the case of 0 Mg2+ the maximum acidic shift was
reached at 130.5 ± 7.0% (n = 59) of seizure duration. Similarly,
intracellular pH returned to baseline more rapidly in the 0 Cl−
model than the 0 Mg2+ model. pH recovered by 279.4 ± 12.1%
of seizure duration following 0 Cl− seizures (n = 58), whereas it
required until 391.5 ± 26.7% of seizure duration to recover fol-
lowing 0 Mg2+ seizures (n = 31, P < 0.0001, t test, Figure 5E).
These data are consistent with the timecourse of membrane
depolarization recorded in the two epilepsy models (Figure 5C)
and indicate that the genetic reporters are able to capture
differences in the kinetics of activity-dependent pH changes.

DISCUSSION
We investigated the potential for genetically encoded pH reporters
to measure neuronal intracellular pH transients associated with
periods of elevated activity. Using a combination of patch clamp
recordings and two-photon or single-photon confocal imaging in
hippocampal brain slices, we assessed the performance of three
different pH-sensitive fluorescent proteins. All three pH sensors
were able to report acidic shifts associated with epileptiform activ-
ity, although there were differences in terms of their sensitivity,
signal-to-noise and utility for activity-dependent studies. For our
study we chose three ratiometric reporters of pH: E2GFP, deGFP4,
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and Cl-sensor (Hanson et al., 2002; Bizzarri et al., 2006; Markova
et al., 2008). While a number of non-ratiometric GFP-derived
pH indicators exist, these are susceptible to measurement arte-
facts caused by variations in excitation path length, indicator
concentration, illumination stability, cell thickness, and indicator
distribution (Hanson et al., 2002). In addition, non-ratiometric
reporters cannot accurately record absolute pH without labo-
rious within cell calibration. In contrast, ratiometric reporters
overcome many of these issues. The genetically encoded ratio-
metric reporters can be classified into two groups, those that
are constituted by a single GFP mutant and those that are a
fusion of the pH-sensitive YFP with a less pH-sensitive GFP
variant such as CFP (Bizzarri et al., 2009). The former group
includes ratiometric pHlourin (RaGFP), deGFP4 and E2GFP
(Miesenböck, 1998; Hanson et al., 2002; Bizzarri et al., 2006).
We utilised deGFP4 as it is the only ratiometric pH indica-
tor that has been convincingly established for two-photon use
(Hanson et al., 2002). E2GFP was selected because it is opti-
mally excited with wavelengths that are common to Argon-ion
lasers, which facilitates its use with confocal microscopy. Under
our conditions we found that deGFP4 and E2GFP could report
intracellular pH with a similar pKa. However, data gathered
using deGFP4 was considerably noisier, most likely due to the
weak fluorescence emitted by deGFP4 in the blue wavelength
range (Hanson et al., 2002). E2GFP proved to be an excellent
ratiometric indicator by excitation although, as is common to
indicators used in this fashion, accurate intracellular pH record-
ings required us to measure and correct for independent power
fluctuations associated with the two excitation laser lines (Arosio
et al., 2010).

Reporters based upon YFP fusions include YFpH,
pHlameleon, clomeleon, and Cl-sensor (Kuner and Augustine,
2000; Awaji and Hirasawa, 2001; Esposito et al., 2008; Markova
et al., 2008). YFP fluorescence is quenched by both Cl− and
H+ ions and, as a result, YFP fusion proteins are sensitive
to both intracellular pH and Cl− concentration (Jayaraman
et al., 2000). This dual sensitivity complicates the interpretation
of in vivo measurements using these probes, particularly as
neuronal processes often involve either the related, or indepen-
dent, flux of both Cl− and H+ ions (Tabb et al., 1992; Doyon
et al., 2011). Attempts to reduce the Cl− sensitivity of YFP
by inducing mutations in the Cl− binding pocket produced
mutants with a low pKa, that is less suited for physiological pH
measurements (Griesbeck et al., 2001). We circumvented the
issue of dual sensitivity by utilizing a Cl− free model of epilepsy
in order to test the pH sensitivity of the YFP fusion protein,
Cl-sensor. This ensured that the activity-dependent fluctuations
in fluorescence ratio we recorded could be attributed to changes
in intracellular H+ ion concentration. Under these specific
conditions, Cl-sensor proved to be an excellent ratiometric pH
indicator by emission, with a signal to noise ratio comparable
to that of E2GFP. This shows that Cl-sensor can be used as
a reporter of intracellular pH dynamics and equally that the
dual ion-sensitivity of this reporter (and presumably that of
closely related YFP fusion proteins such as Clomeleon) should be
considered when examining activity-dependent changes (Kuner
and Augustine, 2000). One additional point is that despite

