

Inaugural Youth Olympic Village

1

Real Time Monitoring and Characterizing of Li-ion Batteries Aging

Feng Leng, Cher Ming Tan, Raghavendra Arunachala, Andreas Jossen

presented by

Cher Ming Tan IEEE EDS Distinguished lecturer Fellow of SQI; Fellow of IES Editor of IEEE TDMR; Series Editor of Springerbrief; Editor of World Scientific Journal; Editorial Advisory Board of Microelectronics Reliability

15th of November 2013

Overview of EV Program in Singapore

TUM CREATE | research projects

Battery modeling: Model type, Choice

- Electrochemical models ---Computationally time consuming
- Mathematical models---No direct relation between the model parameters and the electrical characteristics of the batteries.
- Electrical model---Electrical equivalent circuit and on-line estimation of battery states.

Source: Kroeze, R.C and Krein, P.T, "Electrical Battery Model for Use in Dynamic Electric Vehicle Simulations" IEEE.

PESC, Rhodes, GRE, 2008, pp. 1336-1342

Decomposition of battery discharging curve

Source: V. Pop, H.J. Bergveld, D. Danilov, P.P.L. Regtien, and P.H.L. Notten, *Battery management system: accurate state-of-charge indication for battery powered applications,* vol.9: Springer Verlag, 2008.

Centre for Electromobility Singapore

$$V_{emf} = E_{eq}^{+} - E_{eq}^{-} (1)$$

$$E_{eq}^{+} = E_{0}^{+} - \frac{RT}{F} \left[ln \left(\frac{x_{Li}}{1 - x_{Li}} \right) + U_{j}^{+} x_{Li} - \zeta_{j}^{+} \right] (2)$$

$$E_{eq}^{-} = E_{0}^{-} - \frac{RT}{F} \left[ln \left(\frac{z_{Li}}{1 - z_{Li}} \right) + U_{j}^{-} z_{Li} - \zeta_{j}^{-} \right] (3)$$

$$Q_{max}^{+} = m_{1}Q_{m}, m_{1} \leq 1 (4)$$

$$Q_{max}^{-} = m_{2}Q_{m}, m_{2} \leq \frac{1}{2} \quad (5)$$
Employ the EMF expression derived by
Pop et al
$$V_{emf} = E_{eq}^{+} - E_{eq}^{-}$$

$$= E_{0} - \frac{RT}{F} \{ ln \frac{[2 - (2 - m_{1})SoC][2m_{2} - (2 - m_{1})SoC]}{[2m_{1} - 2 + (2 - m_{1})SoC][(2 - m_{1})SoC]} + \left[\frac{U^{+}}{m_{1}} - \frac{2 - m_{1}}{2m_{1}m_{2}} \times SoC \times (m_{2}U^{+} - m_{1}U^{-}) \right] + \varepsilon \}$$

Centre for Electromobility Singapore

Source: V. Pop, H. J. Bergveld, P.P.L. Regien, J.H.G. Op het Veld, D. Danilov, and P.H.L. Notten, "Battery Aging and Its Influence on the Electromotive Force", J.Electrochem. Soc, Vol.154, No.8, pp.A744-A750, 2007

Development of Over-potential η

NANYANG TECHNOLOGICAL UNIVERSITY

Source: Serge.pelissier, "Battery for electric and hybrid vehicles state of the art," IEEE. VPPC, Lille, FR, 2010, Tutorial 2-2 part.2

Development of Over-potential : Randles' model

Source: Andreas Jossen, "Fundamentals of battery dynamics" J.Power Sources, vol.154, pp.530–538, 2006

Development of Over-potential : Diffusion phenomena

Fick's first law describes the diffusion:

$$N_i = -D_i \, \frac{\mathrm{d}c_i}{\mathrm{d}z}$$

Source: Andreas Jossen, "Fundamentals of battery dynamics" J.Power Sources, vol.154, pp.530–538, 2006

Centre for Electromobility Singapore

Development of Over-potential :Diffusion phenomena

Bounded diffusion :

Limited diffusion layer with ideal reservoir at the boundary

Stationary state : the electric equivalent circuit is a resistor; flux of diffused component is constant

Restricted diffusion :

Limited diffusion layer with a fixed amount of electroactive substance

Stationary state : the electric equivalent circuit is a capacitor and a resistor in series; flux of diffused component is zero

