DESIGN AND ANALYSIS FACTORS INFLUENCING POWER SYSTEM GROUNDING

M.Lorentzou*, G.Georgantzis** N.Hatziargyriou*

*National Technical University of Athens, Greece **Public Power Corporation S.A., Greece

ABSTRACT:

In this paper a review of major AC substation aroundina practices given in international standards is presented with special reference to considerations. differences important and modifications. More especially the major changes in the 2000 version of IEEE Guide for Safety in AC Substation Grounding (Standard 80-2000) with respect to the 1986 version, (Standard 80-1986) that affect the grounding design and analysis are discussed. Comparisons are made for the portions where major changes occur. Examples are presented to show the effects of the changes in the design and analysis of power system grounding.

1. INTRODUCTION

Grounding systems should be designed in order to prevent excessive over-voltages and voltage gradients. Fault currents may damage equipment directly or indirectly as transferred voltages may exceed allowed values in the neighborhood of the fault. Grounding systems are designed to guarantee security of personnel, protection of equipment and continuity of power supply. Hence, engineers must compute the equivalent resistance of the system and the voltage distribution on the earth surface when a fault occurs.

The main differences between the two standards are (a) the difference in mathematical equations for calculation of the reduction factor C_s for derating nominal value of surface layer resistivity, due to the installation of a surface layer of gravel. This affects the calculated max allowable or tolerable step and touch voltage values (b) the difference in the results of calculation of the developed max mesh and step voltages due to alteration on the equivalent number of parallel conductors n, the spacing factors K_m and K_s and the correction factor K_i .

In this paper the major changes in the 2000 version of IEEE Guide for Safety in AC Substation Grounding (Standard 80-2000) with respect to the

1986 version, (Standard 80-1986) that affect the grounding design and analysis are discussed.

Comparisons of the results from the two standards are made for all the portions where major changes occur. Examples are presented to show the effects of the changes on the design and analysis of power system grounding. General conclusions on the standard that leads to more economical design are drawn.

2. THEORETICAL BACKGROUND IN GROUNDING GRID DESIGN

2.1. Basic steps of the design procedure

Grounding systems design according to the IEEE standards methodology, follows particular stages, some of them iteratively:

- 1. Selection of material of conductors and cross section. Calculations are needed to ensure that thermal damage or errosion / corrosion will be avoided.
- 2. Calculation of the maximum tolerable touch and step voltages. It is based on the soil resistivity measurements, the thickness and resistivity of the surface layer of gravel and the fault duration.
- 3. Design of the grounding system configuration in such a way that most or all the area of the site is used. It is desirable to achieve the lowest possible grounding resistance of the grid which should be less than 10hm.
- 4. Calculation of the maximum developed touch and step voltages.
- 5. Check if the safety criteria against harmful touch and step voltages are satisfied. If no, the grid should be reinforced by:
 - reduction of mesh dimensions
 - addition of ground rods
 - and maximum developed touch and step voltages must be recalculated.

The design methodology should also take into consideration the minimization of costs of materials and installation.

2.2. Similarities and differences between IEEE Guide for Safety in AC Grounding versions 1986 and 2000.

The two IEEE standards are similar in their structure and contents. Their differences are detected at particular mathematical equations. More analytically, in the calculation methodology and equations for:

A_{min}:minimum conductor cross section area

- R_g: substation grounding grid resistance
- I_G: maximum grid current
- K: reflection factor

there is no difference between the two standards. However differences are observed in mathematical formulas for:

- C_s: the surface rating resistivity derating factor. The two analytical equations as well as the two simplified formulas change
- n: the equivalent number of parallel conductors is $\max\left(n_{_X},n_{_Y}\right)$ for calculation of Ks, Ki, Es

and $\sqrt{n_x \cdot n_y}$ for calculation of K_m, K_i, E_m according to IEEE 80/1986 standard, and it is n_a.n_b.n_c.n_d according to IEEE 80/2000 standard

Equivalent grid length for calculation of mesh voltages and step voltages if [2] is used, are given below:

$$\begin{array}{ccc} L_m = L_C + L_R & & L_m = L_C + 1.15 L_R \\ L_s = L_C + L_R & (1.a) & L_s = L_C + 1.15 L_R \end{array} (1.a)$$

while in [3] equations (2) are proposed.

$$L_{m} = L_{C} + L_{R} + \left(1.55 + 1.22 \frac{L_{r}}{\sqrt{L_{x}^{2} + L_{y}^{2}}}\right) L_{R}$$
(2.b)
$$L_{s} = 0.75L_{C} + 0.85L_{R}$$

Equations (1.a) and (2.a) apply to grids without ground rods or with a few ground rods scattered throughout the grid, but none located in the corners or along the perimeter of the grid. Equations (1.b) and (2.b) apply to grids with ground rods in the corners as well as along the perimeter and throughout the grid.

It can be observed that L_m at grids with rods calculated from (2.b) will always be greater than L_m from (1.b) due to the coefficient 1.55 which is larger than 1.15. This leads to a smaller E_m when the IEEE Std. 80/2000 is used. The same conclusion is not obvious for the L_s calculated according to (1.b) and (2.b) because the latter is always greater due to the coefficients 0.75 and 0.85 with comparison to 1 and 1.15. In both cases

and further investigation is needed to conclude if E_s is greater for all grids, when the 80/2000 standard is used.

