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Handshake: Realistic
Human-Robot Interaction in
Haptic Enhanced Virtual Reality

Abstract

This paper focuses on the development and evaluation of a haptic enhanced virtual
reality system which allows a human user to make physical handshakes with a virtual
partner through a haptic interface. Multimodal feedback signals are designed to gen-
erate the illusion that a handshake with a robotic arm is a handshake with another
human. Advanced controllers of the haptic interface are developed to respond to
user behaviors online. Techniques to achieve online behavior generation are pre-
sented, such as a hidden-Markov-model approach to human interaction strategy
estimation. Human-robot handshake experiments were carried out to evaluate the
performance of the system. Two different approaches to haptic rendering were com-
pared in experiments: a controller in basic mode with an embedded curve in the
robot that disregards the human partner, and an interactive robot controller for
online behavior generation. The two approaches were compared with the ground
truth of another human driving the robot via teleoperation instead of the controller
implementing a virtual partner. In the evaluation results, the human approach is rated
to be most human-like, with the interactive controller following closely behind, fol-
lowed by the controller in basic mode. This paper mainly concentrates on discussing
the development of the haptic rendering algorithm for the handshaking system, its
integration with visual and haptic cues, and reports about the results of subjective
evaluation experiments that were carried out.

| Introduction

An important goal of haptic research in the context of immersive virtual
environments is to introduce physicality into the virtual reality experience.
The physicality of haptic interaction, among other factors, is a critical issue to
be considered in rendering realistic interaction. For instance, the participant
should be able to feel the weight and elasticity of virtual objects as well as to
touch and interact with a virtual human partner in a real-life manner.

This paper presents a haptic rendering algorithm that aims at achieving a

realistic handshake with a virtual human partner. The human participant grasps
a haptic interface, representing the arm of a virtual human partner, and uses
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this to perform a handshake with a virtual agent.
Advanced controllers for the haptic interface have been
developed that implement a partner who adapts online
to the human and gives him or her the illusion of taking
part in a real human-human handshake.

Handshaking is a common daily activity. In order to
simulate this activity through human-robot interaction
(HRI), problems such as signal measurement, interac-
tion control, and evaluation must be tackled and solved.
Pollard and Zordan (2005) generated handshake ani-
mations from a vision system. Kunii and Hashimoto
(1995) created the first telehandshake using a simple
1-DOF device, while the recent work of Haans and
IJsselsteijn (2006), Bailenson, Yee, Brave, Merget, and
Koslow (2007), Gunn, Hutchins, and Adcock (2005),
and Tachi, Kawakami, Nii, Watanabe, and Minamizawa
(2008) also followed the telepresence route. Haans and
IJsselsteijn and Bailenson et al. viewed a telehandshake
as a way to express and communicate social and emo-
tional information, while Gunn et al. and Tachi et al.
focused on more specific issues of telehandshaking such
as time delay, system design, and integration. In Tachi
et al., two humans conduct a handshake via a robotic
system. In contrast, autonomous robotic handshak-
ing has not been as closely studied until very recent
work such as Sato, Hashimoto, and Tsukahara (2007),
where the authors take the oscillation synchroniza-
tion approach to realize human-robot handshaking;
and in Y. Yamato, Jindai, and Watanabe (2008), where
the authors focused on the approaching and shaking
motions of a handshake robot; and in Karniel, Nisky,
Avraham, Peles, and Levy-Tzedek (2010), where the
authors evaluated different handshake models realized
by means of a weighted sum of human and artificial
systems. Apart from these very few investigations, the
study of autonomous robotic handshake partners in
a force /motion interaction context is lacking in the
existing literature to the authors’ knowledge.

New challenges arise when rendering interactions with
a virtual interaction partner compared to interactions
with passive environments: (i) the mechanical impedance
of'a human arm can vary over time, therefore we can no
longer assume the mechanical properties of the environ-
ment to be constant and independent of the actual state

of interaction; (ii) interaction forces between the single
participants are measured by a single force /torque sen-
sor mounted at the end-effector of the robot; this allows
only the measurement of interaction forces; (iii) the
human interaction strategy of how to carry on the inter-
action is not directly measurable, since the information is
part of the internal mental processing of the participant.
Bearing in mind these various challenges, two different
approaches to design the robot controller can be con-
sidered: (a) design a basic controller that carries out the
handshake as predefined, ignoring the bilateral nature
of human-human interaction and forgetting about the
human-related information that is difficult to acquire;
or (b) design a complex controller that estimates the
necessary human information and uses it to simulate a
more interactive virtual partner. Both approaches were
adopted for comparison.

