

Green Software

Final report of the project: Establishing and exploiting potentials for environmental protection
in information and communication technology (Green IT), Subproject 3: Analysis of
potentials for optimizing software development and deployment for resource conservation

Executive summary

Report commissioned by the German Federal Environment Agency

Project funding reference number 3710 95 302/3

University of Zurich, Department of Informatics, Informatics and Sustainability
Research
Prof. Dr. Lorenz Hilty, Dr. Wolfgang Lohmann

IZT Institute for Futures Studies and Technology Assessment, non-profit limited
company
Dr. Siegfried Behrendt, Michaela Evers-Wölk

Borderstep Institute for Innovation and Sustainability, non-profit limited company
Prof. Dr. Klaus Fichter, Dr. Ralph Hintemann

PREPRINT

Green Software

 – 2 –

Acknowledgements

This study has benefited from numerous suggestions from colleagues. The authors would
like to thank the following persons in particular: Dr. Heidrun Moser, Maike Janßen, Marina
Köhn, and Stefan Schmitz of the German Federal Environment Agency for their detailed
comments on several versions of the text; Prof. Dr. Stefan Naumann, The Environmental
Campus Birkenfeld of the University of Applied Sciences Trier, for suggestions concerning
the discussion of methodologies; and Patrizia Huber, University of Zurich, for editorial work.

Disclaimer

The present study was prepared in the framework of the Environmental Research Plan
(Umweltforschungsplan) of the Federal Environment Agency. The findings of the study do
not necessarily reflect the Agency’s opinions in all points.

How to cite this document

Hilty, L. M.; Lohmann, W; Behrendt, S; Evers-Wölk, M.; Fichter, K.; Hintemann, R: Green
Software. Final report of the project: Establishing and exploiting potentials for environmental
protection in information and communication technology (Green IT). Report commissioned
by the Federal Environment Agency, Berlin, Förderkennzeichen 3710 95 302/3 (in press)

Green Software

 – 3 –

Table of contents

Abstract .. 5
Abbreviations... 6
1 Introduction .. 7
2 Starting points for resource conservation .. 8

2.1 Starting points in the field of application software.. 8
2.1.1 Selectable image resolution .. 8
2.1.2 Mobile web preferably via WLAN .. 8
2.1.3 Applying the “app principle” more broadly ... 9
2.1.4 Implementing web-based applications efficiently .. 9
2.1.5 Demand-adaptive software ... 10
2.1.6 The role of open source software .. 11

2.2 Starting points in data centers ... 14
2.2.1 Dynamic predictive load management .. 14
2.2.2 Information and data management ... 15
2.2.3 Data compression and data deduplication .. 16
2.2.4 The challenge of a heterogeneous data center market 17

2.3 Additional starting points for resource efficiency ... 17
2.3.1 User behavior in social networks... 17
2.3.2 The polluter pays principle .. 19

3 Methodological challenges and approaches... 20
3.1 Methodological challenges .. 20

3.1.1 Definition of functional units .. 20
3.1.2 Measuring the energy consumption of software.. 21
3.1.3 Allocation problems in the case of fluctuating load ... 22

3.2 Existing approaches to solutions ... 24
3.2.1 Concentrating on individual aspects which can be measured........................... 24
3.2.2 Efforts toward standardization ... 24
3.2.3 Comparison of functionally similar software products 26
3.2.4 Comparing a software product with itself over time... 27
3.2.5 Green software engineering .. 27

4 Recommendations for action.. 29
4.1 Need for research and standardization.. 29

4.1.1 Development of methods and standards... 29
4.1.2 Periodic data collection ... 29

Green Software

 – 4 –

4.2 Consumer-oriented measures ... 30
4.2.1 Awarding the “Blue Angel” environmental label for software............................. 30
4.2.2 Providing information... 30

4.3 Recommendations for software developers .. 31
4.3.1 Manuals, best-practice guidelines, checklists ... 31

4.4 Training and professional development... 31
4.4.1 Teaching materials on resource aspects of software architectures for

computer technology education .. 31
4.4.2 Professional development on resource aspects of ICT use for businesses

and public institutions.. 31
4.4.3 Support for computer science teachers at schools ... 32
4.4.4 Competitions for resource-efficient software ... 32

Bibliography... 33

Green Software

 – 5 –

Abstract

Although software products are immaterial goods, their use can bring about significant
materials and energy flows. Software characteristics determine which hardware capacities
are made available and how much electric energy is used by end-user devices, networks,
and data centers. The connection between software characteristics and the demand for
natural resources caused by the manufacture and use of ICT systems has been the object of
little scientific study to date. The present study breaks new ground by exploring the effects of
software on the indirect use of natural resources by hardware. The study identifies starting
points in the realm of software that can contribute to conserving natural resources or at least
to slowing further growth of their use by ICT systems. A particular focus of the study is on
methodological problems arising when assessing the resource use of software products.
Such problems include difficulties in defining functional units as well as problems of
measurement and allocation. Approaches such as standardizing patterns of use and
benchmarks as well as defining and implementing sustainability requirements in the software
development process are sketched out as possible solutions. Based on these considerations,
the study formulates initial recommendations for action in the areas of research and
standardization, product labeling, information for users concerning configuration, best
practice guides as well as training and professional development.

Green Software

 – 6 –

Abbreviations

BITKOM Bundesverband Informationswirtschaft, Telekommunikation und neue Medien
e.V. (Federal Association for Information Technology, Telecommunications
and New Media)

BPMN Business process model and notation

CRM Customer relationship management

DCIM Data Center Infrastructure Management

DSL Digital subscriber line

EASED Energy-aware software engineering and development

EEG Erneuerbare-Energien-Gesetz (Renewable Energy Sources Act)

GeSI Global eSustainability Initiative

GHG Greenhouse gas

GHGP Greenhouse Gas Protocol

GI Gesellschaft für Informatik (German Informatics Society)

GPL General Public License, more precisely: GNU General Public License

GPS Global Positioning System

HD High density

HDTV High-density television

HSM hierarchical storage management

ICT Information and communication technology

IO Input/Output

IP Internet protocol

ISP Internet service provider

IT Information technology

ITU International Telecommunications Union

LCA Life-cycle assessment

LTE Long-term evolution

MDD Model-driven development

OSS Open source software

SUT System under test

WBCSD World Business Council for Sustainable Development

WG Workload generator

WLAN Wireless local area network

WRI World Resources Institute

Green Software

 – 7 –

1 Introduction

Software development and use offer potentials for optimization when it comes to natural
resource conservation. Although software products are immaterial goods, their use can bring
about significant materials and energy flows. Software characteristics determine which
hardware capacities are made available and how much electric energy is used by end-user
devices, networks, and data centers.

Thus, software is an important starting point for reducing the use of natural resources by
current and future information and communications technology (ICT) systems. While “Green
IT” has previously often focused on hardware resource efficiency, this study aims to identify
starting points for resource efficiency in the field of software.

The connection between software characteristics and the demand for natural resources
caused by the manufacture and use of ICT systems has been the object of little scientific
study to date. In addition, developers, users, as well as political and business decision-
makers are hardly aware of the topic. As the continual development of hardware has always
created sufficient processing power in the past, efficiency was not accorded much
importance for software development (with the exception of mobile devices). The present
study breaks new ground by exploring the effects of software on ICT systems’ indirect use of
natural resources.

This task has proven to be a methodological challenge because each software product
considered in isolation fulfills its function only as a part of a complex ICT system, and
therefore only in interaction with other hardware and software components (as well as the
user). But it is the total required hardware capacity that determines the demand for natural
resources in the form of electricity consumption and the hardware life cycle. In addition, the
innovation cycles in the realm of ICT are so short that results based on snapshots in time
become outdated quickly. Therefore, the focus of the analysis is on qualitative causal
relationships and the dynamics of developments in the field.

The present final report summarizes the findings of the research project in the following
chapters:

Chapter 2 documents the result of an analysis of the potentials for resource conservation in
various areas as well as individual measures. Against the background of the dynamics of the
demonstrated trends, starting points in the realm of software that can contribute to
conserving natural resources or at least slow further growth of their use by ICT systems are
identified.

Chapter 3 discusses methodological problems and approaches to solutions—in particular
with a view to a feasible assessment of software products as “green” software—and
highlights the need for further research.

Chapter 4 presents recommendations for action for the purpose of setting political priorities:
Where would measures pertaining to software have to begin in order to create incentives to
design ICT systems in a more resource-efficient way?

Green Software

 – 8 –

2 Starting points for resource conservation

This chapter presents the most important starting points and potentials for indirect natural
resource conservation that can be identified in the field of software.

We assume that application and systems software use natural resources via their utilization
of hardware capacity. Software can conserve these resources by utilizing less hardware
capacity per unit of performance, minimizing electricity consumption by hardware, or
refraining from shortening the operating life of hardware products to less than their technical
operating life.

A number of starting points for resource conservation can be identified in the fields of
application software (section 2.1) and data centers (section 2.2). Starting points outside the
realm of software are mentioned briefly in order to point to aspects above and beyond the
questions studied here (section 2.3).

2.1 Starting points in the field of application software

2.1.1 Selectable image resolution

Processing high-resolution photos and videos generally places considerable demands on
hardware. Today, multimedia communications services (such as Skype) and multimedia
entertainment services (such as Internet TV and computer games) can provide the quality
consumers are accustomed to only because sufficient bandwidth and processing power are
available. Demands are in lockstep with technical developments: The difference between the
only resolution for Youtube videos available in the beginning and the maximum resolution
available today is a factor of 164 in data volume per unit of film time.

For this reason, it is important that software products at least give users the freedom to use
a lower resolution than what is technically possible (e.g. in the case of video calls and games)
and to reduce image resolution easily (e.g. to scale down photos automatically or by default
when pasting them into presentations) if high resolution is not required.

However, just as relevant as the question of resolution is the problem that the growing
popularity of IP television and the trend from Broadcast to Unicast (users decide themselves
when to watch), which is linked to it, brings about an increase in data traffic that triggers
significant consumption of materials and energy in the required infrastructure. Reducing this
redundancy, however, is not a question of software, but of business models and network
management, and is therefore beyond the scope of this study.

2.1.2 Mobile web preferably via WLAN

The density of publicly accessible wireless access points is already so high in many urban
areas that WLAN presents at least a temporary alternative to the cellular network on the
move. We expect that software products requiring mobile Internet access function in a more
resource-efficient way if they use a wireless network instead of a cellular network. Not only
do the cellular networks require the largest amount of energy per unit of data transferred

Green Software

 – 9 –

(ranging from 328 to 615 microjJoules per bit according to CEET, 2013, p. 19),1 they are
also considered to be very materials-intensive (Scharnhorst et al. 2006; Emmenegger et al.
2006). From a technical point of view, this will not change fundamentally when the LTE
networks are established.

Software affects the choice of communication channel, and it should favor energy efficiency
or maintain users’ freedom to make that choice. Software products should not force users to
communicate via a cellular network even if wireless Internet access is available.

2.1.3 Applying the “app principle” more broadly

Mobile apps are highly efficient as they are reduced to the most important functions and
because only limited hardware resources are available on end-user devices.

Mobile apps could provide useful ideas for the world of application software for stationary
devices. The simplicity with which mobile apps can be installed and uninstalled as well as
their being reduced to the relevant tasks at hand hold significant potential for stationary
devices as well.