employing two-photon excitation, pH measurements using
Cl-sensor sometimes exhibited slow baseline drift, presumably
as a result of the differential bleaching rates experienced by the
YFP as opposed to the CFP fluorophore (Tramier et al., 2006;
Bregestovski et al., 2009).

Previous studies investigating activity-dependent intracellu-
lar pH transients have employed either pH-sensitive microelec-
trodes or pH-sensitive dyes (Rose and Deitmer, 1995; Xiong
et al., 2000). Due to their size, the use of microelectrodes to
measure pH has been mostly confined to large neurons. pH-
sensitive dyes meanwhile are widely used to report intracel-
lular pH and several classes exist including fluoresceins, ben-
zoxanthenes, rhodols, and pyrenes. The fluorescein derivatives,
2′-7′-bis (carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and
carboxyseminaphthorhodafluor- I (carboxy-SNARF-1) are by far
the most popular. These two dyes are suitable for use as ratiomet-
ric pH indicators and have desirable optical properties. In addi-
tion, both dyes are available as acetoxymethyl (AM) esters, which
facilitates intracellular loading without the use of micropipettes.
However, fluorescein dyes have a potentially significant disadvan-
tage, which may be particularly relevant to studies of activity-
dependent proton fluxes within the nervous system. Fluorescein
analogues have been shown to inhibit the Ca2+/H+ ATPase
(Gatto and Milanick, 1993; Chesler, 2003). This ATP depen-
dent transporter extrudes Ca2+ in exchange for H+. As Ca2+
influx is a primary feature of neuronal membrane depolariza-
tion, the restoration of low Ca2+ via this exchanger is thought
to be an important mechanism by which protons accumulate
during neuronal activity (Schwiening et al., 1993; Svichar et al.,
2011).

Employing three different genetically encoded pH indicators
and two separate models of epilepsy we show that epilepti-
form activity lasting on the order of 30 s generates intracellu-
lar acidic shifts of between 0.1 and 0.3 pH units. This is an
order of magnitude larger than previous estimates (Xiong et al.,
2000), and there are several possible explanations for this dif-
ference. Firstly, in contrast to Xiong et al. who employed a
non-synaptic Ca2+ free model of epileptiform activity, we utilized
models that left the majority of synaptic transmission intact and
either elevated synaptic excitation (0 Mg2+) or reduced synap-
tic inhibition (0 Cl−). As Ca2+ is known to accompany neuronal
activity, the role of H+ import via the Ca2+/H+ ATPase (see
above) may contribute to the observed difference in acidic tran-
sient magnitude observed. Another factor is likely to be the
differences in tissue imaging. Xiong and colleagues averaged
fluorescence changes across regions of tissue, which presum-
ably included different cell types and fluorescence from dye that
is not exposed to pH changes. By restricting our imaging to
individual hippocampal pyramidal neurons, the data from the
genetic reporters should more accurately reflect the magnitude
of seizure-induced intracellular acidic transients, at least in this
cell type. It is also unknown whether differences in intracellu-
lar pH buffering power exogenously introduced by the separate
reporters could explain the observed differences. Nonetheless,
our observations suggest that the degree of acidification is more
pronounced than previously appreciated and this should be
considered in future studies of network activity and epilepsy.
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Our simultaneous recordings also enabled us to assess the tempo-
ral properties of seizure-induced acidic transients in hippocampal
pyramidal neurons. Consistent with previous work, we found
that the time of maximum acidity correlated with seizure ter-
mination (Xiong et al., 2000). This is consistent with the idea
that activity-dependent intracellular acidification may serve as a
local feedback signal that dampens network excitability (Chesler,
2003). We were also able to detect differences in the tempo-
ral properties of pH shifts induced by the two separate seizure
models. The 0 Mg2+ seizure model resulted in maximum pH
shifts and recovery times that occurred relatively later than those
induced by the 0 Cl− seizure model. This most likely reflects the
fact that following seizure onset, 0 Mg2+ seizures typically dis-
played a progressive increase in seizure intensity, whilst the 0 Cl−
seizures reached maximum depolarization almost immediately
after the start of the seizure. These observations suggest that the
pattern of neural activity is linked to the kinetics of pH changes
and it will be interesting to explore this relationship in future
studies.