In Section 2, two types of haptic rendering algo-
rithms for human-human handshakes are introduced.
Section 2.1 presents the basic handshake controller and
Section 2.2 discusses the design of the more interac-
tive controller and considers techniques for estimating
human interaction strategies. Section 3 focuses on
the subjective evaluation of the overall handshake sce-
nario. Finally, Section 4 summarizes the main results and
formulates future research directions.

2 Haptic Rendering

2.1 Basic Handshaking Controller

A basic approach to rendering handshakes is to
replay prior recorded human-human handshake trajec-
tories on a robot. The robot, controlled by a position
controller, uses the recorded trajectory as a reference
and follows it faithfully. However, due to the charac-
teristics of the position controller, the robot will try to
achieve the desired position at all costs, ignoring the
bilateral nature and mutual influence of the single part-
ners that is characteristic for a human-human handshake.
This basic handshaking controller resembles an extreme
case of a dominant person who does not compromise to
his or her partner at all.
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In order to increase naturalness of interaction, we

introduced compliance by means of a second order
impedance model as shown in Equation 1, where M,
B, and K are the impedance parameters mass, damping,
and stiffness representing the robot arm, f and x denote
force and position, and xy is the equilibrium position of
the virtual partner arm (Wang, Yuan, & Buss, 2008):

£(#) = ME() + Bk(#) + K(x(t) —x0). (1)

Constant values were chosen for the mass and damp-
ing parameters for the arm; but human arm stiffness was
adapted by a changeable stiffness parameter to imitate
human arm stiffness. In practice, the contraction of the
muscle groups is increased when the human is exert-
ing higher forces. The stiftness of the arm is therefore
increased. Inspired by this fact, a time-varying virtual
stiffness K consisting of a constant term Kp in addi-
tion to a term proportional to the difference between
the actual position x(#) and the equilibrium position xp,
defined as the neutral position of the robot end-effector,
was implemented:

K = Ko + n(x(2) — x0). (2)

The intuitive explanation of this selection is that the
more a participant wants to drive the partner away from
the equilibrium, the stiffer the participant’s arm should
be in order to succeed. In other words, a robot with
such a controller is compliant closer to the equilibrium
and stiffer when further from the equilibrium. In the
evaluation experiments, the robot controlled by this
basic controller is used as one of the comparative con-
ditions in haptics. In order to simulate a machine-like
handshake, the desired trajectory was chosen to be a
repetitive sinusoidal curve instead of one of the recorded
trajectories.

The fundamental limitation for the realization of
full interactive handshakes makes the basic controller
approach clearly different from human-human hand-
shaking, where the arms can provide compliance during
interaction, while the participant can select different
strategies with respect to adaptation to their partner’s
form of handshake. Therefore, an interactive hand-
shaking controller has been developed that adapts the

robot behavior online to the current selected interaction
strategy of the human partner.

2.2 Interactive
Hidden-Markov-Model-based
Handshaking Controller

The interactive handshake controller, first pre-
sented in Wang, Peer, and Buss (2009b), is based on the
assumption that humans select between two different
strategies when performing handshakes with a partner:
either they act passively by following and adapting their
behavior as best as possible to the lead of the interac-
tion partner; or they act actively by commanding the
handshake trajectory without taking into account the
behavior of their partner. Unfortunately, it is not fea-
sible to directly measure human interaction strategies,
but they can be estimated from measured behavioral
(force and motion) data. Once the currently selected
human interaction strategy is estimated, the interactive
handshaking controller can be designed: In our spe-
cific case the respective opposite role is assigned to the
robot. Depending on the personal style of handshaking,
humans switch between the two aforementioned strate-
gies while performing a handshake. This again means
that the robot needs to continuously estimate the cur-
rently selected human interaction strategy to achieve
realistic human-robot handshakes.

