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Mixture of the Riesz distribution with

respect to a multivariate Poisson

Abdelhamid Hassairi∗ and Mahdi Louati†

Laboratory of Probability and Statistics. Sfax Faculty of Sciences, B.P. 1171, Tunisia.

Abstract The aim of this paper is to study a statistical model obtained by the mixture
of the Riesz probability distribution on symmetric matrices with respect to a multivariate
Poisson distribution. We show that this distribution is related to the modified Bessel
function of the first kind. We then determine the domain of the means and the variance
function of the generated natural exponential family.

Keywords: Bessel function, natural exponential family, variance function, Poisson distri-
bution, Riesz distribution.

1 Introduction

The mixture of distributions has provided a mathematical-based approach to the sta-
tistical modeling of a wide variety of random phenomena. It is an extremely flexible
method of modeling with a wide range of applicability in nearly all areas. Indeed, the
extent of the application of the mixture of distributions includes psychology (Bromet et
al. (1985)), biology (Stigler, (1986)), genetics (Liang and Rathouz (1999)), ecology (Davis
et al. (2004)) and medicine (Foll et al. (2005) or Liu et al. (2007)). It also includes many
fields in engineering (Harris and Singpurwalla (1968)), and in social sciences (Formann
and Kohlmann (1996)). This has drawn considerable interest to the statistical inference
for mixture distributions and has involved interesting estimation problems. In this con-
text, Hill, Laud and Saunders (1980) have worked on maximum likelihood estimation of
the mixing probabilities and Laird (1978) has obtained some general results about the
existence of maximum likelihood estimates of arbitrary mixing measures. The progress of
using the mixture of distributions has been particulary evident in the Bayesian approach,
where it began with the Gibbs sampling algorithm of Diebolt and Robert (1994) for esti-
mating the parameters of a mixture with a fixed number of components. We also mention
that the approach based on mixing distributions provides a smooth estimate of the sur-
vival distribution function which may be preferable to the standard nonparametric step
function estimates. In the simplest case the mixture consists in considering weighted linear
combination of some underlying basis distributions. The mixing parameter may also be
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denumerably infinite, as in the theory of sums of a random number of random variables,
or continuous, as in the compound Poisson distribution. In these examples and in almost
all the works, the mixing parameter is the convolution power which is either an integer or
a positive real number, and consequently the mixing distribution is concentrated on IR.
In the present work, we deal with a very special case in which the model is defined on the
cone Ω of (r, r) positive definite symmetric matrices and the mixing parameter belongs to
a subset of IRr. More precisely, the model is in the absolutely continuous Riesz model

{
R(s, σ), s ∈

r∏

i=1

]
i− 1

2
, +∞

[}
,

introduced in Hassairi and Lajmi (2001). Here the scale parameter σ is in Ω, and the shape
parameter s = (s1, s2, . . . , sr) may be viewed as a multivariate parameter of convolution,
since we have the property

R(s, σ) ∗R(s′, σ) = R(s + s′, σ),

which is analogous to the one satisfied by the ordinary powers of convolution. The parame-
ter s will be used as a mixing parameter, and the mixing distribution will be a multivariate
Poisson distribution on INr. We mention that the Riesz model contains the Wishart distri-
butions since R(s, σ) reduces to a Wishart distribution when s1 = s2 = . . . = sr = p, and
in this case, p is nothing but the ordinary convolution parameter. It is well known that
the Wishart distribution plays a prominent role in the estimation of covariance matrices
in multivariate statistics, it is also of particular importance in Bayesian inference, as it
is the conjugate prior of the inverse of the covariance matrix of a multivariate normal
distribution. We haven’t yet a statistical interpretation of the Riesz model, in its general
form, nevertheless several interesting results concerning this distribution and some other
related distribution (see Hassairi et al. (2005), Hassairi et al. (2007), Ben Farah and
Hassairi (2007) or Hassairi et al. (2009)). The definition of a Riesz distribution has also
been extended to homogeneous cones in connection with graphical models (see Boutouria
(2009) or Andersson and Klein (2010)). Accordingly, there is a need for more thorough
investigation of theoretical and applied aspects of the Riesz distribution which may lead
to some statistical applications. The paper’s main result is within this framework, it ex-
tends the approach based on the mixture of distributions to the Riesz dispersion model
on symmetric matrices. This mixture has a theoretical interest due to the nature of the
model and of the mixing parameter. It has also a particular importance due to the role of
symmetric positive definite matrices in the multivariate statistical analysis. In particular,
it provides a rich class of matrix-variate natural exponential families, and consequently, a
more flexible method of modeling on symmetric matrices. It also poses open estimation
problems more general than the ones related to the Wishart distribution. The paper is
organized as follows: In Section 2, we recall some definitions and give some preliminary
results relevant to the mixture of distributions. In Section 3, we introduce the Riesz ex-
ponential dispersion models on symmetric matrices. In Section 4, we state and prove our
main results concerning the mixture of the Riesz distribution with respect to a multivari-
ate Poisson. We show that the mixture distribution is expressed in terms of the modified
Bessel function. We then determine the domain of the means of the generated natural
exponential family, and we calculate its variance function.
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2 The notion of mixture

Let µλ be a probability distribution on a finite dimensional linear space E depending on
a parameter λ which belongs to a subset Λ of IRr. Suppose that

µλ = f(x, λ)σ(dx),

where σ is some reference measure, and that for each x in E, the map λ 7→ f(x, λ) defined
on Λ is measurable. For a probability distribution ν(dλ) on the set Λ, define

h(x) =
∫

Λ
f(x, λ)ν(dλ).