The current study did not investigate the molecular mecha-
nisms underlying seizure-induced acidification. It should also be
noted that any measured change in pH during activity is neces-
sarily a function of both the proton flux into the cell cytoplasm
and its intracellular pH buffering capacity (Chesler, 2003). At
least three major processes are likely to be involved in seizure-
induced acidification. Firstly, as described earlier, a fall in pH is
linked to the activity induced entry of Ca2+ due to the func-
tion of Ca2+/H+ ATPases located in the plasma membrane and
endoplasmic reticulum (Schwiening et al., 1993; Makani and
Chesler, 2010). Secondly, prolonged neural activity will increase
the production of metabolic acids such as CO2 and lactate (Wang
et al., 1994). And thirdly, the intense GABAAR activation that
accompanies seizure activity has been shown to result in con-
siderable HCO−

3 efflux and a resulting intracellular acidification
(Pasternack et al., 1993; Trapp et al., 1996). The relative con-
tribution of these different acidification mechanisms in the two
seizure models that we examined is uncertain, as are poten-
tial differences in intracellular buffering capacity. For instance,
it is possible that longer periods of sustained high frequency
action potential activity during 0 Mg2+ seizures may mean that
Ca2+ entry and metabolic demand could be greater in this
model of epileptiform activity. Meanwhile, as HC0−

3 is the only
ion that is able to traverse GABAARs in the absence of Cl−,
acidification as a result of HC0−

3 efflux may play a relatively

more important role in eliciting acidic transients in the 0 Cl−
seizure model. This highlights that it will also be interesting to
examine how the recruitment of different acidification mecha-
nisms influences the kinetics of activity-dependent pH changes
in neurons.

Although our study did not include measurement of pH
shifts in the extracellular space, previous work has demonstrated
that seizures and stimulated activity are associated with an ini-
tial extracellular alkaline shift followed by a prolonged acidosis
(Caspers and Speckmann, 1972; Urbanics et al., 1978). Our
study supports these observations in that the initial intracellular
acid shift in neurons would be predicted to cause an extracel-
lular alkalinisation as acid equivalents enter the cell, whilst the
post-seizure recovery from acidosis would likely result in a pro-
longed extracellular acid transient. A small number of studies
have also described a rapid extracellular acidic transient pre-
ceding the biphasic response described above (Krishtal et al.,
1987). This is presumably due to vesicular protons released
during synaptic transmission (DeVries, 2001), however a glial
source of protons cannot be excluded (Grichtchenko and Chesler,
1994).

In summary, we demonstrate the utility of employing GFP-
derived, genetically encoded pH reporters for quantifying intra-
cellular pH in the context of changing neuronal activity. Future
work may leverage the advantages of this technique to investigate
potential differences in pH response dynamics according to dif-
ferent network states, activity patterns, cell type, and subcellular
compartment.
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