Source: Andreas Jossen, "Fundamentals of battery dynamics" J.Power Sources, vol.154, pp.530–538, 2006

Development of Over-potential :Warburg element

From our EIS spectrum results, we can see that our battery diffusion belongs to the case of semi-infinite diffusion layer, which is Warburg element, and it corresponding impedance is given:

$$Z_w = \frac{\sigma}{\sqrt{\omega}} - j\frac{\sigma}{\sqrt{\omega}}$$

Source: Andreas Jossen, "Fundamentals of battery dynamics" J.Power Sources, vol.154, pp.530–538, 2006

Centre for Electromobility Singapore

Development of Over-potential :Warburg element

Warburg element mainly occurs in electrolyte, it should be in series to the electrochemical charge transfer reaction.

With the consideration of this mixed kinetic and charge transfer control, and equivalent circuit is constructed as below:

Development of Over-potential : Butler-Volmer

In a continuous discharging operation of battery, reduction in the active mass concentration at the porous electrode will occur. The reduction in the active mass concentration also affects the kinetics of electrochemical reactions at the electrodes, and affects the over-potential.

Such effect can be taken into account by including Butler-Volmer term in our model , and the corresponding impedance presented by this term is given by Shepherd

$$Z_{BV} = k \frac{Q_m}{Q_m - \int i dt}$$

Where K is rate constant for electrode reaction.

Since the Butler-Volmer term accounts for the process at the electrodes, Z_{BV} should be in series with R_{ct}, and therefore the equivalent circuit model for a Li Ion cell is as shown in below:

2013

Cource: C.M. Shepherd, "1965 Design of Primary and Secondary Cells An Equation Describing Battery Discharge" J.Electrochem. Soc, vol. 112, pp. 657-664, 1965

Development of Over-potential : Temporal model

- Through the inverse Laplace transform of Warburg impedance, the expression is shown below:

4

Centre for Electromobility

Singapore

$$Z_{\omega} = \sum_{n=1}^{\infty} \frac{1}{C_{\omega}} exp \frac{-t}{R_n C_{\omega}}$$

and
$$R_n = \frac{8k_1}{(2n-1)^2 \pi^2}$$

$$C_{\omega} = \frac{k1}{2k_2^2}$$

Source: E. Kuhn, C. Forgez, G. Friedrich, "Electric Equivalent circuit of a NiMH Cell, Methods and results," EVS 20, Long Beach, CA, 2003

Development of Over-potential : Temporal model

- The equivalent circuit shown in below:

It is too complex for obtaining time domain
relationship between the terminal voltage and discharging current of the cell.

- Since the time constant due to C_{dl} (in the order of 10^{-3} milliseconds to 10 seconds) is much smaller than that due to the Warburg element and the Butlet-Volmer term (in the order of 1 second to 10^5 hours) and in our case the initial exponential decay is just 0.03 second of the discharging curve is omitted, and use the circuit is simplified without C_{dl}