To implement this interactive handshaking controller
on a robotic system, a robot controller consisting of a
control, planning, and adaptation module was realized
(see Figure 1). These three modules were proposed in
Groten (2011) for modeling a partner in a collaborating
human-human dyad. While the planning unit decides
on the desired trajectory, the control unit implements
compliant behavior. Finally, the adaptation unit uses
information about the actual estimated human inter-
action strategy to decide on different adaptation laws
that alter the reference trajectory as well as the provided
compliance of the robot. Thus, a new double-layered
control scheme is proposed consisting of a low-level
controller (LLC) that combines a planning unit and a
control unit; and a high-level controller (HLC), which is
represented by the adaptation unit.
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Figure 1. Implementation of human-human handshakes using an advanced, interactive

handshaking controller consisting of a low-level controller (LLC) that combines planning and control

unit and a high-level controller (HLC) represented by the adaptation unit.

2.2.1 Human Behavior Model. In order to
adapt to human behavior online, information about the
currently selected interaction strategy must be available.
Unfortunately, interaction strategies are not directly
measurable and thus need to be measured by indirect
means. In order to obtain a valid estimation, the selec-
tion of input data is crucial. In haptic human-robot
interaction, force and position data directly result from
the interaction. Hence, any phenomenon observed in
either signal can be the consequence of either the robot
or the human. For this reason, motion or force sig-
nals alone cannot be adopted to estimate the currently
selected human interaction strategy, but instead need
to be further processed to remove the influence of the
robot. In order to overcome this problem, we introduce
a human behavior model and estimate parameters of this
model from the observable haptic interaction data. The
estimated parameters are finally used as input for the
human intention estimator described below.

For the basic handshaking controller, the human
was assumed to be passively following the robot,
which means that the human was modeled by a passive

impedance represented by mass, damping, and stiffness
of the human arm without further excitation signals to
the system. However, for an active human, the desired
human trajectory becomes an additional input to the
coupled human/robot system. Consequently, the

old human model no longer applies and thus a new
human behavior model that implements the three units
proposed in Groten (2011) is assumed:

1. The human is modeled by a position-controlled
arm with a trajectory planner and an adaptation
module that adjusts the compliance of the arm
as well as the reference trajectory according to
the actual estimated interaction strategy and the
currently observed haptic data.

2. The human behaves as a collaborative partner.

In other words, the human planner adapts the ref-
erence trajectory based on the actual interaction
status. It does not matter whether the decision of
the human is to follow or to change the current
trajectory; the decision is made based on actual

measurements.
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Figure 2. Human behavior model. x4p is the desired trajectory generated by the human, x is the

actual human/robot position, and f is the actual interaction force. The parameters of human arm

stiffness and damping represented by the position controller are variable in time.

An illustration of the human behavior model is given
in Figure 2. This model allows the human to change the
arm impedance represented by the position controller as
well as the desired trajectory with respect to time. The
assumption that the human will behave reasonably is a
natural approach, since it is expected that a human plans
the behavior of the next step based on the information
gathered about the current step. Further information
needed to generate the trajectory is integrated inside
the planner block. This makes the current position and
force signals the only inputs to the human model, hence
the input and output signals of the human block are all
known to the robot.

The model in Figure 2 is expected to be time-varying
and nonlinear. However, in practice the robot needs
an easily identifiable model to estimate the currently
selected interaction strategy. Hence, the following
approach is taken to linearize the human behavior
model:

1. A linear differential equation was used to represent
the relationship between position input and force
output signals.

2. The differential equations were limited to the sec-
ond order, as shown in Equation 3, where f and x
are the position input and force output signals, /2,
b1, and }y are the three parameters of the differen-
tial equation, each denoted as a human behavior
parameter (HBP), representing the current human
behavior that determines the force output based
on the current position input. Since the adapta-
tion unit is part of the human behavior model, the
HBPs are time-varying.

f=h®i+h@)i+ bo(t)x. (3)

The HBP set (42, b1, ho) is similar to the impedance
parameter set of a passive human in the sense that
they are both relationships between force and posi-
tion signals. However, HBPs also take into account the
influence of the human planning and adaptation unit,
and thus are not necessarily equivalent to impedance
parameters. In the remainder of this paper, impedance
parameters denote the parameters in the admittance
filter of the robot controller, while HBPs denote the
estimated behavior parameters of the human.
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Figure 3. Estimation of human interaction strategies using
HMM-based estimator: HMM 8 stays for the active and HMM §; for
the passive state.