Then the probability measure
µν(dx) = h(x)σ(dx)

is called the mixture of the distribution µλ with respect to ν. (See Feller (1971), Vol. II,
page 53 or Johnson et al. (2005), page 360). Usually, ν is called the mixing distribution
(see Karlis and Meligkotsidou (2007)).

A special case of interest is when µλ is the λ−power of convolution of a measure µ which
is not concentrated on an affine hyperplane of E, and Λ is the so called Jørgensen set of
µ. Specifically, let

Lµ(θ) =
∫

E
exp(〈θ, x〉)µ(dx) (2.1)

denote the Laplace transform of µ in θ ∈ E∗, where 〈, 〉 is the duality bracket, and suppose
that the set

Θ(µ) = interior{θ ∈ E∗; Lµ(θ) < +∞} (2.2)

is nonempty. Then the set

Λ = {λ > 0; ∃ µλ such that Lµ
λ
(θ) = (Lµ(θ))λ , for all θ ∈ Θ(µ)} (2.3)

is called the Jørgensen set of µ and the measure µλ is its λ−power of convolution. Of
course, for λ and λ′ in Λ, we have that µλ ∗ µλ′ = µλ+λ′ . The set Λ is equal to ]0, +∞[
if and only if µ is infinitely divisible (see Seshadri (1994), page 155). It contains always
the set IN∗ of positive integers, so that for any distribution µ and any positive integer N ,
one may consider the distribution µN as defined in (2.3). When µ is discrete, i.e., with
countable support, the mixture of µ with respect to a distribution ν on the parameter
N is known as a compound distribution. The most famous compound distribution is the
one corresponding to the case where ν is Poisson (see Feller (1971), Vol. I, page 286 or
Vol. II, page 451 or Aalen (1992) or Jørgensen (1997), page 140). In fact, the real Poisson
distributions appear in numerous works either as elements of the model (see Johnson et
al. (2005), page 366) or as mixing distributions (see Perline (1988)).

3 The Riesz exponential dispersion model

In this section, we recall some general facts concerning the exponential dispersion models
in an Euclidean space, and we introduce the Riesz model on symmetric matrices.
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3.1 Exponential dispersion model

Let E be an Euclidean space with finite dimension n, and let 〈, 〉 denote the scalar product
in E. If µ is a positive measure on E, we denote by M(E) the set of measures µ such
that Θ(µ) defined by (2.2) is not empty and µ is not concentrated on an affine hyperplane.
The cumulant function of an element µ of M(E) is the function defined for θ in Θ(µ) by

kµ(θ) = log Lµ(θ),

where Lµ is the Laplace transform of µ defined in (2.1).

To each µ in M(E) and θ in Θ(µ), we associate the probability distribution on E

P (θ, µ)(dx) = exp (〈θ, x〉 − kµ(θ))µ(dx).

The set

F = F (µ) = {P (θ, µ); θ ∈ Θ(µ)}
is called the natural exponential family (NEF) generated by µ. The first derivative k′µ
of kµ defines a diffeomorphism between Θ(µ) and its image MF called the domain of
the means of F . The inverse function of k′µ is denoted by ψµ and setting P (m, F ) =
P (ψµ(m), µ) the element of F with mean m, we have F = {P (m,F ); m ∈ MF } , which is
the parametrization of F by the mean.

Now the covariance operator of P (m,F ) is denoted by VF (m) and the map

MF −→ Ls(E); m 7−→ VF (m) = k′′µ(ψµ(m)) = (ψ′µ(m))−1

is called the variance function of F . An important feature of VF is that it characterizes F
in the following sense: If F and F ′ are two NEFs such that VF (m) and VF ′(m) coincide
on a nonempty open subset of MF ∩MF ′ , then F = F ′.
If µ is an element of M(E) and Λ is its Jørgensen set defined by (2.3). Then the set

{P (θ, λ) = exp (〈θ, x〉 − kµλ
(θ))µ; θ ∈ θ(µ), λ ∈ Λ}

is called the dispersion model generated by µ. For more details, we refer to Letac (1992).