General formulas of E_m , E_s , $E_{Touch,70}$, and $E_{Step,70}$ are the same, but specific parameters inside the formulas have changed. These are the parameters n, K_i , L_m , L_s

3. DIFFERENCES IN DERATING FACTOR FORMULAS

3.1. Surface rating resistivity derating factor

A layer of high resistivity material, such as gravel, is often spread on the earth's surface above the ground grid to increase the contact resistance between the soil and the feet of persons in the substation. The relatively shallow depth of the surface material, as compared to the equivalent radius of the foot, precludes the assumption of uniform resistivity in the vertical direction when computing the ground resistance of the feet. However for a person in the substation area, the surface material can be assumed to be of infinite extent in the lateral direction. If the underlying soil has a lower resistivity than the surface material, only some grid current will go upward into the thin layer of the surface material, the surface voltage will be very nearly the same as that without the surface material. The current through the body will be lowered considerably with the addition of the surface material because of the greater contact resistance between the earth and the feet. However this resistance may be considerably less than that of a surface layer thick enough to assume uniform resistivity in all directions. The reduction depends on the relative values of the soil and the surface material resistivities and on the thickness of the surface material.

An analytical equation for the ground resistance of the foot on a thin layer of surface material can be obtained with the use of the method of images. The analytical equation presented in the standard 80/2000 involves calculation of infinite terms. For this reason an empirical formula that gives results with an error less than 3% of the analytical results is proposed in [1]:

$$C_{s} = \frac{1+K}{1-K} - \frac{4 \cdot K}{p(1-K)} \tan^{-1}(2h/b) -$$

$$-0.21K^{2} (e^{-7h} - e^{-30h})$$
(3)

The empirical formula (4) is proposed in the standard 80/2000 and is much simpler than (3).

$$C_{s}(\mathbf{r})_{80/2000} = 1 - \frac{0.09 \cdot \left(1 - \frac{\mathbf{r}}{\mathbf{r}_{s}}\right)}{2 \cdot h_{s} + 0.09}$$
(4)

where

?:

1

soil resistivity

?s: surface layer resistivity

The analytical mathematical equation proposed in standard 80/1986 is as follows:

$$C_{s} = \left(1 + 2 \cdot \sum_{n} \frac{K^{n}}{\sqrt{1 + \left(\frac{2 \cdot n \cdot h_{s}}{0.08}\right)^{2}}}\right) \cdot 0.96^{-1} \quad (5)$$

while the empirical formula proposed in standard 80/1986 is:

$$C_{s}(\mathbf{r})_{80/1986} = 1 - \frac{0.106 \cdot \left(1 - \frac{\mathbf{r}}{\mathbf{r}_{s}}\right)}{2 \cdot h_{s} + 0.106}$$
(6)

In the following, the values of coefficient $C_{\rm s}$ calculated according to (3) to (6) are compared, considering surface layer of gravel of thickness $h_{\rm s}$ equal to 0.05m, 0.10m, 0.15m 0.20m, 0.25m, 0.30m. Soil resistivity ? varies, being always less than the special resistivity of gravel $?_{\rm s}.$

To estimate the percentage of difference between the values obtained from standard 80/1986 and standard 80/2000, function (7) is evaluated and plotted in figs 1 and 2.

$$F_{C_s}(\mathbf{r}) = \frac{C_s(\mathbf{r})_{80/2000} - C_s(\mathbf{r})_{80/1986}}{C_s(\mathbf{r})_{80/1986}} \cdot 100\% \quad (7)$$

The surface layer of gravel is considered to have special resistivity $?_s$ equal to 1000 Om, 2500 Om and 3000 Om and thickness h_s equal to 0.05m, 0.10m, 0.15m 0.20m, 0.25m, 0.30m. Fig. 1 demonstrates the comparison of the results of (3) and (5) while fig.2 demonstrates the comparison of the results of the results of (4) and (6).

From diagrams of fig.1 where the results of the analytical formula (3) and the empirical formula (5) have been used, the following are deduced:

- Values for Cs as calculated from standard 80/1986 and standard 80/2000 are equal for a particular value of soil resistivity ?? which depends on the characteristics of the surface layer h_s and ?_s
- When soil resistivity is higher than ?? the value from standard 80/2000 becomes smaller than the value from standard 80/1986.

 For particular thickness of layer of gravel h_s, the ?_o takes higher values if the soil resistivity of the surface layer of gravel takes also higher value.

It should be noted however, that in all of the cases where it is practically feasible to install a substation grounding grid, soil resistivity does not exceed 400 Ohms, therefore the value of C_s calculated from the new standard will be always higher than the corresponding C_s calculated using the old standard.