A fast-converging forgetting factor Least Squares Esti-
mation (ffLSE) algorithm is employed to estimate HBPs
from measured force and motion data. In Wang, Peer,
and Buss (2009a), this algorithm was used to estimate
mechanical impedance parameters. Although HBPs are
newly proposed in this paper, their estimation can be
carried out in a manner similar to impedance parameters.
Detailed discussion and validation experiments related to
the ffLSE algorithm can be found in Wang et al.

2.2.2 Human Intention Estimation. As human
intention is not directly measurable, a special estima-
tor is needed, which is part of the HLC. In our case,
we adopt pattern recognition algorithms which process
the aforementioned HBPs and determine probabilities
for the active or passive interaction strategy. A detailed
scheme of the implemented human intention esti-
mator, the interaction strategy estimator, is shown in
Figure 3. Using measured force and motion data, an
online parameter estimator identifies human behavior
parameters, abstracts them into symbols, and feeds them
into a discrete Hidden-Markov-Model (HMM)-based
intention recognition module which outputs an estimate
of the current human intention, that is, interaction strat-
egy. Two HMMs are defined for the estimator, reflecting
the two opposite roles of active and passive. Active indi-
cates that the human is trying to lead the handshake,
while passive means the human is trying to follow the
lead of the robot.

An HMM has an underlying Markovian stochastic
process that is not observable directly, but only through
another stochastic process with respect to a certain prob-
ability of observation. This manages the relationship
of hidden human interaction strategies and observable
actions. While each human interaction strategy is mod-
eled by an HMM, the hidden states; of the respective

HMM encode the hidden mechanism that describes
how the human generates the observed action. There-
fore, for the estimation of » human mental states, there
are n different HMMs, each having ¢,, hidden states;
and the values of 0, are determined by the training

of the specific HMM. The estimation algorithm then
decides which HMM is currently the best fit for the
given sensory information.

This type of HMM estimator has been used for
speech, handwriting, and other types of pattern recog-
nition since the 1980s (see Rabiner & Juang, 1986).
Applications have been reported in human motion
recognition by using image sequences, as in J. Yamato,
Ohya, and Ishii (1992) and haptic signals, as in Takeda,
Kosuge, and Hirata (2005). The application in Takeda
et al. is to estimate human dancing steps using force sig-
nals measured by a force sensor mounted on the robot.
In Avizzano (2007), HMMs are used to classify human
behaviors based on haptic measurements when drawing
on a 2D plan. In Calinon, Evrard, Gribovskaya, Billard,
and Kheddar (2009), HMMs with continuous force
and velocity inputs are employed in recognizing human
interaction strategies in a joint object carrying task.

The method employed in this work is extended from
the method described in Yang, Xu, and Chen (1997).
The input data is changed from gesture paths to hap-
tic data, in this case the HBPs. The number of hidden
states in each HMM is set to four. The method can be
formulated as follows:

Given § = {S,},7» = 1,2,..., N, state S, being the
nth hidden state, and O = Oy, O, ..., Oy the observed
symbol sequence, choose the best matching HMM from
3;,¢ = 1,2,...,C;thatis, calculate P(O|3;) for ecach
HMM 3; and select 8.+, where

¢* = arg max(P(0|3;)). (4)

Given the observation sequence O = Oy, Os,..., ON
and the HMM 3;, the problem is how to evaluate
P(0l3;), the probability that the observation sequence
was generated by HMM 3;. This probability can be cal-
culated by using the forward-backward algorithm, as
shown in Rabiner and Juang (1986). The HMM with
the highest likelihood is selected as the recognition

result.
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Table 1. Generated HMM Observable Symbols

n n ho Symbol
Low Low Low 1
Low Low High 2
Low High Low 3
Low High High 4
High Low Low 5
High Low High 6
High High Low 7
High High High 8