Centre for Electromobility Singapore

Development of Over-potential

San Diego, CA USA

Battery₂₀₁₃ Safety **±** November 14-15, 2013

Model Verification

Experimentation: Hardware set-up

±

	HA.	派加山	3			1× + E	10		Estandker	e: Fehler autge	Kielath	• US	N.
Sele	of feat			and the second	1		Cont and	Viedow	10				
4	Per)	Vest +	Datey:		-	-	Vitality	EM1	1 15	L.			
Det	Res ()	Step	Telliore		240	- HIT	a service a	Fieldman		A	A.		
14	•1	-	Tecples.	220.224	De la	141110	a haan ha t	Tranki I			1		1
(TOTAL)		Seter / data						Turner of the second se	1.1.7	- and a stream to	- to find		freeman
11.2	Lipet 1	FALC	Without coupied	C Onis and	en (5	1de - *	0	Q. Zowa	1 12	X	1	× /	1
- 24	Lice	Fim	F		-	- and			11			Nr.	N
E	Plan						al most	H. H					
	/ Ok:	- ZI	희!- 브	0 1-	트 히	- =0	t tou	Gipan		1 2	5 4	5 8 7	6 5
Ter o			an In	- Liv	and the	. 10		-					
0.04	Sel Ti	AND L	(V) [4	141	PH HAN	Charge [30)	Oucharge 4	Simp W	ANNI W	Charge Wh	Dechage W	+Sep Cjo	Loure Line
-	0		1.078	.1000	.0011	.0011	0000	.0081	0014	0014	(JUIII)	.00/54	1.8 6748
	1	A1.0	1.0010	+000	0000	0000	0000	0000	00/1	00/1	2000	00/1	10.000
-	- E	0.0%	1283	4000	0100	0000	0000	0100	0128	0125	0000	0129	1.3 0.06
		10.912	1,000	.4000	.01-64	.0.44	0000	0164	(0185)	0040	0000	0110	13.054
-		1990	1.0001	4000	41457	0100	0000	0199	0.242	0.0040	0000	0242	1.3.659
		0000	4 2041	+000	62.20	0170	0000	8/250	0.067	0.007	0000	0.000	1.2 (0.0
	2	1976	1 2014	4000	62.22	0122	0000	81222	0.00	0.05	0000	Date	12.0.
		0907	1.005	1000	E367	0167	0000	00.2	6472	0472	0000	0472	12 Obs
-	9		1,2997	4000	6411	.0411	DECE	0411	05.0	105.0	0000	UBDO	1.2 Chw
	10	11/20	1,2906	1000	64%6	0/56	0000	0.66	0687	0507	0000	0507	1.2 (Char
	11	1200	13021	4000	(500	0900	0000	0500	0645	0645	0000	0645	13 Dw
1	12	1011	1300	4000	15.11	(15.8.8	0000	1944	8783	6203	0000	0203	1.2 fba
	13	1472	12068	4000	05489	.0169	0000	0589	0,761	0761	0000	.0757	13 Char
	14	1503	1 3005	4000	05.00	0633	0000	0033	00:9	0013	.0000	0013	1.3 (Dide
	15	1654	1.3112	4000	0578	.0678	0000	0678	.0817	.0877	0000	0877	13.0ve
0	16	1806	131.06	4000	6722	.0722	0000	0722	.02306	.0335	0000	0806	1.3.0his
	17	.1917	13166	4000	6767	.0%?	.0000	\$757	.0394	.0994	0000	.0994	1.2 Ehm
	10	2005	1,21,25	1000	.6811	.0011	0000	.0011	.1053	1053	0000	.1053	1.3 (Dat
11. mar	19	21.26	1 3209	8000	00556	0256	0000	0090	1112	1112	0000	1112	1.2 Dva
COLUMN 1													

Battery	Characteristics						
Series	Panasonic Solid Solution (PPS)						
Chemical System	LiNiMnCoO ₂ (NMC)						
Nominal voltage	3.6V						
Capacity	2,250mAh Typical						
Charging Condition	CVCC 4.2V max.0.7 C-rate						
	(1500mA), 110mA cut-off 25 ° C						
Discharging Condition	CONSTANT CURRENT, 3.0V cut-off						
	25 ° C						
Max discharge current	10A (25 ° C)						
Diameter(with tube)/Max.	18.6 (mm)						
Height(with tube)/Max	65.2 (mm)						
Approx.Weight	44 (g)						
Table 1 CGR18650CH	Li-ion battery specification						

Centre for Electromobility Singapore Battery 2013 Safety November 14-15, 2013 San Diego, CA USA