3.2 Riesz natural exponential families

Let E be the Euclidean space of (r, r) real symmetric matrices equipped with the scalar

product 〈x, y〉 = tr(xy), and the inner product x.y =
1
2

(
xy+yx

)
, where xy is the ordinary

product of two matrices. We denote by e1, e2, . . . , er the canonical basis of IRr; ei =
(0, . . . , 0, 1, 0 . . . 0), (1 in the ith place), and we set ci = diag(ei) for all 1 ≤ i ≤ r.

For x ∈ E, we consider the endomorphism of E defined by L(x) : y 7−→ x.y, and we set

P (x) = 2(L(x))
2 − L(x

2
). (3.4)

For x = (xij)1≤i,j≤r in E and 1 ≤ k ≤ r, we define the sub-matrices

Pk(x) = (xij)1≤i,j≤k and P ∗
k (x) = (xij)r−k+1≤i,j≤r.

For convenience we may view the matrices Pk(x) and P ∗
k (x) as elements of the space E,

by suitably augmenting them with rows and columns of zeros. We set P ∗
0 (x) = 0.

4
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Let ∆k(x) and ∆∗

k(x) denote the determinant of the (k, k) matrix Pk(x) and the determi-
nant of the (k, k) matrix P ∗

k (x), respectively. Then the generalized power of x in the cone
Ω of positive definite elements of E is defined, for s = (s1, s2, . . . , sr) ∈ IRr, by

∆s(x) = ∆1(x)s1−s2∆2(x)s2−s3 . . .∆r−1(x)sr−1−sr∆r(x)sr . (3.5)

Note that if for all i ∈ {1, . . . , r}, si = p ∈ IR, then ∆s(x) = (detx)p. We also define

∆∗
s(x) = (∆∗

1(x))s1−s2(∆∗
2(x))s2−s3 . . . (∆∗

r−1(x))sr−1−sr(∆∗
r(x))sr . (3.6)

It is shown (see Hassairi and Lajmi (2001)) that for all x ∈ Ω and all s ∈ IRr, we have

∆s(x−1) = ∆∗
−s∗(x), (3.7)

where s∗ = (sr, sr−1, . . . , s1).

We denote by T +
l the set of lower triangular matrices with positive diagonal elements. For

u ∈ T +
l , we denote by u∗ the transpose matrix of u, and we define on E the automorphism

u(y) = uyu∗, (3.8)

It is well known that for all x ∈ Ω, there exists a unique u ∈ T +
l such that x = u(Ir),

where Ir is the identity matrix of order r, this is the Cholesky decomposition of x.
We also have (see Hassairi and Lajmi (2001)) that for all 1 ≤ i ≤ r,

(
P ∗

i

(
(u(Ir))−1

))−1
= u




r∑

k=r−i+1

ck


 , (3.9)

and for all s = (s1, s2, . . . , sr) ∈ IRr,

∆s(u(Ir)) = ∆∗
−s∗(u

∗−1(Ir)). (3.10)

Recall that for x ∈ Ω and u ∈ T +
l , we have (See Faraut and Korányi (1994), page 114),

∆i(u(x)) = ∆i(u(Ir))∆i(x) = u2
1 . . . u2

i ∆i(x), (3.11)

where for all i ∈ {1, . . . , r},
ui = 〈u, ci〉. (3.12)

Consider for s = (s1, s2, . . . , sr) ∈
r∏

i=1

]
i− 1

2
, +∞

[
, the absolutely continuous Riesz mea-

sure

Rs(dx) =
∆s−n

r
(x)

ΓΩ(s)
1Ω(x)(dx),

where n =
r(r + 1)

2
is the dimension of E and

ΓΩ(s) = (2π)
r(r−1)

4

r∏

i=1

Γ
(

si − i− 1
2

)
. (3.13)

5
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Then a result due to Gindikin (1964) says that for all θ ∈ −Ω,

LRs(θ) =
∫

E
e〈θ,x〉Rs(dx) = ∆s(−θ−1).

The natural exponential family measure generated by Rs is

F = F (Rs) =

{
R(s, σ)(dx) =

e−<σ,x>∆s−n
r
(x)

ΓΩ(s)∆s(σ−1)
1Ω(x)(dx), σ ∈ Ω

}
.

The distribution R(s, σ) is called the Riesz distribution with parameters s and σ, its
Laplace transform is given for θ in σ − Ω by

LR(s,σ)(θ) =
∆s((σ − θ)−1)

∆s(σ−1)
. (3.14)

This implies that if σ is an element of Ω and if s and s′ are in
r∏

i=1

]
i− 1

2
,+∞

[
, then

R(s, σ) ∗R(s′, σ) = R(s + s′, σ).