HBPs are preferred to the interaction force signal
as input to the HMM estimator, for the reason that
the interaction force contains the influences of both
the robot and the human. For instance, a high mea-
sured interaction force can result from a strong robot
acting against human arm inertia in the case of a pas-
sive human, or from an active human who is trying to
change the current style of shaking by either stiffen-
ing his or her arm or imposing a certain trajectory. In
other words, high force measurements do not neces-
sarily mean that it was the human who was overactive.
Therefore, it is not sufficient to estimate human inter-
action strategies from the force measurement alone.
The HBPs, however, consider the interaction trajec-
tory and force signals at the same time. In case of high
interaction forces resulting from a strong robot shak-
ing the hand of a passive human, both position and
force values would be high, resulting in moderate HBP
estimations for 4y and /4y ; if the force results from an
active human, the arm impedance or the imposed force
would be high, while the position deviation would be
small, which will be reflected in the HBP estimations as
well. Hence HBDPs are the better choice in representing
human interaction strategies.

For a given HBP sequence, eight symbols are used
in the abstraction as shown in Table 1. The thresh-
olds for low and high are set by heuristics: 1 for the /4
coefficient, 50 for /1, and 500 for 4.

Performance validation tests were carried out for
the HMM estimator. Detailed discussions are given in
Section 2.3.

Table 2. Averaged Duration and Amplitude of Human-Human
Handshakes

Position Min Max Mean
Duration (s) 0.712 1.816 1.01
Amplitude (m) — 0.161 0.098

2.2.3 Trajectory and Impedance Parameter
Adaptation. The trajectory and impedance parameter
adaptation modules are the last modules in the HL.C.
The following information is available to generate the
reference trajectory: force and motion (position, veloc-
ity, and acceleration) measurements, identified HBPs,
and the estimated human interaction strategy. In addi-
tion, history information of the above data can be stored
if necessary. The task of the trajectory generator is to
generate a path on the basis of certain criteria which are
to be defined in this section.

There are many possible solutions for the selection of
criteria, since handshaking contains a large amount of
intercultural, intersubjective, and even intertrial vari-
ations. Therefore, instead of defining one standard
handshake, here the approach is taken to find bound-
aries for recreating a handshake trajectory that feels
human-like to the user. In our case study of handshak-
ing (see Wang et al., 2008), 1800 recordings were made
on human-human handshaking. The averaged duration
and amplitude of the position trajectories are shown in
Table 2. The average handshake lasts about 1 s, with a
peak amplitude of about 0.1 m.

The following strategy is used to implement active
and passive robot behavior. When the human is in a pas-
sive state, the robot tries to take the lead. Impedance
parameters in the admittance filter are set to high values,
and no modification is made to the current reference
trajectory; subsequently, the robot goes on as planned.
When the human is active, the robot tries to follow the
human’s lead. The impedance parameters are set to
low values, and the commanded trajectory is modified
such that the robot synchronizes to the human motions,
which requires a continuous adaptation of the reference
trajectory.
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A first trajectory adaptation algorithm was proposed
and implemented in Wang et al. (2009b). In the cur-
rent work, a refined trajectory adaptation strategy is
proposed and implemented. The main issue of the tra-
jectory adaptation algorithm in Wang et al. is dividing
each handshake cycle into four segments and updating
the planned trajectory only at the beginning of each
segment. Therefore, no matter how much effort the
human applied to change the current trajectory dur-
ing the segment, the effect only appeared when the next
segment started. This delay of a quarter of a cycle left
an irresponsive impression on the participants in the
experiment.

To fix this latency issue, updating the trajectory at
each time instance is desired. The strategy of trajec-
tory adaptation is not unique; selected strategies clearly
reflect different personalities of a robotic partner during
handshaking. Here a general frame of online trajec-
tory adaptation is proposed, with more possible tunable
parameters for future customization.

1. A handshake cycle is still divided into segments.
Each starts at peak /valley points (A) and ends at
equilibrium points (E), or starts at E and ends at
A, as shown in Figure 4. However, this segmen-
tation is no longer used for trajectory updating,
but to keep a sinusoidal form of the overall shaking
trajectory.