Warburg Element

Table 2 Estimation of battery discharging model's parameters for different number of RC groups										
n	$R_1(\Omega)$	$R_1C_w(s)$	Re+Rct(Ω)	Q _m (C)	m_1	<i>m</i> ₂	k(Ω)	α	β	rmse(V)
1	0.643	2298	0.0315	2.1812	1.0	0.5	0.0028	3.955	1.0989	0.0045
2	1.212	8915	0.0526	2.1480	1.0	0.5	0.0016	4.047	0.9737	0.0053
3	0.960	13075	0.0520	2.1216	1.0	0.5	0.0009	4.043	0.5155	0.0064
4	0.989	19211	0.0458	2.1102	1.0	0.5	0.0006	4.014	0.3761	0.0069
5	0.407	10837	0.0489	2.0716	1.0	0.5	0.0000	4.029	0.0001	0.0106
6	0.414	11606	0.0465	2.0848	1.0	0.5	0.0002	4.026	0.0002	0.0110
7	0.154	1653	0.0436	2.1060	1.0	0.5	0.0005	4.057	0.0000	0.0134
8	0.148	1518	0.0435	2.1127	1.0	0.5	0.0006	4.062	0.0000	0.0136
9	0.146	1473	0.0432	2.1157	1.0	0.5	0.0007	4.062	0.0000	0.0137
10	0.144	1445	0.0426	2.1178	1.0	0.5	0.0007	4.062	0.0000	0.0139
11	0.143	1426	0.0424	2.1194	1.0	0.5	0.0007	4.063	0.0000	0.0140
12	0.142	1409	0.0425	2.1209	1.0	0.5	0.0008	4.064	0.0000	0.0140
13	0.142	1400	0.0423	2.1217	1.0	0.5	0.0008	4.064	0.0000	0.0141
14	0.141	1387	0.0422	2.1229	1.0	0.5	0.0008	4.065	0.0000	0.0142
15	0.141	1380	0.0420	2.1236	1.0	0.5	0.0008	4.065	0.0000	0.0142
16	0.141	1376	0.0418	2.1242	1.0	0.5	0.0008	4.065	0.0000	0.0143
17	0.140	1369	0.0417	2.1249	1.0	0.5	0.0008	4.065	0.0000	0.0143
18	0.140	1369	0.0417	2.1249	1.0	0.5	0.0008	4.065	0.0000	0.0143

+

Centre for Electromobility Singapore CREATE November 14-15, 2013 San Diego, CA USA

Our model is derived based on the physical chemistry processes in the battery discharging process. The result shows same experimental EIS spectrum with the parameters as determined from the discharging curve.

Experiment: Effect of Resting time

- In order to obtain stable terminal voltage of Li-ion battery, a rest period of at least 12 hours after the battery is fully charged is specified, i.e. the battery can start to discharge only after the rest period. The purpose of the rest period is to regain the chemical equilibrium at the electrodes and compensates for the self-discharge after charging[1].
- A cell is discharged at 2C-rates with different rest time (10mins, 30mins, 1hr, 6hrs and 12hrs) after it is fully charged.

Table 4 Estimation of battery discharging model's parameters at different rest time condition												
Rest time	$R_1(\Omega)$	$R_1C_w(s)$	$k(\Omega)$	$Q_m(C)$	m_1	m_2	rmse(V)	Accuracy				
10'	0.323	8252	0.0012	2.19	1.0	0.5	0.0120	0.9973				
30'	0.315	8259	0.0013	2.18	1.0	0.5	0.0122	0.9972				
1h	0.315	8165	0.0011	2.17	1.0	0.5	0.0129	0.9969				
6h	0.315	8187	0.0014	2.17	1.0	0.5	0.0116	0.9960				
12h	0.315	8184	0.0016	2.17	1.0	0.5	0.0114	0.9966				

*Warburg coefficient is main contributor

Source: Isidor Buchmann, Batteries in a Portable World - A Handbook on Rechargeable Batteries for Non-Engineers-3rd Edition. Cadex Electronics Inc. 2011

Battery modeling : overview

Source: Serge.pelissier, "Battery for electric and hybrid vehicles state of the art," IEEE. VPPC, Lille, FR, 2010, Tutorial 2-2 part.2

Experiment: Effect of Discharging Current

• We conduct experiments with discharging current of 1C, 1.5C and 2C to examine the impact of the discharging current on the model parameters. The results are shown in Table 5

Table 5 Model Parameters determined from discharging curves at different discharging currents											
Discharging Current	$R_1(\Omega)$	$R_1C_w(s)$	$k(\Omega)$	Q _m (C)	m_1	<i>m</i> ₂	rmse(V)	Accuracy			
2C	0.140	1360.65	0.000874	2.13	1	0.5	0.0144	0.996			
1.5C	0.159	1533.19	0.000108	2.18	1	0.5	0.0148	0.996			
1C	0.175	2045.91	0.000176	2.17	1	0.5	0.0153	0.996			

- Larger discharging current => the diffusion of the ionic species to move faster in the electrolyte => Warburg element will be smaller as show in Table 5
- Larger discharging current => too many charges arriving at the negative electrode per unit time => render inefficient storage of charges=> apparent Qm smaller

Experiment: Effect of Changing Discharging Current

• Since discharging current affect the model parameters, we use the values in Table 5 to determine the discharge curve of our battery cell with step change in the discharging current, with 30 minutes in between the step change.