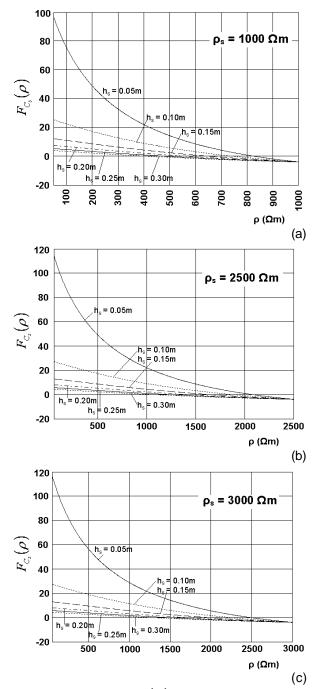


Figure 1: Curve of $F_{C_s}(\mathbf{r})$ with respect to ?, (a) ?_s= 1000 Om, (b) ?_s= 2500 Om, (c) ?_s= 3000 Om

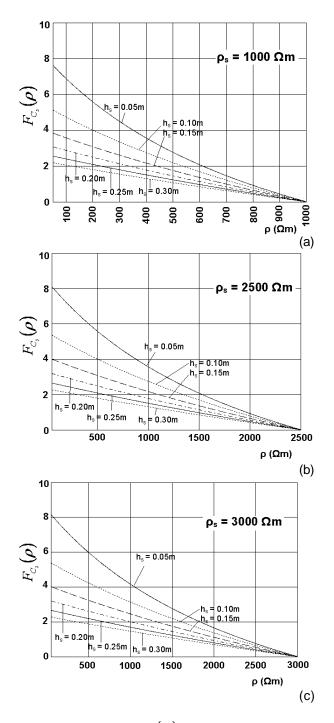


Figure 2: Curve of $F_{C_s}(\mathbf{r})$ with respect to ?, (a) ?_s= 1000 Om, (b) ?_s= 2500 Om, (c) ?_s= 3000 Om

From diagrams of fig.2 where the results of the empirical formulae (4) and (6) have been compared, the following are deduced:

- The empirical formula proposed in 80/1986 for calculation of Cs results in higher values in all cases than the empirical formula proposed in 80/2000
- In all cases the values resulting from the new standard 80/2000 are higher.

4. INFLUENCE OF DERATING FACTOR IN TOLERABLE TOUCH VOLTAGES

Maximum tolerable touch voltages are in both the IEEE standards given by the following equation:

$$E_{touch,70} = (1000 + 1.5 \cdot C_s \cdot r_s) \frac{0.157}{\sqrt{t_s}}$$
(8)

Maximum tolerable touch voltage for 50 kg human body $E_{touch,50}$, can be also calculated from (8) where the coefficient 0.116 is used instead of 0.157.

Values of $E_{touch,70}$ calculated from [2] and [3] are compared, considering surface layer of gravel of thickness h_s equal to 0.05m, 0.10m, 0.15m 0.20m, 0.25m, 0.30m. Soil resistivity varies, being always less than the special resistivity of gravel and surface derating factor C_s is calculated from (4) and (6). To estimate the percentage of difference between the values obtained from Std.80/1986 and Std.80/2000, function (9) is evaluated and plotted as shown in fig 3 using empirical formulae for C_s.

$$F_{E_{touch,50}}(\mathbf{r}) = F_{E_{touch,70}}(\mathbf{r}) =$$

$$= \frac{E_{touch,70}(\mathbf{r})_{80/2000} - E_{touch,70}(\mathbf{r})_{80/1986}}{E_{touch,70}(\mathbf{r})_{80/1986}} \cdot 100\%$$

$$= \frac{1.5 \cdot \mathbf{r}_{s} \cdot (C_{s}(\mathbf{r})_{80/2000} - C_{s}(\mathbf{r})_{80/1986})}{1000 + 1.5 \cdot \mathbf{r}_{s} \cdot C_{s}(\mathbf{r})_{80/1986}} \cdot 100\%$$
(9)

In diagrams of fig. 3, the following can be observed:

- Application of the new standard [3] leads always in higher values of tolerable touch voltages than the old standard [2]
- F_{Etouch} varies almost linearly with soil resistivity.
- Larger differences in E_{touch} calculated from the two standards, appear when resistivity of the surface layer of gravel is the highest possible (3000Om).
- Larger differences in E_{touch} from the two standards when the surface layer resistivity remains the same are also observed when the thickness of the surface layer is smaller.
- Percentages of difference between the values obtained from the two standards do not depend on the time duration of the fault or the weight of the human body.

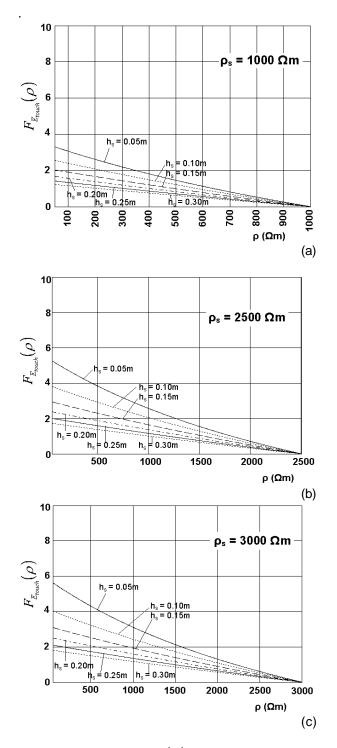


Figure 3: Ourve of $F_{E_{touch}}(\mathbf{r})$ with respect to ?, (a) ?_s= 1000 Om, (b) ?_s= 2500 Om, (c) ?_s= 3000 Om

5. INFLUENCE OF DERATING FACTOR IN TOLERABLE STEP VOLTAGES

Maximum tolerable step voltages are in both the IEEE standards [2] and [3] given by equation (10):

$$E_{step,70} = \left(1000 + 6 \cdot C_s \cdot \boldsymbol{r}_s\right) \frac{0.157}{\sqrt{t_s}} \tag{10}$$

As previously, the maximum tolerable step voltage for 50 kg human body $E_{step,50}$, can be also calculated from (10) where the coefficient 0.116 instead of 0.157 should be used.