2.1.4 Implementing web-based applications efficiently

Web-based application software holds high potential for resource efficiency. This is a low-
threshold form of software-as-a-service, as web browsers are available practically
everywhere. This development may enable end-user devices with low storage and
processing capacities to become attractive. Operations requiring large processing capacities
can be carried out on the web server and do not burden the web client, and this can typically
be a cloud-based service.

Examples include Thin Clients or the Google Chromebook. Prevalence of such devices can
contribute to saving resources if activities can be shifted to them from classic stationary PCs.
Whether this actually results in saving resources depends on the following conditions:

1. Internet access should be via LAN or WLAN, i.e. not via the cellular network.

2. Average capacity utilization of the servers must be high, i.e. the pooling effect must be
large enough, and actual load management must make use of it.

3. For the most part, application software should be used that fulfills the requirements
mentioned by Williams and Tang (2013).

The studies by Williams and Tang (2013) comparing traditional and web-based application
software produced mixed results. In concrete terms, an empirical comparison of Office 2010
and its cloud version Office 365 showed the following: Overall energy savings did accrue
(taking into account the sum of end-user devices, network, and data center, but disregarding
manufacturing and disposal of the hardware) for Outlook (–8 %) and Excel (–17 %), but
energy consumption of the cloud version of Word was 17 % higher (Williams & Tang 2013).

1 The reason for the fundamental superiority of networks with small radio cells over those with larger

ones is that the required transmission power increases with the square of the distance between the
transmitter and the receiver.

Green Software

 – 10 –

The differences, which are all fairly small, point to the fact that the benefit of the new
architecture is seriously limited if the goal is to reproduce the old concepts.2

This shows that instead of web applications imitating complex PC software, new forms of
use that are oriented toward reducing the software to manageable, clearly defined tasks will
tend to be more beneficial from a resource perspective. Accordingly, only a small amount of
data will need to be transmitted. Incorporating the “app principle” into web-based
architecture to create “web apps” links the advantages of the two concepts in terms of
resource efficiency:

• Requirements for local hardware capacity are low. Provided that data centers transfer
data and execute programs in a resource-efficient manner (taking the entire life cycle
into account in both cases), this has beneficial effects on the use of natural resources.

• In the case of well-programmed web apps combined with efficient web servers, data
transfer is minimal both when starting and when running the program; thus, the risk that
increased data traffic would overcompensate for savings is very low.

The combination of these two advantages points to very resource-efficient solutions, e.g. for
workstations.

2.1.5 Demand-adaptive software

We characterize a software product as demand-adaptive if it is capable of requiring only
those hardware resources (processing power, memory, bandwidth in the network) necessary
for a particular task at each point in time. Most software products are not even close to this.

The working group “Software and Green IT” of BITKOM’s “Green IT Allianz” (“Green IT
Alliance”) estimates that the average user utilizes only 7°% of the functionality of standard
software frequently and never uses 47°% of all features. The attainable potentials for saving
energy are estimated at 10 to 20°% (BITKOM 2010b).

Adaptivity to demand would also be a means for preventing hardware obsolescence.
Hardware, less powerful because it was older, could be used for a longer time, if only those
modules of new versions of software were installed and run that were actually required.

This would require systematically modular software architecture (and thus also a return to
classic principles of software engineering). The modules could be selected when the
software is installed and configured, or during operation (web-based software does not
require installation in any case). Even though this is possible today in many cases, it is
usually difficult for end users to understand the consequences of each available option or
whether it is possible to revise such decisions later on, which is why they always select the
maximum when in doubt.

Therefore, a central aspect of demand adaptivity is how easy the product makes it for the
user to select settings that conserve resources. It should be expected of a “green” software
product that resource-relevant settings can be selected at a single, easy-to-access point
(Naumann 2013). The simplest way to do so would be by selecting an option, such as

2 This seems to contradict the study by Masanet et al (2013), which estimated significantly higher

potentials for saving energy by means of cloud computing, especially for “productivity software,” i.e.
everyday office software. However, the two studies are not directly comparable, as Williams and
Tang studied a special case in isolation, whereas Masanet et al. estimated the technically possible
consolidation effects in the event of widespread introduction and also took embedded energy into
account.

Green Software

 – 11 –

“resource conservation mode.” In the case of a trade-off between different resources and
performance characteristics, the decision can be transferred to users by providing them with
sliders to express their preferences (for example, to prioritize speed or resolution).

It is also imaginable that in the future, application software would dynamically and
automatically determine a balance between various resources (Naumann 2013). If electricity
generated from renewables is available in abundance at a given point in time, CPU-intensive
tasks are carried out then. Indexing, compression, and deduplication are examples of CPU-
intensive tasks that can sometimes be postponed. If they are performed at times when
energy is cheap, then this enables sparing use of network or storage resources, which saves
more expensive energy. ICT end-user devices can be part of demand shaping in the smart
grid by means of such context-sensitive behavior (see also section Error! Reference
source not found.).

Overall, demand adaptivity has a static aspect (modular installation, configuration) and a
dynamic aspect (resource management at runtime, context sensitivity). However, these
aspects are merging due to the trend toward software-as-a-service, e.g. web-based
applications, thus opening up development perspectives with a high potential for resource
conservation.

2.1.6 The role of open source software

Open source software (OSS)3 has become more important in recent years. Ernst & Young
(2011) calls the period since 2004 the “mainstream era” for OSS. A trend study (Diedrich
2009) found that its degree of use varied across industrial sectors: “OSS is used especially
often as a server operating system (84 percent) as well as in other classic fields of operation,
such as web servers (81 percent), databases (79 percent), and network infrastructure (73
percent).” Public institutions also rely heavily on OSS. For example, Wikipedia (2013b) lists
18 migration projects in Germany in recent years, among others the municipalities of Munich
and Leipzig and the Federal Employment Agency. Consulting firms such as Accenture (n. d.)
now offer comprehensive open source services. Android, an open source operating system,
is currently most widespread on tablet computers and smartphones (Gartner 2013).

Linux is not yet widely used on desktop computers (its market share was 1.41 % in
December, 2011; Heise Open Source 2012a), but is more common on servers and
mainframe computers.

For this reason, it makes sense to examine the resource efficiency of OSS separately.
Technically speaking, OSS is just like any other software and can, in theory, be built to be
just as efficient or inefficient in terms of its resource use. Because of its openness, however,
it has advantages that can be exploited in the interest of resource efficiency.

3 “’Open source’ is the term for a range of software licenses whose source text is accessible to the

public and for which the license promotes further development. Open source software (abbreviated
OSS) is subject to a license recognized by the Open Source Initiative (OSI). In its evaluation, this
organization relies on the criteria of the definition of Open Source, which goes far beyond source
code accessibility. It is almost identical to the definition of free software.” (Wikipedia 2012a). “Free
software […] is software that can be executed, examined, modified and disseminated in its original
or modified form for any purpose. This includes commercial uses. Free software licenses may
include a copyleft clause which states that revised and republished versions of the software must
also be free.” (Wikipedia 2012b).

Green Software

 – 12 –

The following advantages are mentioned in the literature: adaptability, reusability of code,
higher product quality, higher security, open standards, and the absence of licensing costs
(e.g. Renner et al. 2005), as are the following disadvantages: a lack of warranty rights, little
support provided by developers, uncertain future development of the software, lack of
applications, or lack of interoperability with commercial software. These disadvantages are,
however, being minimized to an ever greater extent.

In spite of the model of openness (or precisely because of it), the quality of OSS is
considered to be equal to that of proprietary software (“albeit not better as a matter of
principle,” Heinrich et al. 2006) or better (Renner et al. 2005, Heise Online, 2012).

In the case of server operating systems, web servers, and databases, OSS is considered to
be more efficient and can generate better performance with the same hardware (Heinrich et
al. 2006, referring to Creber 2004 and Enterprise Management Associates, 2006), for which
reason it is more widespread in these areas (Diedrich 2009, Heise Open Source 2012a).

Heinrich et al. (2006) explain that “open source software often has lower hardware
requirements, which is why existing computer systems can continue to be used even after
they have been written off for tax purposes and the costs of new hardware investments can
be postponed.” The authors refer here to Bräuner (2005), Bokhari & Rehman (1999), and
Enterprise Management Associates (2006).

The free availability of the software and independence of a particular software manufacturer
can also help achieve a longer hardware operating life because users do not (have to) follow
the trend to constantly increasing memory and processing capacity to the same extent as
users of proprietary software. One the other hand, security gaps and errors that have
become known make regular updates necessary, at least in the operating system, which
over time results in inconsistencies in the interfaces and cumbersome configurations, in
particular in the case of complex systems, such as Linux distributions.4

OSS benefits from speedier development processes (Heise Open Source, 2008) and
enables software to be distributed rapidly (Ernst&Young, 2011). For this reason, measures
to increase resource efficiency can scale up very quickly.5 Paulson et al. (2004) compared
source code development in various OSS and non-OSS projects and demonstrated that the
likelihood of problems being solved was higher in the case of OSS projects.

On the one hand, OSS provides the opportunity to make adjustments to a system to
increase energy efficiency at any time. Yet this is balanced by the as yet low number of
specialists interested in doing so who are in a position to implement such improvements
properly. This is true in particular for adjustments to source code.6 This problem could be
ameliorated by means of campaigns to raise awareness of resource efficiency in the
developer community. When it comes to improvements based on exploiting hardware best,

4 In some cases, proprietary software can enable hardware to be used for a long time, too. For

example, Windows XP was introduced in 2001. Microsoft will support users with security updates
through 2014.

5 Potential late delivery of new software under Linux is often caused, among other things, by
hardware manufacturers. For example, Intel, the manufacturer of Sandy Bridge, took its time
debugging the Linux drivers. The patches based on them were included in official distribution later:
only in Kernel 3.4, and in the case of Ubuntu, it was included in the old kernel, but distributed only
with the new Ubuntu version 12.04 (Thoma, 2012a).

6 For example, Linux provides Powertop (n.d.), a fairly good analysis tool for measuring the energy
requirements of individual programs. However, its measurement of an experimental change of the
framerate depending on CPU load when playing videos, which cut MPlayers’ energy use during a
lecture at the ETH Zurich, has not yet been published officially.

Green Software

 – 13 –

many developers lack knowledge about the internal workings of the hardware.7 Here, the
task is to seek incentive systems for hardware manufacturers to disclose information about
interfaces so that the community can use this knowledge to improve OSS. (Open source
hardware projects do exist. They, too, are important and worthy of support from a resource
perspective in order to provide OSS with more opportunities for improvements to resource
efficiency.)

While settings for good energy efficiency are often provided by manufacturers of proprietary
software out of the box or via updates, Linux usually requires manual adjustment of energy-
saving settings (Thoma 2012b). This problem could be ameliorated by means of campaigns
to raise awareness of resource efficiency in the developer community.

The fact that volunteer work is still required in many areas and that there is no way to
enforce implementation of guidelines can be potential disadvantages in the open source
universe. However, there is a trend toward hiring developers to work on OSS (Heise Open
Source 2012b).

Also, different licenses apply to free software and to OSS, and they can result in legal and
financial risks for companies (BITKOM n. d.). This has consequences for decisions on how
to design support measures for OSS strategically.