2. As suggested by the human-human handshaking
results in Table 2, a typical handshake lasts for 1s.
Therefore, each segment is initialized to be of time
length D; = 250 ms. A count ¢ is introduced to
note how much time passed since the beginning of
the current segment, 0 < ¢ < D,,.

3. At each time instance #, D,, is updated according to
the interaction force and current position. The cur-
rent segment can be immediately terminated once
a significant force opposite to the current direction
of motion is detected, which suggests the human
wants to lead. The current ¢ is set to Dy, .

4. At each time instance, the destination amplitude
Ay+1 or E,yq of the current segment is updated
by Equations 5 and 6 depending on the actual
segment:

Accelerated ascending
----- Decelerated ascending
T~ — — — Accelerated descending
_/ \ v Decelerated descending
/ \
. Seg.3
Seg21  [as  NOF
- \
3 ! \
2 ! -
E 1 B Seg.5
< 9 - | B
E2 .
D1 D2 Seg4 ",
Al
Seg.1
Time

Figure 4. Refined segmentation of the shaking trajectory.

Eyr1 = —dir-B1(B2 + f2) Sin(z<i + 3>)+ Xp.

2\ D,
(5)
Ay = dir - By B2+ f) (1 ~sin 2’;) +x5. (6)

In both cases dir is the current direction of
motion, dir =1 for ascending, dir = —1 for
descending. f; and «; are the current measured
force and position, respectively. f1 and B, are
tunable parameters determining the amount of
adaptation to the interaction force. The sine func-
tion is introduced to take into consideration the
feasible amount of change applied to the desired
amplitude: the closer the current ¢ is to the end
of'a segment, the less the allowed modification
term will be, in order to avoid exceeding the speed
limitations of the robot.

5. With the updated D,,, A,+1, and E,41, together
with the measured current position, velocity, and
acceleration, a fifth order polynomial can be calcu-
lated connecting the current and desired position
smoothly (with continuous position and velocity).

The refined trajectory adaptation algorithm shares
identical input and output signals with the original
algorithm. The performance of the refined trajectory
adaptation algorithm is superior to the one proposed
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in Wang et al. (2009b), providing improved response
speed and a wider range of adaptability. The result of the
interactive controller in Section 2.3 was achieved with
the refined trajectory adaptation algorithm. The results
of the interactive controller using the original trajectory
adaptation algorithm can be found in one of our earlier
publications (see Wang et al.).

2.2.4 Extended Degrees of Operation. In carly
implementations, the arm motion for handshaking was
modeled only along the vertical direction. Hence, when
implemented in the robot, the other directions were
fixed, with the human user only able to move the robot
along the vertical translational DOF.

A human-human handshake is not subject to such a
1-DOF constraint. To remove it, and hence improve
natural interaction, the system needs to be extended
from 1-DOF to multiple 1 DOF.

The force /torque sensor mounted on the robot end-
effector is capable of measuring 6 DOF information,
namely three translational forces and three rotational
torques. All calculations are made in Cartesian space.

A virtual impedance model is introduced in each of

the 5 DOF, namely two other translational DOF and
three rotational DOF. The impedance models enable the
user to move the robot end-effector along that direc-
tion while maintaining stability. The robot is passive
along the other 5 DOF, with the reference trajectory
generated by the virtual engine only applied to the ver-
tical direction. Distinctive impedance parameters are set
empirically for each DOF.

2.3 Objective Performance Evaluation
and Results

Validation tests with a small number of participants
were carried out prior to the subjective evaluation exper-
iments to assess the performance of each module of the
system.

2.3.1 HMM Estimator. It is not straightforward
to define a controlled environment to collect training
data for the HMMs, since the actual interaction strat-
egy is practically hidden. In order to obtain training

100 T

Percentage of correct recognition

60

- | —%— 20 groups training data
55k A ;.| —%— 50 groups training data|-

50 100 150
Symbol Sequence length

Figure 5. HMM training results comparison for different symbol
sequence lengths. A symbol sequence of length |00, corresponding to
100 ms in time, provides an accuracy rate of more than 90% for 50
groups of training data.

data where the human was either always active or always
passive, the participants were instructed to act either
uniformly actively or passively throughout a trial. Train-
ing data were obtained from four participants. They
were instructed to either always take the lead or always
follow the lead of the robot. One hundred groups of
training data were recorded for each participant, that

is, 50 for active and 50 for passive. The results of train-
ing using different data sets are shown in Figure 5. For
50 groups of training data (taken from the same partici-
pant), a sequence length of 100 ms achieved an accuracy
rate of more than 90%. Further increasing the length of
the symbol sequence would further delay the response of
the system to human behavior changes, while the benefit
of increasing estimation accuracy is marginal. There-
fore, the combination of 50 groups of training data and
a symbol sequence length of 100 ms is implemented in
the robot controller.