The values of $E_{step,70}$ calculated from the empirical formulae suggested in [2] and [3] are compared, considering surface layer of gravel of thickness h_s equal to 0.05m, 0.10m, 0.15m 0.20m, 0.25m, 0.30m. Soil resistivity varies, being always less than the special resistivity of gravel and surface derating factor C_s is calculated from (4) and (6).

To estimate the percentage of difference between the values obtained from standard 80/1986 and standard 80/2000, function (11) is evaluated and plotted as shown in fig 4.

$$F_{E_{step,50}}(\mathbf{r}) = F_{E_{step,70}}(\mathbf{r}) =$$

$$= \frac{E_{step,70}(\mathbf{r})_{80/2000} - E_{step,70}(\mathbf{r})_{80/1986}}{E_{step,70}(\mathbf{r})_{80/1986}} \cdot 100\%$$
(11)
$$= \frac{6 \cdot \mathbf{r}_{s} \cdot (C_{s}(\mathbf{r})_{80/2000} - C_{s}(\mathbf{r})_{80/1986})}{1000 + 6 \cdot \mathbf{r}_{s} \cdot C_{s}(\mathbf{r})_{80/1986}} \cdot 100\%$$

In diagrams of fig. 4, the following can be observed:

- Application of the new standard [3] always results in higher values of tolerable step voltages than application of the old standard [2]
- F_{Estep} varies almost linearly with soil resistivity.
- Larger differences in E_{step} calculated from the two standards, appear when special resistivity of the surface layer of gravel is the highest possible (3000Om).
- Larger differences in E_{step} calculated from the two standards for the same surface layer resistivity, appear when the thickness of the surface layer is smaller.
- Percentages of difference between the values calculated from the two standards do not depend on the duration of the fault or the human weight.

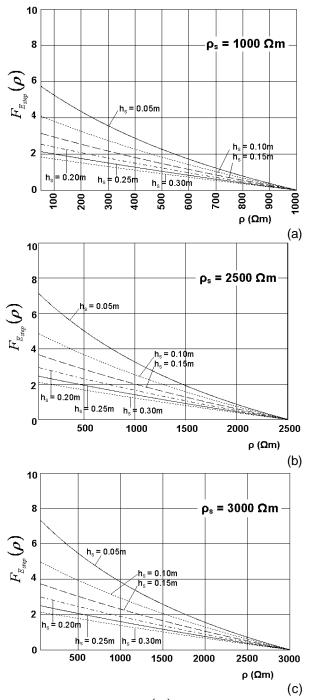


Figure 4: Curve of $F_{E_{step}}(\mathbf{r})$ with respect to ?, (a) ?_s= 1000 Om, (b) ?_s= 2500 Om, (c) ?_s= 3000 Om

6. DIFFERENCES IN THE DEVELOPED TOUCH AND STEP VOLTAGES

In this paragraph, values of the maximum developed at the surface of the substation grounding grid, calculated from the two IEEE standards [2] and [3] are compared. Equations for touch and step voltages are given below:

$$E_{m} = \mathbf{r} \cdot K_{i} \cdot K_{m} \cdot I_{G} / L_{M}$$

$$E_{s} = \mathbf{r} \cdot K_{i} \cdot K_{s} \cdot I_{G} / L_{S}$$
(12)

It should be noted that maximum developed touch and step voltages vary linearly with respect to soil resistivity and they are calculated from the same mathematical equations in both the standards, thus most of the conclusions drawn for a specific value of soil resistivity, apply for any soil resistivity.

In the following only orthogonal and square grounding grids are considered. For these grid configurations the differences between the calculated developed voltages using the two standards are larger than when the L shape or any shape grids are considered.

For the parameters of the grid, that don't change throughout calculations, typical values are chosen i.e. diameter of the conductors of the grid is 0.01m, grid depth is 0.60m, and current to ground I_G is 15kA. Soil resistivity is 1000m. In general, realistic grounding grids configurations are calculated. Resulting voltages are contrasted to the maximum tolerable values when the duration of fault is taken equal to 0.5s, and the surface layer of gravel is of 0.10m thickness and 25000m resistivity. Results of calculations are presented in details in App.1.

6.1. Maximum developed touch voltage

6.1.1. Grids with no ground rods or with only a few ground rods scattered throughout the grid, but none in the corners or along the perimeter of the grid. Differences between the values of the standard 80/1986 and the 80/2000 are due to the differences in:

- the equivalent number of parallel conductors n which is calculated from different mathematical equation as it is described in 2.2.
- the correction factor K_i which is also calculated using different mathematical equations, introducing a difference in the results even when n from the two standards is the same as in the square grounding grids.