GPL, the best-known license for free copyleft software, applies to many tools distributed with
Linux, the Linux kernel itself, and a multitude of projects on the open source SourceForge
host (SourceForge n. d.). Taking on resource-efficiency improvements made to GPL
software in proprietary software without making the latter public under GPL is not permitted.
On the one hand, one would have to include measures to increase resource efficiency in
free OSS to enable rapid dissemination of improvements in proprietary software. On the
other hand, an increasing number of Linux distributions are including proprietary software as
well, thereby undermining the principle of free software. Support of GPL-licensed software
would result in disseminating knowledge and would ensure that end users could make use of
all the improvements8. At the same time, strengthening free (and open source) software
would continue. Campaigns informing companies about legal issues could lower the
obstacles to switching to OSS.

Knowledge about designing and configuring software in an energy-efficient manner is
insufficient today, both for OSS and for proprietary software, and there is a general lack of
experts who apply this knowledge in practice. For this reason, it is important that existing
knowledge is made available, for example through workshop series such as “Energy Aware
Software Engineering and Development” (EASED), “Green and Sustainable Software”
(GREENS), “Software Engineering Aspects of Green Computing” (SEGC), as well as
conferences (such as ICT4S, ICT for Sustainability) and magazines. The problem has been
recognized by the research community and is being tackled. Available knowledge can be
brought to bear and disseminated quickly especially in OSS. Research initiatives in this
regard that develop, collect, or disseminate knowledge on resource and energy efficiency of
software contribute to resource conservation by software in the medium term.

7 For example, manufacturers of graphics cards usually provide device drivers only for Windows (in

compiled binary form) and refuse to give developers of open source drivers the necessary
hardware information so as not to reveal details of their technology via the sources which would
then be open. In contrast, hardware manufacturers collaborate more closely with Microsoft and
provide details of their proprietary drivers.

8 This is not guaranteed if open source and proprietary software are combined.

Green Software

 – 14 –

2.2 Starting points in data centers

Data centers are among the largest electricity consumers in Germany. The connected load
of large data centers amounts to several megawatts; thus, they are comparable to the
energy-intensive industrial enterprises exempted from the EEG surcharge (surcharge under
the Renewable Energy Sources Act, the Erneuerbare-Energien-Gesetz). Servers and data
centers account for 1.8 % of electricity consumption in Germany (Hintemann & Fichter 2013).
Stobbe et al. (2009) assume that the electricity consumption of servers and data centers will
increase by almost 30 % between 2010 and 2020 in the baseline scenario. Even in a “Green
IT” scenario, they expect an increase in electricity consumption of more than 10 % by 2020.

While opportunities for saving resources in data centers through more efficient hardware
have been under discussion for years and are being implemented at least in part, the
corresponding potential when it comes to software has been granted little attention to date,
with the exception of server virtualization. In the following, three approaches promising
relatively high potential for increasing resource efficiency will be discussed.

2.2.1 Dynamic predictive load management

Dynamic predictive load management means managing IT hardware and the infrastructure
of a data center in such a way that they are utilized as best as possible. Tasks that are not
time-critical are shifted to periods when hardware utilization is low, or hardware is turned off
when it is not needed. Comprehensive dynamic load management is not limited to IT
services and IT hardware, but also includes the data center’s infrastructure components. For
example, parts of a modular uninterruptible power supply (UPS) can be switched off, or air
conditioning can be turned off in areas of the data center where hardware has been switched
off (Nebel et al. 2009).

To date, the various parts of the data center have usually been managed by different
individuals or departments of the data center, and with different tools—some by systems and
network managers, others by facility managers. Many different solutions for Data Center
Infrastructure Management (DCIM) aiming to unify the two worlds and thus improve energy
efficiency in data centers are currently on the market. However, providers and market
research or consulting firms use the term DCIM in different ways. At least, the solutions
usually enable comprehensive monitoring and management of IT hardware and data center
infrastructure. However, they only rarely achieve complete and integrated load management,
including the levels of hardware virtualization and services (Reder 2012).

In the case of peak loads or unfavorable conditions, e.g. very high ambient temperatures,
shifting IT loads to other data centers is a possibility.

Experience shows that energy savings on the order of 30 % could often be realized even
with the energy management software systems already available in companies (e.g.
providers’ server management suites; Baumeister 2012), but that they are often not
implemented because of the time and effort required (Müller 2013). Providers of DCIM
solutions also hold out the prospect of savings on the order of 25 % (Lanline 2012).

These assessments are confirmed by research projects such as GAMES (Green Active
Management of Energy in IT Service centres, www.green-datacenters.eu), which
established potential CO2 footprint reductions of approx. 25 %. According to the responsible
project managers of “Cool em All” (www.coolemall.eu) and “Adaptive Computing for Green
Data Centers” (www.ac4dc.de), those projects have established similar figures.

Green Software

 – 15 –

Load management across data centers can also entail cost advantages for data center
operators by using regionally differentiated dynamic electricity prices, in addition to
improvements in their own capacity utilization. A study by the Offis Institute established
additional (financial) savings potential of approx. 5 to 10 % here, depending on the dynamics
of electricity pricing (Nebel et al. 2009). From the perspective of the entire energy system,
application of this solution means better adaptability to dynamic electricity generation from
renewables (demand shaping). From a resource point of view, adaptability to price signals is
an important advantage of dynamic predictive load management: setting prices accordingly
makes it possible to save fossil fuels and limit power grid capacities. This advantage accrues
even under the pessimistic assumption that the same ICT performance is achieved with the
same electric capacity.

On the basis of the studies and sources mentioned, it can be said that software solutions for
dynamic predictive load management in data centers promise energy savings potentials of
25 % to 30 %. Improving average capacity utilization also means that significantly less
hardware is required, which in turn entails high potentials for improving materials efficiency.

2.2.2 Information and data management

Calculations prepared by the Borderstep Institute for the research project AC4DC have
shown that data storage currently accounts for more than 10 % of data centers’ energy
consumption, and this figure is rising. One reason for this is the fact that storage costs per
gigabyte are constantly decreasing, which often determines how data is handled in data
centers. In the past, the capacity of hard drives has doubled roughly every 18 months, as
predicted by Moore’s Law. 9 According to Experton (as cited in Bayer 2009), the costs of
storage hardware are decreasing by 30 % per year. As a result, there is little incentive for
businesses to use memory efficiently (Bayer 2009).

One starting point for more efficient data management is to reduce the amount of data to be
stored. For example, unnecessary copies of data could be avoided and data no longer
needed could be deleted. One way to implement this idea is that staff members must
explicitly mark those e-mails they receive that are to be stored long-term. All other e-mails
will be deleted automatically after a certain period of time (Rüdiger 2011).

In addition, electricity consumption can be reduced if data is always stored in the most
energy-efficient medium. For example, archive data could be stored automatically and in an
energy-efficient manner on tapes. Such software tools for hierarchical storage management
(HSM) have been on the market for quite some time. They shift data accessed only rarely to
cost-efficient storage systems which are usually also the most resource-efficient ones. As
HSM operates automatically and without requiring users to do anything, its application in
data centers is quite common (Müller 2013). With increasing prevalence of solid state disks
in data centers, the correlation between cheap and energy-efficient storage systems no
longer holds. Solid state disks are currently among the costly, but energy-efficient storage
systems (Wilde 2013).

Software tools and concepts for information and data management that go beyond HSM are
available: information lifecycle management solutions (Ehmann & Hintemann 2004) and
enterprise content management solutions. However, they are seldom used in practice as

9 In 1983, 10 MB IBM hard drives were common; today (2013), the first 8 TB hard drives are on the

market, which corresponds roughly to 20 reduplications.

Green Software

 – 16 –

technologies for resource conservation as they require substantial time and effort for
categorizing the information and data (Müller 2013).

Because of constantly increasing storage capacities and decreasing prices for storage on
hard drives, there is little incentive to reduce amounts of data. The advantage of cost-
efficient memory also has a disadvantage for companies, namely that identifying and finding
the relevant data requires increasing amounts of time and effort (Vilsbeck 2012). Software
solutions that help avoid the flood of data would contribute more to resource efficiency than
“big data” solutions that help evaluate very large amounts of unstructured data.

2.2.3 Data compression and data deduplication

Another way to reduce the amount of data to be stored is data compression and
deduplication. Data compression encompasses techniques with which digital data can be
altered so that less memory is needed and transmission time between two IT systems is
reduced. Compression of data is also called coding, decompression at a later point in time
decoding.

Lossless data compression ensures that data matches the original exactly even after it has
been coded and decoded. Lossy data compression usually does not enable error-free
decoding, but it does permit higher compression rates. While lossless compression is
required above all for program files, company databases, etc., lossy compression is used in
particular for multimedia files such as images, videos, or audio files.

Deduplication of data is a special compression technique which analyzes the existing data
for redundancy. It identifies and deletes redundant data, i.e. data existing in multiple copies
(Geer 2008; Pelkmann 2010). The efficiency of deduplication depends on the data available
in a concrete case. If there is a lot of similar data—e.g. in the case of numerous versions of a
PowerPoint presentation with minor changes—then very high compression rates are
possible. Manufacturer EMC reports a factor of 10 to 30 by which the volume of data can be
deduplicated (EMC 2013).

Other manufacturers (Unterseher 2008) and consultants (Wilde 2013) assume compression
rates of 1:10 which are common in practice for backup and archiving. Measurements of real
systems confirm these orders of magnitude (Meyer & Bolosky 2012). Initial applications in a
project funded by the German Federal Environment Ministry’s Environmental Innovation
Programme and carried out by Erecon AG demonstrate that data deduplication can be
suitable for direct use “on the fly” and not only for backup systems in data centers (BMU
2012). However, only lower deduplication rates (e.g. 1:5) are possible here (Wilde 2013).

Deduplication significantly reduces the amounts of both energy and hardware (He et al.
2010). According to Borderstep Institute calculations in the AC4DC project (n.d.), approx.
12.5 million hard drives were installed in German data centers in 2012. A rough calculation
demonstrates the order of magnitude of savings potentials: Assuming that the technique
were to be used on only 20 % of all systems because of technical and organizational
limitations, inline deduplication with a deduplication rate of 1.5 would permit using approx.
2 million fewer hard drives. Data centers’ energy consumption could be decreased by approx.
2 % overall in this way.10 In addition, less hardware would be required for infrastructure (air
conditioning, etc.).

10 According to calculations prepared by the Borderstep Institute in the ongoing AC4DC project (n. d.),

approx. 12.5 million hard drives were installed in German data centers in 2012, and they accounted

Green Software

 – 17 –

It is questionable whether deduplication will be employed on a larger scale in the future at all.
For example, the author of an article in the specialist magazine speicherguide.de believes
that using a cost-efficient hard drive system with SATA drives is more economical in many
cases than purchasing a deduplication system (Rieß 2012).

2.2.4 The challenge of a heterogeneous data center market

Resource-efficient software solutions for data centers must compete in a very
heterogeneous market. This begins even with the structure of the data centers. Most of the
approx. 52,000 data centers in Germany are equipped with fewer than 10 physical servers.
Approx. 60 data centers with more than 5,000 servers each are at the other end of the
spectrum. In total, more than twice as many servers are installed in these 60 data centers
than in the 31,500 small locations (Hintemann & Fichter 2012, 2013).