The two trained HMMs for passive and active are
implemented into the HLC which executes in real
time (1 kHz). The input sequence length of 100 ms is
employed.

Instructing participants about their handshake behav-
ior is a necessary compromise, given that information
about the actual interaction strategy is not available
to the robot. However, naturally this will degrade the
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confidence level of the training results, since accurate
validation is not possible. Fortunately, the lack of infor-
mation about the current human interaction strategy
can be compensated for by employing a large amount
of training data. First of all, each of the four participants
was trained for a long session before the actual training
data for HMMs was recorded. Second, in Figure 5 the
accuracy results are defined as the percentage of time
that the output of the interaction strategy estimator is
correct. Training with 50 groups of data from the same
participant provided the best result; where using the
evaluation recordings made with the other three par-
ticipants, for more than 90% of the time, the estimator
gave correct interaction strategy estimations.

2.3.2 Overall System Performance. After test-
ing the individual modules, the HLC was integrated.
Human-robot experiments were carried out using both
the basic controller and the interactive controller. The
participants were different from those in the train-
ing group, and the results are shown in Figure 6 and
Figure 7. For the basic controller, compliance was only
provided by the virtual impedance model of the robot,
while for the interactive controller the robot could syn-
chronize to the human. Another observation can be
made from the force signals, that for the basic controller,
the human needs a relatively large force to drive the
robot along the measured trajectory; while for the inter-
active controller, much lower forces are needed since
the robot can detect the human trying to lead and hence
adapts its reference trajectory to follow.

It is worth mentioning that the trajectories in Figure 6
and Figure 7 are significantly longer than the general
human-human handshake length of around 1's. They
were recorded with naive subjects handshaking with
the robot. Note that a handshake with a robotic partner
generally takes longer than with a real human partner. In
Figure 7, the participant released the hand at around 5,
while the trajectory generator was set to stop after 2 s of
the last nonzero force measurement. Therefore, with the
estimated human interaction strategy being passive in
the last 2 s, the robot took over the lead and followed a
rather standard trajectory as predefined in the trajectory
generator, until it stopped at around 7 s.

0.2 T T T T T T T
: : —— Reference Handshake Trajectory
Real Handshake Trajectory

End—effector Position [m]

-0.05

~01 ; i i i i i i
0

40k ........ e ,,,,,,, e

Measured Interaction Force [N]

Time [s]

Figure 6. Experimental results of human-robot handshaking using
the basic controller. Upper: position; lower: force. The reference
trajectory is not changed according to human input. The human keeps
applying large forces to drive the robot.

The 2 s waiting period before stopping a handshake
is a practical measure, since the robot does not know
when the human releases the hand. This issue can be
easily solved by adding a sensorized robotic hand onto
the robotic arm, which measures human grip force and
hence obtains the information of when the human hand
has been released. Practically, however, after releasing
the hand, the participant will not feel any of the robot
motion, hence this issue does not affect the experimental
results.
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Figure 7. Experimental results of human-robot handshaking using
the interactive controller. Upper to lower: position, force, symbols,
estimated human interaction strategy. Reference trajectory is modified
according to the human input. Force decreases as the robot
synchronizes with the human.

Figure 8 shows the estimated results during the same
handshake as in Figure 7. The first observation from
Figure 8 is the occasionally negative HBP estimates. The
stability of the system is not affected by the negative esti-
mations, as they are not directly involved in the position
control loop. The separation of large and small values,

Time [s]

T T T T T T T

Time [s]

Figure 8. Estimated HBPs of human-robot handshaking using the
interactive controller.

however, should take into account the possible negative
values and use absolute values of each parameter. The
thresholds are shown in Figure 8 as dashed lines.