In fig 5 the ratio of Em calculated according to the 80/2000 standard to the value calculated according to the 80/1986 standard is plotted considering that mesh dimension varies between 2.5m and 10m. In calculation results the following can be observed:

• The ratio of Em calculated according to the 80/2000 standard to the value calculated according to the 80/1986 standard increases linearly and almost with the same slope if mesh dimensions increase, in all the examined cases.

- Em_{80/2000}/ Em_{80/1986} ratio when the grid has a few rods in the center, and the exactly the same configuration in the two cases, is equal to the ratio of Em_{80/2000}/ Em_{80/1986} calculated for the case when there are no rods at all.
- For the same grid sides ratio, Em value calculated with the 80/2000 standard is a lower percentage of Em calculated with the 80/1986 standard if the area of the grid increases
- Keeping the same grid area and redesigning the grid with a larger sides ratio, results in values of Em from the new standard closer to those of the old standard, and higher Em_{80/2000}/ Em_{80/1986}.

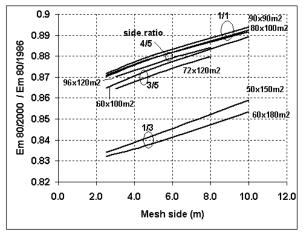


Figure 5: Ratio of $Em_{80/2000}$ / $Em_{80/1986}$ versus mesh side dimension for grids without rods

It is also generally observed in the results that in all cases the Em values from the 80/1986 as well as from the 80/2000 standard depend exponentially on the total length of conductors I_M raised in a power 0.70±10⁻²

6.1.2. Grids with ground rods in the corners as well as in the perimeter and throughout the grid. Differences between the values of the first and the second standard are due to the differences in:

- The equivalent number of parallel conductors n which is different as explained in 6.1.1.
- Total length Lm of grounding conductors which is different for the same reason as referred in the previous paragraph 6.1.1.
- The correction factor K_i which is calculated using different mathematical equations, introducing a difference in the results even when n from the two standards is the same as in the square grounding grids.

In fig 6 the ratio of Em calculated according to the 80/2000 standard to the value calculated according to the 80/1986 standard is plotted

considering that mesh dimension varies between 2.5m and 10m. Additionally 100m rods are installed along the perimeter and throughout the area of the grid. In calculation results the following can be observed:

- As for grids without rods the ratio of Em calculated according to the 80/2000 standard to the value calculated according to the 80/1986 standard increases linearly and almost with the same slope if mesh dimensions increase, in all the examined cases.
- Em_{80/2000} / Em_{80/1986} compared to the values of the same ratio in fig.5 are lower when all the other design parameters are the same.
- If more 100m rods are added to the grid, Em_{80/2000} / Em_{80/1986} ratio remains almost constant versus mesh dimension and for grid sides ratio 1/3, 3/5, 4/5 and 1/1 it is approximately equal to 0.823, 0.850, 0.860, 0.860. Consequently it lower than the ratio plotted in fig. 6.
- The same observations made for the results shown in fig.5 apply in this case.

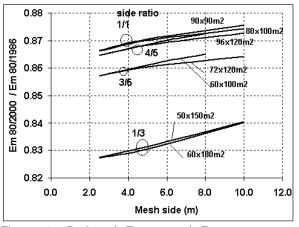


Figure 6: Ratio of $Em_{80/2000}$ / $Em_{80/1986}$ versus mesh side dimension for grids with rods

As in the previous case it is also generally observed in the results that in all cases the Em values from both versions of standards depend exponentially on the total length of conductors l_M raised in a power of 0.69 to 0.74

6.2. Maximum developed step voltage

6.2.1. Grids with no ground rods or with only a few ground rods scattered throughout the grid, but none in the corners or along the perimeter of the grid. Differences between the values of the first and the second standard are due to the differences explained in the previous paragraphs considering:

- the equivalent number of parallel conductors n
- Total length of grounding conductors Ls

• Correction factor K_i.

In the results of table A.1 it is observed that the maximum developed step voltage calculated according to std. 80/2000 is lower than the step voltage calculated according to std 80/1986 only when the ratio of sides is 1/3. However the safety criteria are satisfied in all examined cases

6.2.2. Grids with ground rods in the corners as well as in the perimeter and throughout the grid. Differences between the values of the first and the second standard are due to the differences explained in the previous paragraphs considering:

- the equivalent number of parallel conductors n
- Total length of grounding conductors Ls
- Correction factor K_i.

In the results of table A.2 it is observed that the maximum developed step voltage calculated according to std. 80/2000 is lower than the step voltage calculated according to standard 80/1986 only when the ratio of sides is 1/3. This is the same as if the rods were placed at the center of the grid. The safety criteria are satisfied in all examined cases.

7. CONSIDERATIONS ON SAFETY MARGINS

For the same area of the grid and the same grid and mesh dimensions the calculated mesh voltage E_m with the new standard is equal to a percentage of the old one and the tolerable touch voltage $E_{touch,70}$ from the 80/1986 standard is 99% or smaller than $E_{touch,70}$ from the 80/2000 standard as it can be shown in fig.3. Thus the safety margin given by the new standard for the existing grounding arrangements is greater. If a model for linear dependence of Em on L_M ^{-0.6 to -0.8} is adopted it will be possible to calculate the saving on conductor length needed to achieve the same safety criteria if the 80/2000 standard is used instead of 80/1986 standard.