According to a survey by the Borderstep Institute,11 almost 50 % of the large data centers
(more than 5,000 servers each) are so-called colocation data centers that provide IT space
including infrastructure services as a package. As IT hardware and infrastructure are not
operated by a single entity there, this reduces their potential for comprehensive and efficient
software solutions significantly. In addition, about one-quarter of the major data centers are
host computing centers where the IT hardware is managed by the operator, but the software
is managed by the customers. Here, too, the opportunities for using resource-efficient
software solutions are severely limited.

Not only the data centers themselves display a very heterogeneous structure. A large
number of different players are active in the data center market, including IT hardware and
software providers, infrastructure solution providers, IT consultants, data center planners,
and firms offering total system-based solutions. Some of them pursue goals contrary to
establishing resource-efficient software solutions in the market. For example, hardware
providers are primarily interested in selling hardware. Some players also attempt to establish
proprietary systems in the market—in combination with appropriate software solutions—
which makes comprehensive solutions more difficult to achieve.

Because this market is not transparent, consumers have only severely limited opportunities
to make decisions contributing to resource-efficient service provision.

2.3 Additional starting points for resource efficiency

2.3.1 User behavior in social networks

The palette of services originally offered by Facebook, for example, required relatively little
computing power. Implementation of videotelephony, facial recognition, games, and tracking
functions with information about the locale and advertising has significantly increased the
need for it.

In the case of the major social networking platforms, one must assume today that the
resource efficiency potential available at the software level has largely been exploited,

for just under 12% of the electricity consumed by the data centers. Reducing the number of hard
drives by 2 million would thus correspond to a reduction in electricity consumption of about 2 %.

11 The Borderstep Institute has data on the size, location, operator, and purpose of approx. 80 % of
the major data centers in Germany.

Green Software

 – 18 –

simply because it would be impossible to process data for hundreds of millions of users in
the absence of innovative measures. As the operators of data centers come up against
absolute limiting factors (for example, with regard to their power consumption) sooner or
later, it is in their own interest not to waste energy or server capacity. Investments even in
small resource-saving software improvements pay off because of the multiplication effect:
the code in question is run thousands of times for many millions of users.

Resource conservation when using social networking sites is therefore not a question of
software, but can be achieved only by the following means:

1. the operator’s data storage policy,
2. operating data centers in a way that conserves resources,
3. user behavior.

The first point concerns questions such as: Does the operator provide for physical deletion of
data; does the user have a “right to be forgotten”?12 In an optimized software landscape, the
second point concerns cooling as well as sourcing electricity (green electricity). The third
point will be discussed briefly in the following, as it is about interactions with software design.

The software is usually designed so that it motivates users to interact with the platform
frequently and for a long time. After all, the more intensely members interact with a platform,
the more attractive it is for companies to place their advertising there. That is why various
means for increasing the amount of time users spend on the platform are implemented (e.g.
games). The result is increased data traffic, which does make a difference in combination
with energy-intensive mobile access.

From a resource perspective, the combination of social networks with location-based
services seems especially unfavorable because it promotes access via cellular networks in
particular. The fact that the market of mobile social networks (e.g. Foursquare 13) is
considered relevant for the future is evidenced by the involvement of major corporations
such as Nokia, Intel, or Samsung. For example, all of them are collaborating with GyPsii, a
provider of mobile social network software (Heise Online 2011b).

Mobile social networks have strengthened the “always on” mentality further. In the interest of
resource conservation, platforms should be supported that back an opposing trend which
can be characterized roughly as follows: minimizing interaction, providing only the most
necessary functions, reducing images to the resolution required as the default setting,
providing easy ways to physically delete data. Such a trend would be advantageous not only
for resource conservation, but also for informational self-determination.14

12 Regarding a “right to be forgotten” from a privacy perspective, see also Hilty et al. (2012).
13 Foursquare claims to have eight million users globally who sign on 2.5 million times per day with

check-ins. The number of members is said to increase by approx. 35,000 new members daily. The
platform for retailers is used by 250,000 companies (as of November, 2011).

14 Frequent mobile interaction with internet platforms makes it possible to generate profiles of users’
movements and contacts (Hilty et al. 2012).

Green Software

 – 19 –

2.3.2 The polluter pays principle

As the example of spam demonstrates, the functional principles of the Internet are far
removed from the polluter pays principle. Otherwise, spammers would have had to pay an
electricity bill as high as that of the entire population of Bangladesh (150 million) in 2008.15

Allocating the use of technical (and thereby indirectly of natural) resources on the Internet to
those responsible is extremely difficult, and even in the case of criminal offenses, such as
the operation of botnets16, it is almost impossible to accomplish.

Another example: billing customers for the electric energy used by an Internet service
provider (ISP) for the services provided would be possible only to a limited extent because
the ISP cannot track everything the customer’s data traffic triggers.

If one views the Internet as a public good and not as a commercial service, then it is very
difficult to allocate costs for resource use to a particular person or other entity causing them.
Changing this situation would, however, have far-reaching consequences, for example the
danger of widespread monitoring of activities on the Internet. In the long term, this could
result in a conflict of goals with democratic fundamental rights. From a technical point of view,
solutions respecting data protection are possible in principle.

If the latent conflict of goals on the Internet between the polluter pays principle and
fundamental rights is not resolved, the resource load of further exponential growth of data
traffic will inevitably be shifted to where no costs accrue to the person or entity causing them.

15 McAfee’s estimate of spam-related electricity consumption totaling 33 TWh corresponds roughly to

the annual electricity consumption of Bangladesh (Hilty & Lohmann 2011).
16 A botnet is a set of computers that are controlled remotely via the Internet, usually without their

owners’ knowledge. Botnet operators can use these computers for their own purposes, for example
to send spam, attack websites, host illegal contents, or spy out data.

Green Software

 – 20 –

3 Methodological challenges and approaches

The question as to how a “resource-efficient” software product can be differentiated from a
“less resource-efficient” one will now be made more concrete, based on the starting points
identified above. This question is confounded by unsolved methodological problems, as
software cannot be examined by applying the standardized method of life-cycle assessment
in a routine fashion. Significant difficulties are yet to be overcome on the path to a label for
“green software.”

This chapter will draw upon the relevant literature to show which methodological challenges
arise in particular and will provide an overview of existing approaches to solutions.

3.1 Methodological challenges

3.1.1 Definition of functional units

Application of the LCA methodology begins with defining functional units, i.e. precise,
quantitative definition of the service which the product system in question is to perform
(Rebitzer et al. 2004). All resource uses are set in relation to this unit. It is the basis for
comparing different product systems in terms of the efficiency with which they provide the
service. This presupposes functional equivalence, i.e. the functional units must be
indistinguishable from one another, or at least interchangeable.

Resource efficiency is the relationship between a particular use or result and the resource
use required to produce it. Here, a functional unit corresponds to the use or result. In other
words, it is the unit for the numerator of efficiency, while a measure for resource use is in the
denominator:

Defining functional units for software is generally difficult. One reason for this is that most
software products fulfill a large number of functions, and only rarely do two products fulfill the
same ones. Even different versions of the same software product often differ in functionality.
Even if one were to focus on a single function, e.g.

 “creating and sending 1 e-mail,"

functional equivalence could easily be called into question; for example, e-mail programs
may offer different support when creating the e-mails (managing contacts, correcting typing
errors, etc.). In addition, this unit is not defined precisely: the number of characters, the size
of attachments, etc., would have to be laid down exactly. Thus, functional units are so
specific that special methodological effort is required to describe one or more statistically
representative functional units. However, whether or not a functional unit is statistically
representative can be ascertained only on the basis of empirical user behavior data.

If software is to be evaluated in terms resource efficiency, the functional unit(s) selected
must be representative, which would require a large amount of effort for gathering data. As
changes are possible to usage patterns as well as the characteristics of the software
products (via updates), results would be out of date in a short time. This problem is
compounded by the methodological challenge of multifunctionality: an individual software

Green Software

 – 21 –

product can fulfill several functions; this requires defining various functional units which, in
the context of an LCA, are to be treated as co-products.

3.1.2 Measuring the energy consumption of software

The seemingly simplest aspect of resource use by software—namely electricity consumption
via hardware—poses a methodological challenge. This is due to the fact that a software
product is always part of a complex ICT system which is responsible as a whole for energy
consumption, whereby each individual component of the system influences the resulting
electricity consumption.17 As a rule, existing indicators for ICT systems’ energy efficiency
(Erek et al. 2013, Drenkelfort 2013) do not provide for considering the effects of software in
isolation (Van Bokhoven & Bloem 2013).

Figure 1 shows an example of a setup for measuring the energy consumption of software
(Kern et al. 2013). In this case, the System Under Test (SUT) is divided into five components:
hardware, operating system, runtime environment, interpreter/compiler, and the application
program. In order to compare the electricity consumption of different applications, for
example, the other four components must be kept constant for methodological reasons. This
makes the result extremely dependent on context: a statement such as “program A uses
more energy than program B” would be justified only if “executed by hardware P, under
operating system version Q, in runtime environment R, and with interpreter S” were added.

While the problem of context dependency also arises when evaluating other products in
terms of their resource consumption, the multitude of influencing variables in the case of
software products poses a particular challenge.

Figure 1: Example of a setup for measuring the energy consumption of software

Source: Kern et al. (2013; p. 91)

17 Bozzelli et al. (2013) provide an overview of the literature on the relevant metrics. Complex energy

consumption models are necessary for estimating energy consumption in cloud environments
(Chen et al., 2012).

Green Software

 – 22 –

The problem is exacerbated if the interaction of the components in networks is included,
which is the norm today. For this reason, studying the energy consumption (or more
generally, the resource consumption) of software is extremely complex and implies breaking
new ground in terms of methods.

Figure 1 shows a “workload generator (WG)” whose task is to generate a workload for the
SUT like a real user would. The choice of usage patterns or usage scenarios, which is
automated by the WG, is to be considered an approximate solution to the problem of
defining functional units discussed above.

3.1.3 Allocation problems in the case of fluctuating load

If several software components use capacity of the same hardware component, then the
problem of allocation arises, as is often the case in LCA studies. Viewed in terms of
production management, this is an example of co-production, as one hardware component
produces various products simultaneously: computing power for software 1, computing
power for software 2, etc. In other words, resources used by hardware must be allocated,
according to an appropriate formula, to the various software products (to be precise, to the
defined functional units which are delivered by the software products) using the hardware.

The problem of allocation becomes particularly obvious when it comes to hardware in
network nodes, e.g. routers, as well as servers. In these cases, an individual software
product running on an end-user device is usually responsible for an extremely small fraction
of the total load handled by the router or server.

Allocation can be based either on the fraction of the currently used hardware capacity or on
the total hardware capacity available. Usually, the latter option is used; otherwise, reserve
capacity would not be allocated at all except for peak usage times.

The reason why this is still an unsolved methodological problem shall be elucidated using
the example of the energy consumption measured for a video conferencing Internet
connection between Switzerland and Japan. Coroama et al. (2013) determined the power
consumption and the capacity utilization of all the network nodes and network connections
between the conference center in Davos and the University of Nagoya (4 simultaneous
bidirectional full HD channels). The data traveled a distance of 27,117 km in 24 hops. Figure
2 shows cumulative electrical power consumption for the entire distance, from Davos to the
destination. The most striking result is that consumption is highest near the two end nodes
and that hardly any energy is used to cover the long distances (the deep sea fiber optic
cables through the Atlantic and the Pacific appear as practically horizontal segments in the
figure).