When s1 = s2 = . . . = sr = p >
r − 1

2
, R(s, σ) reduces to the Wishart distribution

W (p, σ)(dx) =
1

ΓΩ(p) det(σ−p)
e−<σ,x> det(x)p−n

r 1Ω(x)(dx), (3.15)

with Laplace transform LW (p,σ)(θ) = det
(
Ir − σ−1θ

)−p. The domain of the means of the
Riesz family F = F (Rs) is Ω, its variance function is

VF (m) =
r∑

i=1

(sr−i+1−sr−i)P

(
1

sr−i+1

(
P ∗

i (m−1)
)−1

+
i−1∑

k=1

(
1

sr−k+1
− 1

sr−k

) (
P ∗

k (m−1)
)−1

)
,

(3.16)
(see Hassairi and Lajmi (2001)).
Note that the Riesz exponential NEF belongs to the Tweedie scale on symmetric matrices
(see Hassairi and Louati (2009)), and that VF is a rational fraction which reduces to a
polynomial in the case where s1 = . . . = sr = p, that is, in the case of a Wishart family.
In this case (3.16) becomes

VF (m) =
P (m)

p
for all m ∈ Ω.

4 The mixture of the Riesz distribution with re-

spect to a multivariate Poisson

In this section, we state and prove our main results concerning the mixture of the Riesz
distribution on symmetric matrices with respect to a multivariate Poisson. For simplicity,
we will be interested in the case where σ = Ir, the identity matrix of size r.
Consider the Poisson distribution on INr with parameter λ = (λ1, λ2, . . . , λr) ∈]0,∞[r

ν(dx) = e−
∑r

i=1
λi

∑

q∈INr

λq

q!
δq(dx), (4.17)

6
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where q! = q1! q2! . . . qr! and λq = λ

q1

1 λ
q2

2 . . . λ
qr

r . Then for all θ ∈ IRr,

Lν(θ) =
r∏

i=1

eλi(e
θi−1). (4.18)

Now let ρ =
(
0, 1

2 , . . . , r−1
2

)
, and for k = (k1, k2, . . . , kr) in INr, define

R̃k = R(k + ρ, Ir). (4.19)

Suppose that k = (k1, k2, . . . , kr) has the multivariate Poisson distribution ν defined in
(4.17). Denote by µ the mixture of R̃k with respect to ν. The following theorem gives the
expression of µ in terms of the modified Bessel function of the first kind.

Theorem 4.1

µ(dx) =
e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1

√
λi e−λi

√
∆i−1(x)

I

(
1, 2

√
λi∆ei(x)

)
1Ω(x)(dx),

where I(1, t) is the modified Bessel function of the first kind and of order 1 and ∆0(x) = 1.

Proof. Let a = (a1, a2, . . . , ar) be an element of ]0,+∞[
r

and let

R̃k,a = R(k + ρ + a, Ir).

Denote by µa the mixture of R̃k,a with respect to ν. Then

µa(dx) = ha(x)1Ω(x)(dx),

where

ha(x) = e−
∑r

i=1
λi

∑

q∈ INr

λq e−tr(x)∆q+ρ+a−n
r
(x)

q! ΓΩ(q + ρ + a)
. (4.20)

Using (3.5), we can write

∆q+ρ+a−n
r
(x) = ∆1(x)q1−q2+a1−a2− 1

2 . . . ∆r−1(x)qr−1−qr+ar−1−ar− 1
2 ∆r(x)qr+ar−1.

=
(

∆1(x)
∆0(x)

)q1+a1 (
∆2(x)
∆1(x)

)q2+a2

. . .

(
∆r(x)

∆r−1(x)

)qr+ar (∆1(x) . . .∆r−1(x))−
1
2

∆r(x)
.

It follows that

∆q+ρ+a−n
r
(x) =

r∏

i=1

∆i(x)−
1
2

(
∆i(x)

∆i−1(x)

)qi+ai

√
det(x)

. (4.21)

On the other hand, using (3.13) we can write

ΓΩ(q + ρ + a) = (2π)
r(r−1)

4

r∏

i=1

Γ (qi + ai) . (4.22)

Inserting (4.22) and (4.21) in (4.20), we obtain

ha(x) =
e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1


∆i(x)−

1
2 e−λi

∑

qi∈IN

λqi
i

qi! Γ(qi + ai)

(
∆i(x)

∆i−1(x)

)qi+ai


 .
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=

e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1


∆i(x)−

1
2 e−λi

∑

qi∈IN

λqi
i

qi! Γ(qi + ai)
∆ei(x)

qi+ai


 .

=
e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1


∆i(x)−

1
2 e−λi∆ei(x)

ai
∑

qi∈IN

(λi∆ei(x))
qi

qi! Γ(qi + ai)


 .

Therefore if for t > 0 and b > 0, we define

gb(t) =
∑

k∈IN

tk

k! Γ(k + b)
,

then we obtain

ha(x) =
e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1

(
e−λi

√
∆i(x)

∆ei(x)
ai gai (λi∆ei(x))

)
,

We now use the fact that for t > 0 and b > 0,, we have
∑

k∈IN

tk

k! Γ(k + b)
= t

1−b
2 I(b−1, 2

√
t),

(see Abramowitz and Stegum (1974), page 375) to get

ha(x) =
e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1


λ

1−ai
2

i e−λi

√
∆i(x)

∆ei(x)
1+ai

2 I

(
ai − 1, 2

√
λi∆ei(x)

)
 .