7. CONCLUSIONS

In this paper a review of major AC substation grounding practices given in the IEEE international standards is presented with special reference to important considerations, differences and modifications. Comparisons are made for the portions where major changes occur. Examples are presented to show the effects of the changes on the design and analysis of power system grounding.

REFERENCES

- 1. B.Thapar, V.Gerez, H.Kejrival: "Reduction Factor for the Ground Resistance of the Foot in Substation Yards", IEEE Trans. On PWRD, vol.9, no.1, January 1994, pp.360-365.
- 2. "Guide for Safety in AC Substation Grounding", ANSI/IEEE Std.80-1986
- 3. "Guide for Safety in AC Substation Grounding", ANSI/IEEE Std.80-2000
- CENELEC Harmonization Document 637 S1 "Power Installations exceeding 1kV a.c." -1999
- E.D. Sunde, 'Earth conduction effects in transmission systems', 2nd ed., New York: Dover Publications, 1968

Appendix I.

Results from calculations of square and orthogonal grids with sides ratio 1/3 to 4/5 where there are no ground rods or there are a few ground rods scattered throughout the grid, but none located in the corners or along the perimeter of the grid are shown in Table A.1.

Results from calculations of square and orthogonal grids with sides ratio 1/3 to 4/5 where there exist ground rods in the corners as well as along the perimeter and throughout the grid are shown in Table A.2.

For the parameters of the grids, that don't change throughout calculations, and are not shown in Tables A.1 and A.2 typical values are chosen i.e. diameter of the conductors of the grid is 0.01m, grid depth is 0.60m, and current to ground & is 15kA. Soil resistivity is 1000m. The duration of fault is taken equal to 0.5s, and the surface layer of gravel is of 0.10m thickness and 25000m resistivity.