This finding can be explained in part by allocation. Near the end nodes, there are nodes
whose load was less than 3 % at the time of measurement (some less than 1 %). In contrast,
a very large number of data traffic streams are combined in the Internet backbone, which
makes capacity utilization more constant and reduces the difference between average and
maximum capacity utilization. In contrast, total reserve capacity in the network nodes with
low usage, which is available for rare peak usage times, is allocated to very low average
capacity utilization according to the allocation scheme mentioned above.

If one takes this situation as given and considers the amount of data transmitted, one can
derive that transmitting one gigabyte across this distance requires less than 0.2 kWh,
assuming an estimated PUE value for the nodes and connections (Coroama et al., 2013).
Compared to previously published figures, this is relatively low, even though most of it is due

Green Software

 – 23 –

by way of calculation to the extremely low capacity utilization of some in-house and region
network nodes.

Assuming that 1,000 such video conferences were taking place simultaneously in Davos, the
figure 0.2 kWh/GB would no longer apply, because the capacity utilization of the regional
nodes would increase significantly. The energy intensity per conference would be
significantly lower for this reason; in other words, one would overestimate energy
consumption if one were to continue using 0.2 kWh/GB in calculations. Only at the point at
which capacities were increased would more electricity be used in absolute terms.

Figure 2: Cumulative electrical power consumption of an HD video conferencing connection

Source: Coroama et al. (2013)

Allocation problems also occur in peer-to-peer (P2P) networks in which the individual users
make hardware capacity available to the network. For example, Skype telephone calls are
transmitted via individual users with free capacity (so-called supernodes), who do not notice
that this is occurring. This increases the supernode’s utilization of its own hardware capacity,
and if allocated in this way, the resource efficiency of other programs running simultaneously
on that hardware is improved by way of calculation. Independently of this effect, the question
arises whether one should allocate the load due to other people’s Skype calls to one’s own
Skype calls. The results depend on how these questions are decided.

These examples are intended to illustrate that the results of resource estimates, which are
(necessarily) dependent on decisions concerning allocation, should not be interpreted
independently of their context.

This methodological difficulty makes the question of assessing cloud computing in terms of
resources a primary problem of estimating capacity utilization of networks and servers and
selecting allocation rules.

Green Software

 – 24 –

3.2 Existing approaches to solutions

3.2.1 Concentrating on individual aspects which can be measured

Some authors deal with the methodological problems by focusing on individual aspects
which can be measured:

• There are a number of programs that use PC software to determine average capacity
utilization of processors, using standardized benchmarks; these programs are intended
to help users select the most energy-efficient among several software products (see, e.g.,
Amsel und Tomlinson 2010).

• Wilke (2012) measured local energy consumption of smartphone apps with the goal of
creating the basis for an energy label. He compared apps with similar functions (e.g. e-
mail clients) and defined simple use cases as functional units.18 Two important factors
contributing to natural resource use—production of the smartphone and the data traffic it
induces in the cellular network—were not taken into consideration, as Wilke’s work was
focused primarily on battery service life.

• Naumann et al. (2008) introduced the Power Indicator (called “Green Power Indicator”
today), an add-on for the web browser Firefox, which shows whether a website is
running on a server operated with electricity generated from renewables. The add-on
accesses a centralized list of “eco-providers.”

• Zapico et al. (2010) created Greenalytics, a technique for automatically estimating the
energy consumption of websites for clients, networks, and servers. However, the
estimates are very rough and are based mainly on data volume and access statistics.
According to Grosskop and Visser (2013), this does not enable measurement of energy
consumption.

3.2.2 Efforts toward standardization

Both the problem of defining functional units and the problems of measurement and
allocation can be partially alleviated by means of standardization, because it achieves
comparability of results at least.

In individual areas of testing software products, standardized usage scenarios could take on
a role similar to that of standardized driving cycles for exhaust and fuel consumption tests of
automobiles. It is debated, however, how realistic they are19; as a result, it appears that
because of the even greater complexity of software products, broad consensus about
“software driving cycles” would appear to be difficult to achieve among various
manufacturers, the scientific community, public agencies, as well as consumer and
environmental organizations. While it can be assumed implicitly in the case of a car that its
function is to travel a given distance, in the case of software, even the selection of the
function(s) on which the testing cycle is based is a normative decision with the
corresponding potential for conflict.

18 e.g. “Check Inbox,” “Read Mail,” “Open Attachment.” Significantly higher energy consumption was

noted for those products showing advertising (Wilke 2012).
19 This is apparent even on the German Wikipedia page on “driving cycles”: “The standardized driving

cycles represent average profiles as a basis for comparison of different vehicles. They frequently
do not match the customer’s user profile …” (Wikipedia 2013a).

Green Software

 – 25 –

Dick et al. (2011) define load profiles for ICT systems according to ISO/IEC 14756.20 These
profiles are randomized, i.e. the order and duration of user actions are selected at random
within a given framework. Average energy consumption of the profile in a given configuration
of the ICT system can be determined by repeating the profile numerous times. If such load
profiles are to be realistic, they must be oriented toward “typical workloads” in the intended
area of application in each individual case (Dick et al. 2011; p. 292). Kern et al. (2013) call
for the definition of usage scenarios for standard software in order to enable systematic
comparison of the energy consumption of different software products and configurations.
Such usage scenarios would then also form the basis for the load profiles which are
measured. Standards for usage scenarios are not yet on the horizon. Business process
models (which are defined in BPMN21, for example) could serve as the basis for load profiles.

The International Telecommunications Union (ITU) prepared an “Assessment framework for
environmental impact of ICT” (ITU 2012a). It is a part of the “ITU Toolkit on Environmental
Sustainability for the ICT sector,” which was developed by ITU-T in collaboration with more
than 50 organizations and ICT companies with the goal of defining environmental
sustainability requirements for the ICT sector (“Environmental Sustainability Requirements”;
ITU 2012b).

The “assessment framework” gives an overview of the existing norms and standards,
including the ITU-T standard L.1410, “Methodology for environmental impact assessment of
ICT goods, networks and services,” which is based on the ISO standards for LCA. It
specifies a methodology for estimating the environmental impacts of ICT systems (ITU
2012c).

Of the document’s 85 pages, 2 pages in the main text and 2 pages in the annex are devoted
to the topic of software. This demonstrates that software is not yet firmly established as a
subject of environmental standards. The ITU-T norm focuses on regulating the estimation of
impacts of the production of software and the allocation of the production stage (divided by
the number of licenses sold).

The problem of defining functional units in the case of software is mentioned in an example
on word processing: “The function experienced by a user of a word processor program is to
deliver word processing of documents electronically. The corresponding functional unit could
then be the number of pages processed per time unit (e.g., one hour) during the operational
lifetime (e.g., three years). Finally, the reference flow is defined as one unit of word
processing software (distributed e.g., in a CD with packaging)” (ITU 2012c; p. 8). This
example, too, focuses on the impact of the production stage of the software; even its
traditional distribution on CDs is considered. In contrast, the impacts of software due to
usage of hardware capacities in the usage stage are not discussed.

The functional unit for ICT services is generally proposed to be usage during one year
(“annual service use”). The authors point out that realistic usage scenarios must be defined
for this functional unit and that network capacity must be allocated, yet concrete suggestions
for solving this problem are lacking (ITU 2012c; p. 9).

20 ISO/IEC 14756 describes a procedural model for measuring software performance. Classic

performance characteristics of ICT, such as execution time and throughput, are measured for given
load profiles. This norm has no specific reference to software resource efficiency, but its approach
for defining and using load profiles as well as conducting measurements can be applied.

21 Business process model and notation, an Object Management Group standard for describing
business processes (BPMN 2013).

Green Software

 – 26 –

The GHG Protocol, an initiative founded by WRI and WBCSD in 1998, develops standards
for gathering data about and reporting on companies’ greenhouse gas emissions. At the
recommendation of ICT firms, the GHG Protocol, in collaboration with The Carbon Trust and
the Global eSustainability Initiative (GeSI), developed specific guidelines for the ICT sector
(“ICT Sector Guidance,” GHGP 2013a, Stephen & Didden 2013).

“ICT Sector Guidance” covers the following topics: telecommunications services, desktop-
managed services, cloud and data center services, hardware, software, avoiding
transportation (GHGP 2013b). The chapter on software is currently available only in draft
form (Version 2.9, GHGP 2013c). The most important aspects for the question at hand will
be presented in the following.

In contrast to ITU-T, the GHG Protocol focuses on the impacts of software in the usage
stage: “Up to 90 % of the energy used by ICT hardware can be attributed to the application
software running on it, and the design of software can have a significant impact on the
amount of energy used. It is therefore important that software designers carefully consider
the energy use of the software, and design software efficiently to reduce the energy use.
Examples of where better software design can reduce the energy use are: optimizing the
CPU usage; optimizing the disk IO usage; optimizing remote calls such as database calls,
and web accesses.” (GHGP 2013c; p. 4)

The central contribution of the chapter on software is the detailed suggestions on how to
approach preparing, conducting, and evaluating electricity consumption tests for systems
and application software, including the libraries used. Using benchmarks and correctly taking
energy management into account by the operating system or the application software are
considered particularly important. Testing of remote devices and virtual machines are also
considered.

No concrete suggestions are made for benchmarks as this standard describes the basic
methodology. In so doing, the standard does make a substantial contribution to solving the
problem of measurement (section Error! Reference source not found.), but implicitly
presupposes that meaningful and accepted functional units can indeed be defined (section
Error! Reference source not found.); after all, the definition of benchmarks must be
founded upon them. It is not yet possible to determine to what extent the standard can
contribute to solving problems of allocation in the case of low capacity utilization (section
Error! Reference source not found.).

3.2.3 Comparison of functionally similar software products

As software products are usually not functionally equivalent (see section 3.1.1), comparing
products that are merely similar to one another may be an alternative. The comparison can
then be limited to the functions common to various software products, but it requires a
realistic usage scenario.

Examples of such studies on energy consumption of software products in the usage stage
include:

• Kern et al. (2011) compared the web browser Mozilla Firefox with Microsoft Internet
Explorer, and Open Office Writer with Microsoft Word.

• Commissioned by Microsoft, Roth et al. (2013) compared the web browsers Mozilla
Firefox, Google Chrome, and Microsoft Internet Explorer, and arrived at a different result
than Kern et al. (2011).

Green Software

 – 27 –

• Williams and Tang (2013) compared the Microsoft products Outlook, Excel, and Word
with their web-based equivalents from Office 365 running in the cloud (see also section
2.1.4).

Functional similarity is greatest when different configurations of the same product are
compared. This can reveal relevant energy-saving potentials, as Dick et al. (2011) showed
using the example of a content management system: a comparison of configurations with
and without a hard disk cache showed that energy consumption was significantly lower in
the former case.

3.2.4 Comparing a software product with itself over time

Another possibility is to compare different releases or versions of the same software product
with each other in terms of resource use.