As µ(dx) = lim
a−→0

µa(dx) =
(

lim
a−→0

ha(x)
)

1Ω(x)(dx), we deduce that

µ(dx) =
e−tr(x)

(2π)
r(r−1)

4

√
det(x)

r∏

i=1

( √
λi e−λi

√
∆i−1(x)

I

(
−1, 2

√
λi∆ei(x)

))
1Ω(x)(dx).

To finish the proof of Theorem 4.1, we mention that for all t > 0, we have I(1, t) = I(−1, t),
(see Lebedev (1972), page 110). 2

Next, we give the Laplace transform of µ. We denote κr =
r−1∑

j=1

j

2
ej , with κ1 = 0.

Theorem 4.2 For all θ ∈ Ir − Ω, we have

Lµ(θ) = ∆∗
κr

(Ir − θ) exp

(
r∑

i=1

λi

(
∆∗
−er−i+1

(Ir − θ)− 1
))

.

Proof. Let Xk be a random variable with distribution R̃k, where R̃k given by (4.19).
Suppose that k follows the Poisson distribution defined in (4.17). Then, according to
(3.14), the Laplace transform of the mixture µ of R̃k by ν is given for θ ∈ Ir − Ω, by

Lµ(θ) = E
(
e〈θ,Xk〉

)
= E

(
E

(
e〈θ,Xk〉 | k

))
= E

(
∆k+ρ((Ir − θ)−1)

)
.

Using (3.6) and (3.7), we can write

Lµ(θ) = E
(
∆∗
−(k+ρ)∗(Ir − θ)

)
.
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= E

(
(∆∗

1(Ir − θ))kr−1−kr− 1
2 . . .

(
∆∗

r−1(Ir − θ)
)k1−k2− 1

2 (∆∗
r(Ir − θ))−k1

)
.

=
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E




r∏

i=1

(
∆∗

i−1(Ir − θ)
∆∗

i (Ir − θ)

)kr−i+1

 .

=
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E

(
r∏

i=1

(
∆∗
−ei

(Ir − θ)
)kr−i+1

)
.

It follows that

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E

(
r∏

i=1

e
kr−i+1 log(∆∗−ei

(Ir−θ))

)
for all θ ∈ Ir − Ω.

Setting α(θ) =
(
log(∆∗−er

(Ir − θ)), log(∆∗−er−1
(Ir − θ)), . . . , log(∆∗−e1

(Ir − θ))
)
, we get

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

E
(
e〈α(θ),k〉

)
=

r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

Lν (α(θ)) .

According to (4.18), we obtain for all θ ∈ Ir − Ω,

Lµ(θ) =
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2 r∏

i=1

e
λi

((
∆∗−er−i+1

(Ir−θ)

)
−1

)
. (4.23)

Using (3.6), we have that
r−1∏

i=1

(
1

∆∗
i (Ir − θ)

) 1
2

= ∆∗
κr

(Ir − θ). Inserting this in (4.23), we

get the result. 2

The following theorem gives the domain of the means and the variance function of the
NEF generated by the mixture µ.

Theorem 4.3
i) The domain of the means of the NEF F = F (µ) is Ω.
ii) The variance function of F evaluated for m ∈ Ω is equal to

VF (m) = −1
2
P

(
r∑

i=1

1
bi(m)

((
P ∗

r−i+1(m
−1)

)−1 −
(
P ∗

r−i(m
−1)

)−1
))

+
r∑

i=1

(br−i+1(m)− br−i(m))


P




i∑

j=1

1
br−j+1(m)

((
P ∗

j (m−1)
)−1 −

(
P ∗

j−1(m
−1)

)−1
)





+
r∑

i=1

(
1

br−i+1(m)
− r − i

2(br−i+1(m))2

) [((
P ∗

i (m−1)
)−1 −

(
P ∗

i−1(m
−1)

)−1
)

⊗
((

P ∗
i (m−1)

)−1 −
(
P ∗

i−1(m
−1)

)−1
)]

, (4.24)

where b0(m) = −1
2

and for all i ∈ {1, . . . , r},

bi(m) =
i− 1

4
+

√(
i− 1

4

)2

+ λi∆ei(m). (4.25)
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Before embarking in the proof of the theorem, we mention that usually for the calculation
of the variance function, we set m = k′µ(θ) and we determine its reciprocal θ = ψµ(m).
This is difficult to do in the present situation, however, we will next show that without
getting the explicit expression of ψµ(m), we are able to express (P ∗

i (Ir − ψµ(m)))−1 and
∆∗−ei

(Ir − ψµ(m)) in terms of bi(m) defined in (4.25). This is crucial for the calculation
of the variance function.