Table A.1: Results of calculations for grids without rods

Grid Finensions	Marth	Longth of horizental canductors (m)	CAMPOINT	Em Calcula dio 2000		Ers Calculation Parameters 89/1996						Es Calculation Parameters (80:2000)			Es Calculation Parameters (80:3586)					,	VIST IEEE 80:198		ANST IEEE Std. 80:2000						
			Tetal longth of ground rods (m)		К,	к,	L,	K.	E _n (M)	n	ĸ	K	Lu	100	E ₁₁ (V)		K	E, (V)	L	ĸ	n _c K		E _c (M)	C,	E Step.70	E Touch,70	C,	E Step.J0	E Touch,7
	10:10m	1700	0						1719.6						1999.1				1700				983.7				11-1		
	5ifn	3200	0	17.193											1170.4				3200				1082.8	1					
60x160m ²	26:0.5m	6200	0	33.312						36,791						3650			6200					0.107	258013	806.5	0.667	2435	777.4
	10+10m	1700	100						1624.1	9,799					1666 D								929.0	1000		10000000	1000		12/21/21/21
	25:25m	6200	100	17 193 33 312						32,791									3300					-			-		
	10x10m	2800		10.748	1.794	11404	2400	11 0446	1384 7	11 5 5 5	28.41	D AST	2400	10.040	1681.7	19530	0 372	REN D	2.000	n'= 22	10 30	774	802.5				-		
	árán (4580	Ő	20.417																	37 74		890.8	8 0 m2					1
	25:15m	000	0							0.720						0000			4300										
80s 190 m ³	10:10m	2400	100							11,533									2900				770.2		2560.0	506.5	0.667	2443.5	777.4
	3mm	4560	100	20.417						21.932						3505					37 71						1.1		1
	24s3.5m	DEBU	100	39.759						42.720						87.65			10000					1					
	Talle	1300		0.670	1 977	0.612	1380	0.903	2095.0	8,775	2 105	0.520	1397	0.9/11	2343.0	1020	0.322	823.0	1390	0.527	11 2/	10.7	019.1						
180 x 100 m ⁴	- árán	2560	Ő						1198.8						1369.5				2560				964.7	1 . I				2443.5	
	26:25m	4900	0	31.504						32.015																			
	10:10:1	1360	100						1942.2						2183.3				1460				858.2	0.702	2560.0	B06.5	0.667		777.4
	árán -	2560	100	16,260											1318.0				2660				508.4						
	2613.5m	45880	100	31 50.0																			1131.7						-
72a120m ³	asten	2962	0	12.449	2.496	0.997	2362	0.864	1399.6	12 649	2.832	0.600	2952	0.961	1565 B	1764	0.342	723.2	2352	0.342	16 3.	808	743.5	5					
	fr Bell	3072	0	18,280											1245.0						21 4.	No.	783.9						1
	3130	5852	0	31 604	6.307	0.769	6562	0.389	519.7	32.016	5.163	0.771	5952	D.396	555.5	4454	0.490	B15.9	6952	0.450	41 7.1	109	893.1	8	2000.0		0.000	DUD T	10000
	reBeB	2352	100	12.449	2.486	D.497	2482	0.964	1313.8				2452			1849	0.342	689.9	2452	0.942	16 3.4	408	713.1		2560.0	808.5	Class	2443.5	777.4
	üstin	3072	100	18,260	3.051	0.652	3172	0.731	1055.0	16.523	3.438	0.655	3172	0.729	1205.8	2399	0.967	702.0	3172	0.367	21 43	368	739.8						
	31341	5952	100	31.504	6.307	0,769	6052	0.399	611.1	32.016	5.163	0.771	6052	D.396	568.5	4549	0.490	804.5	6052	0.450	41 7.1	708	B78.4						
	10:100	1760	0	9.920	2.112	0.648	1780	0.966	1719.6	9.950	2.367	0.548	1280	0.966	1926.6	1335	0.327	776.D	1790	0.327	11 2	5.49	702.3	17	2 2568.0	806.5	0.867	7 2443.5	777.4
	diden .	3380	0	18 836	3.432	0.080	3360	0.5.19	987.7	18.894	3900	0.681	3380	Diade	1123.4				1380	0.398	21 4.3	262	730.7						
90+100m ²	2612.5m	6680	0							36,783	6.983	0.792	6580	D.293	466.2	4935	0.495	913.9	6580	D.456	41 7.1	807	870.2						
00110011	1011011	1700	100						1628.1						1824.2				1000	0.327	11 20	540	554.9						
	<u> ភំលើព</u>	33EU	100	18.836	3,432	0.680	3460	0.649	959.4	18.894	3.906	D.681	3480	0648	1091.1	2620	0.386	757.9	3430	0.386	21 43	368	709.7						
	26x2.5m	6660	100	35 669	6.071	0.791	0000	0.293	400.0	36,783	5 903	0.792	6530	D 293	458.2	5020	0.495	090.4	6500	0.495	41 7.1	100	057.2	-	_				
1	BiBn	3096	0							14,422													554.8			806.5	0.667	2443.5	777.4
	fiplini	\$0%B	0	19 838											1023.0		0.307		2056				578,6	1.1					
96x120m2	313m	7896	0	36.669			7896			36,783											41 7.		673.3	0.702	2588.0				
	0.010	3096.	100	14.370				0.843		14,422							0.342			0.342		\$30	547.1						
	üsün JaJin	4058	100	18.636 35.669						16.824						3127			4156 7996				564.6	1					
																	-												
	10+10+1	1800	0	10.000											1910.9					D.327		116	547.4						
	date	3420	0	19.000				0.847							1114.0				3120				883.9						1
90x90v ²	2.6+2.5m	6660	0							37,000								910.2				120	760.1	0.702	2560.0	806.5	0.667	2443.5	777.4
204004	10:101	1000	100							10.000									1900			110	2012/04						1
	5:5m 25:25m	3400	100	19.000 37.000						37.000									3520			124	B45.1 771.5						
	-12.25		1000		1.5																					-	1		
	10x10m dades	2200	0	21.000						11,000											11 2/		568.2						1.1.1.1.1
10000	26+2.5m	8200	0	41.000						41,000									8200			DIR.	E00 3	0.702	130000	135.3.0	1	123320	10.5572
100x100m ²	Til Der Der	2200	100	11 000															2900			LEE	543.5	0.702	2568.0	806.5	0.667	2443.5	777.4
	áián i	4200	100	21 000																			574.3	1.000			1111		1
	2612.5m	6200	100						334.1																1				