If a newer version requires greater hardware capacity (e.g. memory, CPU performance,
network bandwidth) than an older one, this creates an incentive to replace operational
hardware. If analysis focuses on this obsolescence effect, then measurement and allocation
problems are partially alleviated, as it is easier to determine the use of hardware capacity
than the fraction of energy consumption by hardware resulting from that use.

However, the older and newer software versions are usually not functionally equivalent, as
new versions often fulfill additional functional requirements.

In their comparison of three versions of the Microsoft Windows operating system and the
corresponding versions of Microsoft Word, Hilty et al. (2006) determined that Windows NT,
which was still new at the time of the study, required more total processing time than
Windows 2000 to carry out the same functions, even if it was running on hardware that was
twice as powerful.22

The test was based on file management and word processing tasks performed by 42
subjects. Execution time for the tasks and processor usage were measured as they were
carrying out the tasks. Manufacturers generally justify the fact that new software versions
inevitably overcompensate for increasing hardware performance by pointing to the new
requirements to be fulfilled by the software. However, it cannot be proven that this
relationship is inescapable, and resource efficiency itself could be treated as a high-priority
requirement (see also the following section 3.2.5).

3.2.5 Green software engineering

A further approach for a solution lies in expanding the perspective of measurable
characteristics of the software product to include the process that generates and maintains
the product. Then, the question is no longer “What is green software?” but “What is green
software engineering?”

Software developers are accustomed to thinking in terms of requirements and developing
systems that fulfill them. They differentiate between functional requirements (that describe
what the system to be developed is supposed to do) and non-functional requirements that
describe qualitative aspects of the system. Typical non-functional requirements in software
engineering include security, serviceability, and expandability. As non-functional

22 This example confirmed Wirth’s Law: “Software is getting slower more rapidly than hardware

becomes faster” (as cited in Grosskop & Visser 2013; p. 101).

Green Software

 – 28 –

requirements are characteristics of software architecture, they must be taken into account
even in the early stages of software development, and they influence the entire process. At a
later stage, it is easier to add functions than to fulfill non-functional requirements.

If the task is to successfully develop “green” software products, then two problems must be
solved:

1. Defining non-functional requirements that specify what “green,” “energy efficient”,
“resource conserving,” or more generally “sustainable” mean in terms of qualitative
characteristics of a software product.

2. Developers taking these requirements into account across the entire process of software
development.

Then it would be possible to label software products as to whether they are the result of a
process that takes these requirements into account, or to certify the process as such.

1. Definition of non-functional requirements for “green” or sustainable software:

Initial ideas for non-functional requirements are formulated here, based on the previous
chapters and the literature cited:

• Demand adaptivity (as described in section 2.1.5)
• New versions do not make greater demands concerning memory, CPU performance,

and bandwidth unless absolutely necessary for additional functions.
• Basic functions can still be executed on older hardware in the long term.
• User-oriented configuration options for energy-saving modes.
• Power awareness, optimum management of hardware concerning energy consumption;

server software should also take the energy used by the client into account and should in
no case hinder or discourage turning off end-user devices or local power management.

• “Power-down-friendliness”: software should not animate people to leave hardware turned
on all the time.

• Support for data formats that are economical in terms of bandwidth and memory.
• Support for open standards for data formats (no customer lock-in via formats).
• Flexibility in terms of useable peripheral equipment (minimizing requirements to

purchase new equipment).
• Undesired advertising can be turned off.

2. Process-oriented aspects of green software engineering

Naumann et al. (2011, 2013) developed the reference model GREENSOFT for green
software engineering. Covering the entire software life cycle, it provides for periodic
“sustainability reviews and previews” during the development stage (Dick 2010a) or using
the approach of “continuous integration” to conduct energy efficiency measurements even
during the development process (Dick et al., 2013), among other things.

Manuals and checklists for developers are mentioned frequently as a tool to support green
software engineering, but to date, concrete suggestions are few. Dick et al. (2010b, 2010c)
formulated guidelines for “green web engineering,” Microsoft (2010) gave practical power
management tips for programming applications on Windows platforms.

Consolidation and further development of guidelines for developers on the basis of a
catalogue of non-functional requirements has yet to occur. The new workshop series
“Energy Aware Software Engineering and Development” collected existing manuals and
checklists in order to make them available to the public (EASED 2013).

Green Software

 – 29 –

4 Recommendations for action

In this section, recommendations for action are formulated whose goal is to minimize use of
natural resources caused indirectly by software products.

4.1 Need for research and standardization

4.1.1 Development of methods and standards

The need for action is greatest at the interface between independent application-oriented
research on one side and standardization on the other. Here, it is the task of research to
analyze and solve methodological problems. Then, it is the task of standardization to
operationalize science-based methods for practical use and to create a basis for
comparability when they are implemented. Two measures to this end are recommended in
the following.

Standardized usage scenarios as the basis for software tests

Usage scenarios describe a typical workflow of using a software function, forming an
important basis for defining load profiles and benchmarks when conducting comparison tests.
Such scenarios are needed to compare not only different software products, but also
different versions and configurations of the same product. When developing standardized
usage scenarios, one can build upon initial existing approaches (section 3.2.2).

Definition of non-functional requirements for sustainable software

There is a need for research to systematically develop qualitative criteria that define the idea
of sustainable software more precisely. These criteria are to be understood as non-functional
requirements for software engineering.

At the same time as these requirements are being developed, it is necessary to create
guides or tools for practical work that support incorporating them during the process of
software development, including additions to existing procedural models, best-practice
guidelines, and checklists in particular.

4.1.2 Periodic data collection

Periodic data collection in the two following areas is recommended for monitoring purposes
as long as the current growth dynamics persist.

Monitoring energy consumption by cellular networks and its causes

If, as is to be expected, energy consumption grows rapidly because of the increase in mobile
Internet access, measures to promote pricing appropriate to causation in the realm of ICT
should be considered in general (e.g. no flat rates for especially energy-intensive or
especially CO2-intensive data traffic).

Green Software

 – 30 –

Monitoring the market for web- and cloud-based applications in terms of resource efficiency

Periodic screening could help identify particularly favorable and unfavorable products and
configurations, whereby it is important to take resource use through the entire system
providing the service into account. Such screening serves to continuously update the
configuration recommendations to users (see section 4.2.2).

4.2 Consumer-oriented measures

4.2.1 Awarding the “Blue Angel” environmental label for software

Although it is true that significant methodological problems are yet to be solved on the way to
a “Blue Angel” environmental label for software (see Need for research and standardization,
section 4.1), sub-areas can be identified which would be suitable for such a measure in the
medium term, namely:

● traditional websites
● web-based applications.

These products require estimating resource use by networks and servers for usage
scenarios yet to be defined.

It is difficult to define quantifiable product characteristics for a “Blue Angel” label for locally
installed software products as the diversity of functions and the variability of forms of usage
are too great. For this reason, qualitative product-related criteria, such as demand adaptivity,
support for resource-saving data formats, and energy management on the end-user device
are to be considered as well (see also sections 3.2.5 and 4.1.1).

In addition, application of process-oriented criteria for software development is
recommended, for example following (yet to be developed) best-practice guidelines for
sustainable software development (section 3.2.5).

4.2.2 Providing information

Because of the existing methodological difficulties, it is very difficult to provide objective and
robust recommendations for end users of software based on the current state of research:
recommendations for or against certain products or types of products would be valid only
under severely limiting conditions which would be difficult to communicate due to their
complexity.

Recommendations concerning resource-efficient configuration of common software products
are an exception. In this case, it would not be products, but configurations of the same
product that would be compared. The German Federal Environment Agency could harvest
the low hanging fruit in ICT resource efficiency by developing and publishing such
recommendations.

Developing and periodically updating configuration recommendations

The following approach is recommended:

1. Selecting a common software product (or a common combination of application and
systems software) that can be configured in order to optimize resource efficiency.

Green Software

 – 31 –

2. Conducting comparison tests of the configurations of the software product (same
product, same version, different configurations) to measure the hardware capacities
used and the electricity consumed.

3. Identifying settings that significantly affect the measured variables. Potentially
existing recommendations by manufacturers or user communities could be tested
here.

4. Developing or updating guides for users and system administrators that recommend
energy-saving settings, for example.

The goal of this measure is also to exploit in practice the characteristics demanded of
software products, such as demand adaptivity and energy management, in order to actually
conserve resources.

4.3 Recommendations for software developers

4.3.1 Manuals, best-practice guidelines, checklists

Promising approaches such as the GREENSOFT model (Naumann et al. 2011)
notwithstanding, the current state of research does not yet permit formulation of tools such
as manuals, best-practice guidelines, or checklists for software development.

However, there are numerous tips and practices for energy-efficient programming at least in
one specific area: the development of apps for mobile end-user devices, as maximizing
battery service life is an important requirement here. Accordingly, the only factor taken into
account is local energy consumption. The new workshop series EASED (Energy Aware
Software-Engineering and Development) consolidates and publishes the knowledge
generated here, which is transferable to other areas of software development to some
limited extent. Software developers are advised to follow the activities of the EASED
workshops as well as research in the field of green software engineering in general and to
participate actively in expanding the body of knowledge and experience.

4.4 Training and professional development

4.4.1 Teaching materials on resource aspects of software architectures for computer
technology education

The development of teaching materials on the topic of resource use by software is
recommended with the goal of including these subjects in computer science and information
systems programs at academic universities, universities of applied sciences, and in
vocational training for IT specialists. Other relevant study programs include image
processing and computer visualization, media informatics, web design, game development,
and game design.

4.4.2 Professional development on resource aspects of ICT use for businesses and
public institutions

Businesses and public institutions can make significant contributions to resource
conservation by undertaking measures in the field of software, and can reduce costs as well.

Green Software

 – 32 –

Because of the large number of local servers operated by small and medium-sized
enterprises and schools (as small to medium-sized organizations operating ICT; see section
4.4.3, however), their potential to save energy and resources is large.

Development of appropriate teaching materials for professional development in businesses
and public institutions is recommended, and they should be integrated in existing
professional development programs.

Including federal agencies in these efforts is recommended as well because of their
considerable equipment needs and their purchasing power in the ICT market.

4.4.3 Support for computer science teachers at schools

When teaching computer science in schools, it is important in general to focus on principles
of computer science and not to teach specialized topics that quickly go out of date. This
must also be taken into account when integrating environmental and resource-oriented
topics in curricula for computer science (or other subjects relating to ICT).

4.4.4 Competitions for resource-efficient software

Annual competitions in which students and developers working in the field can submit
resource-saving improvements to existing open source software products are recommended.
They would permit any developer to participate even without comprehensive specialized
knowledge about the area in which a software product is to be used and to concentrate, for
example, on individual algorithms in a module.

In addition to raising awareness on the part of the participants and the interested public
about resource questions relating to software, good solutions could be disseminated quickly
because of the openness of OSS and could also be taken on in other software products.

Green Software

 – 33 –

Bibliography

AC4DC (n.d.): Bisher unveröffentlichte Angaben aus dem Projekt AC4DC, an dem die Autoren der vorliegenden
Studie beteiligt sind, http://www.AC4DC.de; last access 24.07.2013

Accenture (n.d.): Application Services for Open Source Software: Service-Überblick.
http://www.accenture.com/de-de/Pages/service-technology-systems-integration-open-source-overview.aspx .last
access 29.6.2013

Amsel, N., Tomlinson, B. (2010): Green Tracker: a tool for estimating the energy consump-tion of software. In:
CHI EA '10: Proceedings of the 28th of the international conference extended abstracts on Human factors in
computing systems. ACM, New York, S. 3337–3342

Baumeister, J. (2012): Server-Management-Suites: Management-Software der Server-Hersteller im Vergleich. In
Tecchannel, 18.11.2009.
http://www.tecchannel.de/server/hardware/2023817/server_management_software_das_bieten_die_besten_ver
waltungs_suites/index6.html last access 31.05.2013.