Proposition 4.4 For all i ∈ {1, . . . , r},

i) (P ∗
i (Ir − ψµ(m)))−1 =

r∑

j=r−i+1

1
bj(m)

[(
P ∗

r−j+1(m
−1)

)−1 −
(
P ∗

r−j(m
−1)

)−1
]
.

ii) ∆∗
−ei

(Ir − ψµ(m)) =
br−i+1(m)

λr−i+1
− r − i

2λr−i+1
. (4.26)

Proof. We have that that for all θ ∈ Θ(µ) = Ir − Ω,

kµ(θ) =
r∑

i=1

λi

((
∆∗
−er−i+1

(Ir − θ)
)
− 1

)
+ log(∆∗

κr
(Ir − θ)). (4.27)

As for all i ∈ {1, . . . , r}, the map ϕi : x 7−→ log ∆∗
i (x) is differentiable on the cone Ω and

ϕ′i(x) = (P ∗
i (x))−1, then

(
∆∗
−ei

(x)
)′

=

(
∆∗

i−1(x)
∆∗

i (x)

)′
= ∆∗

−ei
(x)

(
(P ∗

i−1(x))−1 − (P ∗
i (x))−1

)
, (4.28)

and for r ≥ 2, we have
(
log(∆∗

κr
(x))

)′ = −1
2

r−1∑

i=1

(P ∗
i (x))−1 (4.29)

Differentiating (4.27) and taking into account (4.28) and (4.29), we get

k′µ(θ) =
r∑

i=1

(
λr−i+1∆∗

−ei
(Ir − θ)− λr−i∆∗

−ei+1
(Ir − θ) +

1
2

)
(P ∗

i (Ir − θ))−1−1
2

(P ∗
r (Ir − θ))−1 ,

(4.30)
where λ0 = 0.

Let θ ∈ Ir −Ω, and let u be the unique element of T +
l such that Ir − θ = u∗−1(Ir). Then,

for all i ∈ {1, . . . , r}, we have

(P ∗
i (Ir − θ))−1 =

(
P ∗

i (u∗−1(Ir))
)−1

=
(
P ∗

i

(
(u(Ir))−1

))−1
.

This according to (3.9) implies that, for all i ∈ {1, . . . , r},

(P ∗
i (Ir − θ))−1 = u




r∑

j=r−i+1

cj


 . (4.31)

On the other hand, using (3.10), we can write for all i ∈ {1, . . . , r},

∆∗
−ei

(Ir − θ) = ∆∗
−ei

(
u∗−1(Ir)

)
= ∆e∗i (u(Ir)) = ∆er−i+1(u(Ir)) =

∆r−i+1(u(Ir))
∆r−i(u(Ir))

.
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This with (3.11) imply that for all i ∈ {1, . . . , r},

∆∗
−ei

= u2
r−i+1, (4.32)

where the ui are defined in (3.12).
Using (4.31) and (4.32), we deduce from (4.30) that

k′µ(θ) =
r∑

i=1

(
λr−i+1u

2
r−i+1 − λr−iu

2
r−i +

1
2

)
u




r∑

j=r−i+1

cj


− 1

2
u

(
r∑

i=1

ci

)
.

This after a standard calculation, gives

k′µ(θ) =
r∑

i=1

(
λiu

2
i +

i− 1
2

)
u(ci) = u

(
r∑

i=1

ai(θ)ci

)
, (4.33)

where for all i ∈ {1, . . . , r},
ai(θ) =

i− 1
2

+ λiu
2
i > 0. (4.34)

Let now m = k′µ(θ) be an element of Ω, then using the Cholesky decomposition, there
exists a unique v ∈ T +

l such that m = v(Ir). According to (4.33), we have

v(Ir) = m = k′µ(θ) = u

(
r∑

i=1

ai(ψµ(m))ci

)
= u

(
P

(
r∑

i=1

√
ai(ψµ(m)) ci

) (
r∑

i=1

ci

))
.

Therefore

v(Ir) = u

(
P

(
r∑

i=1

√
ai(ψµ(m)) ci

)
(Ir)

)
.

It follows that

u = v
r∑

i=1

1√
ai(ψµ(m))

ci. (4.35)

Using (4.34), (3.11) and (4.35), we deduce that

ai(ψµ(m)) =
i− 1

2
+ λi∆ei





v

r∑

j=1

1√
aj(ψµ(m))

cj







r∑

j=1

1√
aj(ψµ(m))

cj v∗




 .

=
i− 1

2
+ λi∆ei


v

r∑

j=1

1
aj(ψµ(m))

cj v∗

 . (4.36)

Inserting (3.8) in (4.36), we obtain that for all i ∈ {1, . . . , r},

ai(ψµ(m)) =
i− 1

2
+ λi∆ei


v




r∑

j=1

1
aj(ψµ(m))

cj





 .