***The maximum error in the battery voltage is 0.0808V and the root mean square error in the battery voltage is only 0.0326V, which is very small. The larger deviation occur at lower battery voltage (or correspondingly lower SoC) is due possibly to the fact that our model assumption is for SoC>50%!

Centre for Electromobility Singapore

Application of the Battery Model

• This method is fast and accurate, taking approximately 0.3011s, and can easily be implemented in most practical applications.

"A Practical Framework of electrical based On-line SoC Estimation of Lithium-Ion Battery", Journal of power source, F Leng, CM, Tan, R Yazami, MD, Le (under review)

Model : Limitation

As this is a first attempt to relate the electrochemical process in Li-Ion battery to the components in electrical, we limit our study to the following situation:

- The self-discharge behavior of the battery is not considered. This can be considered only if the physical-chemistry process of the self-discharge is well understood.
- The temperature of the battery during discharging is assumed to be constant. The model in this work can in principle be extended to include the temperature effect by making the components in the equivalent circuit to be temperature dependent. This will be considered in our future work with experimental data.
- SoC is always above 50% for practical consideration. Extension to SoC all the way to 20% will be considered in future.
- No high discharging current so that Peukert effect is insignificant.

Characterization of battery Aging

Aging Introduction:

Lithium-ion battery main ageing mechanisms:

Cause	Electrolyte decomposition (SEI formation)	Solvent co-intercalation, gas evolution and subsequent cracking formation in particles	Decrease of accessible surface area due to continuous SEI growth	Changes in porosity due to volume changes, SEI formation and growth	Contact loss of active material particles due to volume changes during cycling
Effect	Loss of lithiumimpedance rise	 Loss of active material (graphite exfoliation) Loss of lithium 	Impedance rise	Impedance rise	 Loss of active material
Graphene layer SEI Li & & & & & & & & & & & & & & & & & &	Graphite exfoliation, crac (gas formation, solvent c Electrolyte decomposition and SEI formation Donor solvent SEI conversion,	king o-intercalation) n	ttery mod	el parame	eters
	SEI dissolution, precipita SEI dissolution, precipita Positive / Negative intera Lithium plating and subsequent corrosion	tion ctions	Z _{BV} m ₁ , Butler-Volmer Ageing p correspo chemical anode an	m ₂ Z _w arameters Warburg nds to the element reaction at d cathode	Re+Rct Electrode & Electrolyte resistance

J. Vetter, M. Winter, M. Wohlfahrt-Mehrens "ageing mechanisms in Lithium-ion batteries", J.Electrochem. Soc, Vol.154, No.8, pp.393-403, 2009

•

Design of aging tests:

Our Cycling Test:

- The charging process is carried out at a fixed charging rate of 0.7C in CC mode and a voltage of 4.2V in CV mode with a charge-termination current of 110mA, according to the company specification. Since this work focus only on the discharging process, the charging condition is fixed for all cases.
- Cycling the battery under constant ambient temperature and fixed constant discharging C-rate (1C, 1.5C and 2C) to the cut-off voltage of 3V as shown in the battery specification

Electrode/Electrolyte Interface degradation

Electrolyte degradation

Centre for Electromobility Singapore

REATE

November 14-15, 2013

CA US/

Electrode degradation

Centre for Electromobility Singapore

The rate of change of different model parameters that correspond to different ageing mechanisms

Battery₂₀₁₃

Safet

Centre for Electromobility Singapore November 14-15, 2013 San Diego, CA USA

In-situ time domain characterization method

- An electrical model is developed in this work, and it can determine Q_m easily after every discharge cycle, making the estimation of SoH and SoC using Coulomb counting method more accurate.
- This electrical model is able to provide an in-situ timedomain characterization method that enables us to monitor the different aging mechanisms under various operating conditions on-line through its discharge curve alone, and identify the dominant degradation mechanisms.
- The rate of aging through SoH determination allows estimation of the Remain Useful Lifetime (RUL).

Battery₂₀₁₃

Centre for Electromobility Singapore

TECHNOLQGICAL