Bayer, M. (2009): Hardware, Software und Prozesse: 11 Ratschläge, Storage billiger zu machen. In: CIP,
04.05.2009. http://www.cio.de/knowledgecenter/storage/887974 last access 17.12.2012.

BITKOM (2010b): Green-IT-Allianz, Ergebnisstand AG3 - Software und Green IT. Internes Arbeitspapier.

BITKOM (n.d.): Open Source Software: Rechtliche Grundlagen und Hinweise. Leitfaden (Version 1.0).
http://www.bitkom.org/files/documents/bitkom_publikation_oss_version_1.0.pdf last access 29.6.2013.

BMU (2012): Ressourcen schonende Speicherlösung für Rechenzentren. http://www.bmu.de/bmu/presse-
reden/pressemitteilungen/pm/artikel/ressourcen-schonende-speicherloesung-fuer-rechenzentren/ last access
14.01.2013.

Bokhari, S. H., Rehman, R. (1999): Linux and the Developing World, IEEE Software 16(1), S. 58-64.

Bozzelli, P., Gu, Q., Lago, P. (2013): A systematic literature review on green software metrics. Technical report.

BPMN (2013): Business Process Modelling and Notation. Hompeage. http://www.bpmn.org/ last access
20.6.2013.

Bräuner, H. (2005): Linux im Rathaus – Ein Migrationsprojekt der Stadt Schwäbisch Hall, in (Bärwolff et al., 2005),
S. 37-50, http://www.opensourcejahrbuch.de/download/jb2005/ last access 30.6.2013.

Chen, F., Schneider, J.-G., Yang, Y., Grundy, J., He, Q. (2012): An Energy Consumption Model and Analysis
Tool for Cloud Computing Environments. 1st ICSE Workshop on Green and Sustainable Software (GREENS
2012), Zurich, Switzerland, 3rd June 2012, S. 45-50.

Coroama, V., Hilty, L. M., Heiri, E., Horn, F. (2013): The Direct Energy Demand of Internet Data Flows. Journal of
Industrial Ecology. DOI: 10.1111/jiec.12048

Creber, C. (2004): Die Bedeutung von Open Source in der Geschäftsstrategie von IBM, in (Picot und Doeblin,
2004), S. 111-116.

Dick, M., Drangmeister, J., Kern, E., Naumann, S. (2013): Green Software Engineering with Agile Methods. 2nd
ICSE Workshop on Green and Sustainable Software (GREENS 2013), San Francisco, CA, USA, May 20, 2013.

Dick, M., Kern, E., Drangmeister, J., Naumann, S., Johann, T. (2011): Measurement and Rating of
Softwareinduced Energy Consumption of Desktop PCs and Servers. In Innovations in sharing environmental
observations and information. Proceedings of the 25th International Conference EnviroInfo October 5 - 7, 2011,
Ispra, Italy, W. Pillmann, S. Schade and P. Smits, Eds. Shaker, Aachen, S. 290–299.

Dick, M., Naumann, S. (2010a): Enhancing software engineering processes towards sustainable software
product design, in: K. Greve, A.B. Cremers (Eds.), EnviroInfo 2010, Integration of Environmental Information in
Europe, Proceedings of the 24th International Conference on Informatics for Environmental Protection, October
6–8, 2010, Cologne/Bonn, Germany. Shaker, Aachen, 2010, S. 706–715.

Dick, M., Naumann, S., Held, A. (2010b): Green Web Engineering. A Set of Principles to Support the
Development and Operation of "Green" Websites and their Utilization during a Website’s Life Cycle. In: Filipe, J.,
Cordeiro, J. (Hrsg.). WEBIST 2010 - Proceedings of the Sixth International Conference on Web Information
Systems and Technologies, Volume 1, Valencia, Spain, April 07-10, 2010, 2 volumes, INSTICC Press, Setúbal, S.
48–55.

Green Software

 – 34 –

Dick, M., Naumann, S., Kuhn, N. (2010c): A Model and Selected Instances of Green and Sustainable Software.
In Berleur et al. (2010) S. 248-259.

Diedrich, O. (4.2.2009): Trendstudie Open Source. Wie Open-Source-Software in Deutschland eingesetzt wird. In
Heise Open Source. http://heise.de/-221696 . last access 29.6.2013.

Drenkelfort, G., Pröhl, T., Erek, K. (2013): Energiemonitoring von IKT-Systemen. Kennzahlen. Projektberichte
IKM| 3. Universitätsverlag der TU Berlin.

EASED (2013): 2nd Workshop EASED@BUIS 2013 – Energy Aware Software-Engineering and Development –
Proceedings. Bunse, C., Gottschalk, M., Naumann, S., Winter, A. (Hrsg.). Carl von Ossietzky Universität
Oldenburg. OLNSE Number 4/2013.

Ehmann, S., Hintemann, R. (2004): Leitfaden zum Thema Information Lifecycle Management. In Competence
Site. http://www.competence-site.de/location-intelligence-geomarketing-gis/Leitfaden-zum-Thema-Information-
Lifecycle-Management last access 17.12.2012.

EMC (2013): Deduplication Solutions. http://germany.emc.com/backup-and-recovery/deduplication.html last
access 10.05.2013.

Emmenegger, M. F., Frischknecht, R., Stutz, M. (2006): Life Cycle Assessment of the mobile communication
system UMTS – towards eco-efficient systems, International Journal of Life Cycle Assessment, 11, S.265-276.

Enterprise Management Associates: 2006, EMA study: Get the Truth on Linux Management, Website,
http://www.thalix.com/files/EMA_Levanta-Linux_RR.pdf last access 1.7.2013.

Erek, K., Drenkelfort, G., Pröhl, T. (2013): Energiemonitoring von IKT-Systemen. State-of-the-Art von
Energiemonitoringsystemen. Projektberichte IKM| 2. Universitätsverlag der TU Berlin.

Ernst&Young (2011): Open Source Software im geschäftskritsichen Einsatz.
http://www.ey.com/Publication/vwLUAssets/Open_Source_Software_im_geschaeftskritischen_Einsatz/$FILE/Op
en_Source_Software_DE.pdf . last access 29.6.2013.

Gartner (4. Mai, 2013): Gartner Says Asia/Pacific Led Worldwide Mobile Phone Sales to Growth in First Quarter
of 2013. Pressemitteilung. http://www.gartner.com/newsroom/id/2482816 last access 18.07.2013.

Geer, D. (2008): Reducing the Storage Burden via Data Deduplication. In Computer, Volume 41, Issue 12,
December 2008, S. 15-17.

GHGP (2013a): GHG Protocol Product Life Cycle Accounting and Reporting Standard ICT Sector Guidance, 26.
Januar 2013, http://www.ghgprotocol.org/feature/ghg-protocol-product-life-cycle-accounting-and-reporting-
standard-ict-sector-guidance

GHGP (2013b): GHG Protocol Product Life Cycle Accounting and Reporting Standard ICT Sector Guidance,
Chapter 1, Introduction and General Principles, Draft v1.3, 26. Januar 2013,
http://www.ghgprotocol.org/files/ghgp/GHGP-ICT-Introduction-Chapter-v1-3-26-JAN-2013.pdf

GHGP (2013c): GHG Protocol Product Life Cycle Accounting and Reporting Standard ICT Sector Guidance ,
Chapter 7, Software, Draft v2.9, http://www.ghgprotocol.org/files/ghgp/GHGP-ICT-Software-v2-9-26JAN2013.pdf

Grosskop, K., Visser, J. (2013): Identification of Application-level Energy Optimizations. In Hilty et al. (2013), S.
101-107.

He, Q., Li. Z., Zhang, X. (2010): Data deduplication techniques. In Future Information Technology and
Management Engineering (FITME), 2010 International Conference on (Volume 1). Date of Conference: 9-10 Oct.
2010, S. 430-433.

Heinrich, H., Holl, F.-L.. Menzel, K., Mühlberg, J. T., Schäfer, T., Schüngel, H. (2006): Metastudie: Open-Source-
Software und ihre Bedeutung für Innovatives Handeln. In Holl, F.-L. (Hrsg.) Entwicklungen in den Informations-
und Kommunikationstechnologien. Band 1. http://www.bmbf.de/pubRD/oss_studie.pdf. last access 28.6.2013.

Heise Online (2011b): Nokia forciert ortsbezogene Anwendungen für Windows Phone 7. In Heise Online.
http://heise.de/-1272416 last access 31.05.2013.

Heise Online (2012): Studie: Open-Source-Software qualitativ besser als proprietäre Entwicklungen. In
HeiseOnline.
http://www.heise.de/developer/meldung/Studie-Open-Source-Software-qualitativ-besser-als-proprietaere-
Entwicklungen-1440788.html last access 4.3. 2012.

Green Software

 – 35 –

Heise Open Source (2008): Open Source ist überall. In Heise Online.
 http://heise.de/-217214 last access 29.6.2013.

Heise Open Source (2012a): Immer mehr Linux auf dem Desktop. In HeiseOnline.
http://www.heise.de/open/meldung/Immer-mehr-Linux-auf-dem-Desktop-1404775.html last access 3.3.2012.

Heise Open Source (2012b): Anteil der Freizeit-Kernel-Hacker sinkt. In Heise Online.
http://heise.de/-1500629 last access 29.6.2013.

Hilty, L. M., Aebischer, B., Andersson, G., Lohmann, W. (Hrsg.) (2013): ICT4S – ICT for Sustainability.
Proceedings of the First International Conference on Information and Communication Technologies for
Sustainability, ETH Zurich, February 14-16, 2013. ETH. http://e-collection.library.ethz.ch/eserv/eth:6558/eth-
6558-01.pdf last access 31.05.2013.

Hilty, L. M., Köhler, A., von Schéele, F., Zah, R., Ruddy, T. (2006): Rebound Effects of Progress in Information
Technology. Poiesis & Praxis: International Journal of Technology Assessment and Ethics of Science, 1 (4), S.
19-38.

Hilty, L.M., Lohmann, W. (2011): The Five Most Neglected Issues in "Green IT" In CEPIS UPGRADE 12: 4, S.
12-15.

Hilty, L.M., Oertel, B., Wölk, M., Pärli, K. (2012): Lokalisiert und identifiziert. Wie Ortungstechnologien unser
Leben verändern. TA-Swiss. ISBN 978-3-7281-3460-8.

Hintemann, R., Fichter, K. (2012): Energieverbrauch und Energiekosten von Servern und Rechenzentren in
Deutschland - Aktuelle Trends und Einsparpotenziale bis 2015, Berlin. www.borderstep.de last access
31.05.2013.

Hintemann, R., Fichter, K. (2013): Server und Rechenzentren in Deutschland im Jahr 2012, Berlin 2013.
http://www.borderstep.de/pdf/Kurzbericht_Rechenzentren_in_Deutschland_2012__09_04_2013.pdf last access
14.05.2013.