Hence ai(ψµ(m)) satisfies the equation

ai(ψµ(m)) =
i− 1

2
+

λiv
2
i

ai(ψµ(m))
,
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where vi is defined in (3.12).

As ai(ψµ(m)) > 0, then for all i ∈ {1, . . . , r},

ai(ψµ(m)) =
i− 1

4
+

√(
i− 1

4

)2

+ λiv2
i .

On the other hand, since m = v(Ir), then using (3.11), we have that v2
i = ∆ei(m).

Setting
bi(m) = ai(ψµ(m)), (4.37)

we deduce that for all i ∈ {1, . . . , r},

bi(m) =
i− 1

4
+

√(
i− 1

4

)2

+ λi∆ei(m).

i) With the notations used above, we can write for all i ∈ {1, . . . , r},

(P ∗
i (Ir − ψµ(m)))−1 =

(
P ∗

i (u∗−1(Ir))
)−1 = u




r∑

j=r−i+1

cj


 .

=

(
v

r∑

i=1

1√
bi(m)

ci

) 


r∑

j=r−i+1

cj




(
r∑

i=1

1√
bi(m)

ci v∗
)

.

= v
r∑

j=r−i+1

1
bj(m)

cj v∗ = v




r∑

j=r−i+1

1
bj(m)

cj


 .

It follows that for all i ∈ {1, . . . , r},

(P ∗
i (Ir − ψµ(m)))−1 =

r∑

j=r−i+1

1
bj(m)

v(cj). (4.38)

As m = v(Ir), then according to (3.9) we have for all j ∈ {1, . . . , r},

v(cj) = v




r∑

i=j

ci −
r∑

i=j+1

ci


 =

(
P ∗

r−j+1(m
−1)

)−1 −
(
P ∗

r−j(m
−1)

)−1
.

Inserting this in (4.38), we deduce that

(P ∗
i (Ir − ψµ(m)))−1 =

r∑

j=r−i+1

1
bj(m)

[(
P ∗

r−j+1(m
−1)

)−1 −
(
P ∗

r−j(m
−1)

)−1
]
. (4.39)

Consequently

(P ∗
i (Ir − ψµ(m)))−1−(

P ∗
i−1(Ir − ψµ(m))

)−1 =
1

br−i+1(m)

((
P ∗

i (m−1)
)−1 −

(
P ∗

i−1(m
−1)

)−1
)

.

(4.40)
ii) According to (3.6) we have that

∆∗
i (Ir − ψµ(m)) = ∆∗

i (u
∗−1(Ir)) = ∆∗

ϑi
(u∗−1(Ir)),
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where ϑi =

i∑

j=1

ej . Using (3.10), (4.35) and (4.37), we deduce that

∆∗
i (Ir − ψµ(m)) = ∆−ϑ∗i (u(Ir)) = ∆−ϑ∗i (uu∗).

= ∆−ϑ∗i





v

r∑

j=1

1√
bj(m)

cj







r∑

j=1

1√
bj(m)

cj v∗




 .

= ∆−ϑ∗i


v

r∑

j=1

1
bj(m)

cj v∗

 = ∆−ϑ∗i


v




r∑

j=1

1
bj(m)

cj





 .

Thus, using (3.5), we obtain

∆∗
i (Ir − ψµ(m)) =

∆r−i


v




r∑

j=1

1
bj(m)

cj







∆r


v




r∑

j=1

1
bj(m)

cj







.

It follows that for all i ∈ {1, . . . , r},

∆∗
−ei

(Ir − ψµ(m)) =
∆∗

i−1(Ir − ψµ(m))
∆∗

i (Ir − ψµ(m))
=

∆r−i+1


v




r∑

j=1

1
bj(m)

cj







∆r−i


v




r∑

j=1

1
bj(m)

cj







.

Using (3.11), we deduce that ∆∗−ei
(Ir − ψµ(m)) =

v2
r−i+1

br−i+1(m)
.

As v2
r−i+1 =

∆r−i+1(v(Ir))
∆r−i(v(Ir))

=
∆r−i+1(m)
∆r−i(m)

, we get ∆∗−ei
(Ir−ψµ(m)) =

∆r−i+1(m)
br−i+1(m)∆r−i(m)

.

This with (3.5) imply that

∆∗
−ei

(Ir − ψµ(m)) =
∆er−i+1(m)

br−i+1(m)
. (4.41)

According to (4.25), we have for all i ∈ {1, . . . , r}, ∆ei(m) =
(bi(m))2 − i−1

2 bi(m)
λi

.

Inserting this in (4.41), we obtain

∆∗−ei
(Ir − ψµ(m)) =

(br−i+1(m))2 − r−i
2 br−i+1(m)

λr−i+1br−i+1(m)
=

br−i+1(m)
λr−i+1

− r − i

2λr−i+1
. 2

We come now to the proof of Theorem 4.3.