Table A.2: Results of calculations for grids with rods

	Nish	Length of berizental conductors init	Total length of ground rods (m)	Calculation Parameters							Ern Calculation Pacarneters (80/1966)						na ina ha anna fan anna fan annna fan anna fan anna fan anna fan anna fan anna fan anna fan a	Para	alcula ameter 1986)				-	UKST IEEE 80/200		ANSI IEEE Sud. 80/1986			
Grid dimensions					Ri,	к.	Le	K.	En (V)	n	H,	к,	Le	Ka	En (V)	Li	K,	E. (V	Ls	К,		ĸ	E _t (V)	C,	E Step,70	E Tauch,70	¢,	E Step,70	E Touch,70
1 7	10:10m	1700	100		1.998				1427.1	9.198				0.854								3.408	021.5	0.000					
	5mm	3200	100	17, 193						18.466				6 0.644			6 0.386			5 0 38			1045.2	1.1			1000	1000	1
50x150m ²	2.5+2.5m	6200	100	33.312			6367.3			35,791				5 0.209			5 0.495					11.148		0.702	2990.0	806.5	0.667	2443.5	777.4
	10:10m	1700	200						1315.7	9.798				0.854								3.408					10000		anne.
	515125m	3200	200 200	17.193						18.466				0.644			0 0.386			0 0.39		5.968	1010.2						
											-			1	-					1		-						1	
	10:10:0	2400	100						1132.3					0.812			5 0.327					3.824							
	5:51	000	100	20.417						31 993				5 0.432			5 0.386			5 0.38				0.702	2560.0		1.1.1	in march	0.000
ACts 15Dm ²	2.5±2.5m	2400	200	39,759			9036.9			11,693				0832	12530		5 0.495			5 0.49		13 212				806.5	0.667	2443.5	777.4
	5:59	4990	200	20.417						21,932				0.622			0 0 396			0 0 39									
	15:25m	8880	200	39.759						42.720				0.186			0 0.495					13.212							
	10s10m	1360	100	0.000	4 1000		12121	0.000	1000 0				1.17	0.000	1000 0		0.777	000				7.00		-		-	-		
60x100m²	5650	2500	100	16.260	1.822		2710.1		1696.9					5 0.868			5 0.327			5 0.32		2 548		0.702	2990.0	006.5	0.667	2443.5	777.4
	25:25m	4960	100	31.504				0.358		32.016				5 0.223			5 0.495			5 0.49									
	10:10:0	1390	200		1 972		1676.3							0.868			0 0 327			0 0.32									
	5:50	2990	200	16,260			2876.3			16.623				0.0.658						0 0.39		4 268							
	25:25m	4960	200	31.504						32.016												7.708							
72x120m ²	Billin	2982	100	12.449	7 600		20000	0.770	1157.8	120.00	1.00	- 100	NIP	0.748	POTO	101	0 0 342	000/	1.40	10.34	1 40	3.408	708.9		-		-		-
	566	3072	100	16.260			3229.6			16.623				7 0.619						7 0.36									
	3:3m	5952	100	31.504			6109.6							0.294			9 0.460			7 0.49			876.2		1.1.2	2223			1225
	ປັ່ນປົກ	2352	200	12,449	2 406		2067.2			12.649				2 0.740		195	4 0.342	0.620		2 0.34			677.2		2560.0	906.5	0.667	2443.5	777.4
	6.6n	3072	200	16.260	3.051	1	3387.2	0.562		16,523				2 0.619			4 0.367					4.268							
	3:3n	6962	200	31,504	5 307	1	6267.2	0.596	505.7	32,016	0.8	85 1	515	2 0.284	4390	453	4 (0.493	7597	515	2 0.49	0 41	7,708	158.9	-			-		
	10x10m	1780	100	9.920	2 112	1	1937.9	0.874	1429.6	9.990	2.3	67 1	189	5 0.852	1596.2	142	0 0.327	7296	189	5 0.32	7 11	2.548	558.5	5 3 9 0.702 2960 1			0.667	2443.5	777.4
	5:61	3390	100	18.836	3.432	1	3637.9	0.583	862.5	18.894	3.90	1 30	3458	5 0.641	906.6	262	0.0.396	757.9	349	5 0.39	6 21	4,268			2960.0	806.5			
80x100m ²	15:25m	6580	100	36.660						36.783				5 0.205			0 0.495			5 0.49									
GCO. ISONI	10et0m	1780	200		2 112					9.950				0.852			5 0.327			0 0.32									
	Stán	3380	200	18.836						18.894				0.541			5 0.386			0 0.38					-				
	2.5x2.5m	6580	200	36.689	6.021	1	1,0659	0.339	447.6	30,783	5.8	13 1	661	0.305	315.4	510	5 0.495	0001	081	0 0 49	5 41	7 708	540.9						
	8:84	3096	100	14.378	2.772	1	3253.4	0.760	971.4	14.422	3.12	37 1	321	0.731	1070.8	2400	7 0.342	690.9	321	10.34	2 16	3.408	544.6				-		-
	6:641	4056	100	18.836			4213.4			18.894				0.602			7 0.367			1 0.36				0.702	2990.0	800.0	0.667	7 2443.5	777.4
964120m2	3:3m	7896	100	36.669			8053.4			36.783				1 0.276			7 0.490			1 0.49									
2011.2011.5	Ballen	3096	200	14.37B						14.422				6 0.731			2 0.342			6 0.34									
	6:61	4096	200	18.836						18.894				6 0.602 5 0.776			2 0.367			6 0.36 6 0.40		4 268							
	3:3n	1090	200	36.668	0.021	ť	92.009	0.5/8	4.01.1	1.30.10.1	0.8	1311	010	10.200	3008	1005	210.400	Loor.	1012	0 0 40	0 41	7.200	004.2						
	10:10:1	1900	100	10.000			1957.9			10.000				0.851	1584.0		6 0.327			5 0.32									
	51511	3420	100	19.000			3577.9		857.3					5 0.640			0 0.396			5 0.39									
90x90m ³	25:25m	6660	100	37.000						37.000				5 0.204			0 0.495			5 0.49				1 urue	2990.0	806.5	0.667	2443.5	:777.4
	tūstūn.	1800	200	10.000						10.000				0.851			0 0 327			0 0 32							1		
	5:5n 25:25m	3420	200	19.000					821.1	19.000				0.0540			5 (C.396 5 (C.495			0 0 39		3 924							
	1.5.5.0.5		12-101-1																	1	1								
	10:10m	2200	100	11.000			2367.6		1244.3					5 0.839								2548							i Tanan i
Sec. 10	515125m	4200	100	41.000			4367.6			21,000				5 0.627			5 0.396 5 0.495			5 (0.39) 5 (0.49)				£		806.5	1000		
100x100m ²	10::10::	2200	200						1166.3					0.839								2.548			2990.0		0.667	2443.5	777.4
	Sister	4200	200	21.000						21.000				0 0.527			0 0 327					4 268					1000		100000
	2.5x2.5m	8200	200	41,000						41.000				010.191								7.708							