ITU (2012a): Assessment Framework for Environmental Impacts of the ICT Sector (September 2012),
http://www.itu.int/dms_pub/itu-t/oth/4B/04/T4B0400000B0008PDFE.pdf, last access 12. Mai 2013.

ITU (2012b): Toolkit on environmental sustainability for the ICT sector (September 2012),
http://www.itu.int/dms_pub/itu-t/oth/4B/01/T4B010000060001PDFE.pdf last access 12. Mai 2013.

ITU (2012c): L.1410: Methodology for the assessment of the environmental impact of information and
communication technology goods, networks and services,
http://www.itu.int/rec/T-REC-L.1410-201203-I/en , März 2012, last access 16. Mai 2013.

Kern, E., Dick, M., Johann, T., Naumann, S. (2011): Green Software and Green IT: An End Users Perspective. In
Golinska, P., Fertsch, M., Marx-Gomez J. (Hrsg.). Information Technologies in Environmental Engineering
Environmental Science and Engineering. New Trends and Challenges. Berlin, Heidelberg: Springer, S. 199-211.
http://link.springer.com/book/10.1007/978-3-642-19536-5

Kern, E., Dick, M., Naumann, S., Guldner, A., Johann, T. (2013): Green Software and Green Software
Engineering – Definitions, Measurements, and Quality Aspects. In: Hilty et al. (2013), S. 87-94.

Lanline (2012): Ganzheitliches IT- und Facility-Management optimiert Leistung im RZ. In Lanline (online),
25.10.2012. http://www.lanline.de/fachartikel/ganzheitliches-it-und-facility-management-optimiert-leistung-im-
rz.html last access 18.12.2012.

Masanet, E., Shehabi, A, Ramakrishnan, L., Liang, J., Ma, X., Walker, B., Hendrix, V., Mantha, P. (2013): The
Energy Efficiency Potential of Cloud-Based Software: A U.S. Case Study. Lawrence Berkeley National
Laboratory, Berkeley, California. http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf; last
access 20.8.2013

Meyer, D.T., Bolosky, W.J. (2012): A study of practical deduplication. In Transactions on Storage (TOS), Volume
7 Issue 4. January 2012, Article No. 14. http://delivery.acm.org/10.1145/2080000/2078864/a14-
meyer.pdf?ip=130.60.155.223&acc=ACTIVE%20SERVICE&key=C2716FEBFA981EF1DD5891E815377FF4A1D
6D263689CD484&CFID=219314061&CFTOKEN=74874759&__acm__=1369323403_e879f7afe03eda700773f4f
a34cf0fce last access 31.05.13.

Microsoft (2010): Energy Smart Software.http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Energy-
Smart_SW.mspx last access 20.6.2013.

Green Software

 – 36 –

Müller, K. (2013): Persönliches Gespräch von R. Hintemann mit K. Müller zu Softwarelösungen im
Rechenzentrum am 11.01.2013.

Naumann, S. (2013): Telefonisches Gespräch von L. M. Hilty mit Stefan Naumann, Professor an der Hochschule
Trier, am 13.05.2013.

Naumann, S., Dick, M., Kern, E., Johann, T. (2011): The GREENSOFT Model: A Reference Model for Green and
Sustainable Software and Its Engineering. In Sustainable Computing: Informatics and Systems 1 (2011), S. 294-
304.

Naumann, S., Gresk, S., Schäfer, K. (2008): How green is the web? Visualizing the power quality of websites, in:
A. Möller, B. Page, M. Schreiber (Hrsg.), Environmental Informatics and Industrial Ecology, 22nd International
Conference on Informatics for Environmental Protection, EnviroInfo 2008, Proceedings of the 22nd International
Conference Environmental Informatics – Informatics for Environmental Protection, Sustainable Development and
Risk Management, September 10–12, 2008, Leuphana University Lueneburg, Germany, Shaker, Aachen, 2008,
S. 62–65.

Naumann, S., Kern, E., Dick, M. (2013): Classifying Green Software Engineering - The GREENSOFT Model. In
Bunse, C., Gottschalk, M., Naumann, S., Winter, A. (Hrsg.): Proceedings of the 2nd Workshop Energy Aware
Software-Engineering and Development (EASED@BUIS). OLNSE Number 4/2013, S. 13-14. http://www.se.uni-
oldenburg.de/documents/olnse-4-2013-eased.pdf last access 31.05.2013.

Nebel, W., Hoyer, M., Schröder, K., Schlitt, D. (2009): Untersuchung des Potentials von
rechenzentrenübergreifendem Lastmanagement zur Reduzierung des Energieverbrauchs in der IKT, Studie für
das Bundesministerium für Wirtschaft und Technologie, OFFIS, Dezember 2009.

Paulson, J. W., Succi, G., Eberlein, A. (2004): An Empirical Study of Open-Source and Closed-Source Software
Products, IEEE Transactions on Software Engineering 30(4), S. 246-256.

Pelkmann, T. (2010): Deduplizierung - wie geht das? In Computerwoche online, 29.11.2010.
http://www.computerwoche.de/a/deduplizierung-wie-geht-das,2358569 last access 17.12.2012.

Powertop (n.d.): https://01.org/powertop/ last access 18.07.2013.

Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris. G., Rydberg, T., Schmidt, W.-P., Suh, S.,
Weidema, B.P., Pennington, D.W. (2004): Life cycle assessment Part 1: Framework, goal and scope definition,
inventory analysis,and applications. Environment International. 30(2004), pp. 701-720.

Reder, B. (2012): Data Center Infrastructure Management - Mit DCIM das RZ in den Griff bekommen. In
Computerwoche online, 08.10.2012. http://www.computerwoche.de/a/mit-dcim-das-rz-in-den-griff-
bekommen,2514482 last access 20.12.2012.

Renner, T., Vetter, M., Rex, S., Kett, H. (2005): Open Source Software. Einsatzpotenziale und Wirtschaftlichkeit.
Eine Studie der Fraunhofer-Gesellschaft. Fraunhofer IRB Verlag, Stuttgart und Fraunhofer-Institut für
Arbeitswirtschaft und Organisation IAO, Stuttgart. http://wiki.iao.fraunhofer.de/index.php/Open_Source_Software
last access 28.6.2013.

Rieß, U (2012): Effizienz ohne Deduplizierung? In speicherguide.de, 01.06.2012.
http://www.speicherguide.de/backup-recovery/disk-backup/effizienz-ohne-deduplizierung-15576.aspx last access
17.12.2012.

Roth, K., Patel, S., Perkinson, J. (2013): The Impact of Internet Browsers on Computer Energy Consumption.
Final Report to Microsoft. Fraunhofer Center for Sustainable Energy Systems.

Rüdiger, A. (2011): Storage-Kosten: Zehn Tipps zum Sparen beim Speichern. In Computerwoche online,
26.03.2011. http://www.computerwoche.de/a/zehn-tipps-zum-sparen-beim-speichern,1911740 last access
17.12.2012.

Scharnhorst, W., Hilty, L. M, Jolliet, O. (2006): Life cycle assessment of second generation (2G) and third
generation (3G) mobile phone networks ENVIRONMENT INTERNATIONAL 32: 5. 656-675 JUL

SourceForge (n.d.): http://sourceforge.net/ last access 18.07.2013.

Stephens, A., Didden, M. (2013): The Development of ICT Sector Guidance: Rationale, Development and
Outcomes. In Hilty et al. (2013), pp. 8-11.

Stobbe, L., Nissen, N. F., Proske, M., Middendorf, A., Schlomann, B., Friedewald, M., Georgieff, P., Leimbach, T.
(2009): Abschätzung des Energiebedarfs der weiteren Entwicklung der Informationsgesellschaft
Bearbeitungsnummer I D 4 - 02 08 15 - 43/08, Abschlussbericht an das Bundesministerium für Wirtschaft und

Green Software

 – 37 –

Technologie. Berlin: Fraunhofer IZM, 2009, 164 pp. urn:nbn:de:0011-n-1102312.
http://publica.fraunhofer.de/eprints/urn:nbn:de:0011-n-1102312.pdf last access 31.05.2013.

Thoma, J. (2012a): Ubuntu 12.04 mit aktivierter Energiesparoption. In Golem.de.
http://www.golem.de/news/sandy-bridge-ubuntu-12-04-mit-aktivierter-energiesparoption-1202-89883.html last
access 3.3.2012.

Thoma, J. (2012b): Stromsparen nur mit Handarbeit. In Golem.de.
http://www.golem.de/news/test-asus-zenbook-mit-linux-stromsparen-nur-mit-handarbeit-1202-89934.html last
access 3.3.2012.

Unterseher, D. (2008): Data-Deduplication, Vortrag auf dem BITKOM-Arbeitskreis Speichertechnologien am
27.11.2008. http://www.bitkom.org/files/documents/Unterseher_Data_Deduplication_2008_11_27d.pdf last
access 16.12.2012.

Van Bokhoven, F., Bloem, J. (2013): Pilot result Monitoring Energy usage by Software. In Hilty et al. (2013), pp.
108-115.

Vilsbeck, C. (2012): Virtualisierung, Cloud, Big Data, SSD: Storage-Trends: Speichertechnologien für 2012. In
Tecchannel, 30.01.2012.
http://www.tecchannel.de/storage/management/2038683/storage_trends_speichertechnologien_2012_virtualisier
ung_cloud_big_data_ssd/ last access 31.05.2013.

Wikipedia (2012a): Seite „Open Source“. In: Wikipedia, Die freie Enzyklopädie.
http://de.wikipedia.org/wiki/Open_Source last access 30. März 2012

Wikipedia (2012b): Seite „Freie Software“. In: Wikipedia, Die freie Enzyklopädie.
http://de.wikipedia.org/wiki/Freie_Software last access 30. März 2012

Wikipedia (2013a): Seite „Fahrzyklus“. In: Wikipedia, Die freie Enzyklopädie.
http://de.wikipedia.org/wiki/Fahrzyklus last access 30. Juni 2013

Wikipedia (2013b): Seite "Open Source Software in öffentlichen Einrichtungen". In Wikipedia.
http://de.wikipedia.org/wiki/Open-Source-Software_in_%C3%B6ffentlichen_Einrichtungen last access 29.6.2013.

Wilde, H. (2013): Persönliches Gespräch von R. Hintemann mit H. Wilde zu Deduplizierungslösungen im
Rechenzentrum am 14.01.2013.

Wilke, C. (2012): Energy Labels for Mobile Applications. Fakultät Informatik, Institut für Software- und
Multimediatechnik. http://www.claaswilke.de/publications/workshops/EEbS2012.pdf last access 31.05.2013.

Williams, D. R., Tang, Y. (2013): Impact of Office Productivity Cloud Computing on Energy Consumption and
Greenhouse Gas Emissions. In Environmental Science & Techology 47 (9), pp. 4333-4340.

Zapico, J. L., Turpeinen, M., Brandt, N. (2010): Greenalytics: a tool for mash-up life cycle assessment of websites.
In: Proceedings of the 24th International Conference on Informatics for Environmental Protection (EnviroInfo
2010). Cologne/Bonn, Germany, Shaker, Aachen, 2010, pp. 754-763. ISBN: 978-3-8322-9458-8.