Proof of Theorem 4.3

i) As the ai defined in (4.34) are strictly positive, then using (4.33) we deduce that

MF = k′µ(Θ(µ)) = k′µ(Ir − Ω) ⊆ Ω. (4.42)
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Conversely, consider y ∈ Ω, then using the Cholesky decomposition, there exists a unique
w ∈ T +

l such that

y = w(Ir) = w

(
r∑

i=1

ci

)
= w

(
P

(
r∑

i=1

1√
ai(θ)

ci

) (
r∑

i=1

ai(θ)ci

))
,

where the ai(θ) are given by (4.34).

Let θ = Ir − u∗−1 (Ir), where u = w
r∑

i=1

1√
ai(θ)

ci. Then y = u

(
r∑

i=1

ai(θ)ci

)
.

This, using (4.33), gives y = k′µ(θ) ∈ k′µ(Ir − Ω) = k′µ(Θ(µ)). Hence Ω ⊆ k′µ(Θ(µ)), and
according to (4.42), we obtain MF = k′µ(Θ(µ)) = Ω.

ii) Differentiating (4.30) and using (4.28) and the fact that for all i ∈ {1, . . . , r} and x ∈ Ω,(
(P ∗

i (x))−1
)′

= −P
(
(P ∗

i (x))−1
)

,

where P is defined in (3.4), we get for all θ ∈ Ir − Ω,

k′′µ(θ) = −1
2
P

(
(P ∗

r (Ir − θ))−1
)

+
r∑

i=1

(
λr−i+1∆∗

−ei
(Ir − θ)− λr−i∆∗

−ei+1
(Ir − θ) +

1
2

) (
P

(
(P ∗

i (Ir − θ))−1
))

+
r∑

i=1

λr−i+1∆∗
−ei

(Ir − θ)
(
(P ∗

i (Ir − θ))−1 − (
P ∗

i−1(Ir − θ)
)−1

)
⊗ (P ∗

i (Ir − θ))−1

−
r∑

i=1

λr−i∆∗
−ei+1

(Ir − θ)
((

P ∗
i+1(Ir − θ)

)−1 − (P ∗
i (Ir − θ))−1

)
⊗ (P ∗

i (Ir − θ))−1 .

It follows that for all θ ∈ Ir − Ω,

k′′µ(θ) = −1
2
P

(
(P ∗

r (Ir − θ))−1
)

+
r∑

i=1

(
λr−i+1∆∗

−ei
(Ir − θ)− λr−i∆∗

−ei+1
(Ir − θ) +

1
2

) (
P

(
(P ∗

i (Ir − θ))−1
))

+
r∑

i=1

λr−i+1∆∗
−ei

(Ir − θ)

×
[(

(P ∗
i (Ir − θ))−1 − (

P ∗
i−1(Ir − θ)

)−1
)
⊗

(
(P ∗

i (Ir − θ))−1 − (
P ∗

i−1(Ir − θ)
)−1

)]
.

We need only to replace θ by ψµ(m), then insert (4.26), (4.39) and (4.40) to get the
expression of the variance function of F = F (µ) given in (4.24). 2

To close the paper, we mention that particular statements of these theorems may be
given for the case where the parameter s = (s1, s2, . . . , sr) in the Riesz distribution is such
that s1 = . . . = sr = p which corresponds to the Wishart distribution. In this case, the
distributions in the model are the W (p + r−1

2 , Ir) (see (3.15)), and the mixing parameter

p has the Poisson distribution ν(dx) =
∑

q∈IN

λqe−λ

q!
δq(dx).

The mixture of W (p + r−1
2 , Ir) with respect to ν is then

µ(dx) =
e−λ − tr(x)

(2π)
r(r−1)

4 det(x)

r∏

i=1

(λdet(x))
1− r−i

2
2 I

(
r − i

2
− 1, 2

√
λdet(x)

)
1Ω(x)(dx),
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where I(b, t) is the modified Bessel function of the first kind of order b.
The cumulant function of the µ is given for θ ∈ Ir − Ω, by

kµ(θ) =
1− r

2
log (det (Ir − θ)) +

λ

det (Ir − θ)
− λ,

and the variance function of the generated NEF is defined on Ω by

VF (m) =
(

r − 1
2

+
λdet(m)
(b (m))r

)
P

(
r∑

i=1

1
b (m)

[(
P ∗

i

(
m−1

))−1 −
(
P ∗

i−1

(
m−1

))−1
])

+
λdet(m)
(b (m))r+2

[
r∑

i=1

(
P ∗

i

(
m−1

))−1 −
(
P ∗

i−1

(
m−1

))−1
]
⊗

[
r∑

i=1

(
P ∗

i

(
m−1

))−1 −
(
P ∗

i−1

(
m−1

))−1
]

,

where b(m) is the unique positive solution of the equation b(m) =
r − 1

2
+

λdet(m)
(b(m)))r .

In the particular case where r = 1, we obtain VF (m) =
2m

3
2√

λ
, for all m > 0.
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