The results shown in Figure 7 and Figure 8 support
the notion that HBPs are more suitable for human
interaction strategy estimation than the measured force
signal, since force measurements contain information
exerted by both the human and the robot. Between 1.6—
1.9s in Figure 7, for example, the measured force spike
is applied by the robot driving the human, while the
human arm is actually loose and acting only as additional
inertia as can be observed in Figure 8. Therefore, despite
the high force measurement, the estimated interaction
strategy is passive.

On the other hand, the estimation results are also
affected by the threshold values in HBDPs. If in the afore-
mentioned example the threshold of /#; were set to 20
instead of 50, the resulting symbol between 1.6 and
1.9 s would have been 3 instead of 0, and the resulting
human interaction strategy would have been different.
Varying the threshold in HBPs can be interpreted to
some extent as changing the personality of the virtual
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robot partner, where higher thresholds suggest a more
dominant role, while lower values result in the robot
seeming more gentle and adaptive.

3 Subjective Evaluation with Human
Participants

In order to evaluate the overall handshake sys-
tem, a subjective evaluation experiment was designed
where the ground truth approach was employed. This
approach compared the actions of a person within a mul-
tisensory virtual environment to the actual behavior of
people in a similar situation in physical reality. In order
to achieve that, an experiment was designed where sub-
jects performed handshakes with the robotic system, as
well as with a human, and their evaluation scores for the
handshakes performed provided the basis for the evalu-
ation of this robotic system. This follows the strategy for
the measurement of presence in virtual environments
suggested in Sanchez-Vives and Slater (2005), which
views presence as the extent to which responses in a vir-
tual environment are similar to what would be observed
or expected in a similar real environment. In the present
experiment we directly compare the responses of peo-
ple to the robot handshake with their responses to the
human handshake.

3.1 Experimental Design

3.1.1 Scenario. In order to simulate a scenario
where several handshakes would be performed, we chose
a cocktail party, as in Giannopoulos, Wang, Peer, Buss,
and Slater (2010). Here we additionally introduced a
visual representation of the cocktail party along with
virtual characters. The participant was immersed in this
cocktail party as a virtual character standing behind a
bar and interacting with the other virtual characters. To
make the environment and the scenario more realistic, a
real table was placed in the laboratory in a 1:1 mapping
with the virtual bar seen on the virtual environment, so
that whenever the subject touched the virtual bar, which
he or she would be standing behind, there would be a
corresponding haptic feedback from the real table. The

sound recordings used were made from a real cocktail
party. The virtual environment, with the visual realism of
lighting and textures, the realistic sound, as well as the
haptic consistency of the virtual bar, created an immer-
sive experience to the participant from the onset of the
experiment.

Once the participant became immersed within the vir-
tual environment, a virtual character entered the room
and walked toward the participant. The virtual charac-
ter stopped in front of the participant and greeted him
or her with a simple sentence and reached out his or her
hand to receive a handshake, which was expected in the
greeting context. When the participant reached out for
the virtual hand, he or she found the robot hand in the
real world which was mapped 1:1 to the location of the
virtual character’s hand in the virtual environment. Fur-
thermore, the participant’s hand was tracked by the data
glove and he or she could fully control the position of
his or her own virtual hand. After completing a hand-
shake, the virtual character turned around and left the
room. This procedure was repeated with 18 distinct vir-
tual characters, which once completed, concluded the
experiment.

There were two experimental factors. The first was the
main experimental condition of interest, which we call
robot type, whereas the second factor was the gender of
the avatar that shook hands with the subject. There were
three robot types: basic robot, interactive robot, and
human driven. In the basic robot condition, the robot
was controlled by a position controller with a fixed sinu-
soidal reference trajectory, as described in Section 2.1.
In the interactive robot condition, the controller with
the updated trajectory generator was employed, as
introduced in Section 2.2; while in the human-driven
condition, the second robotic arm was employed by
an experimenter to deliver a handshake to the partici-
pant via teleoperation. No comparative conditions were
intentionally introduced in vision and sound during the
actual experiment.

3.2 Response Variables

3.2.1 Questionnaires. Prior to the experiment,
the subjects completed a preexperiment questionnaire
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providing demographic information about sex, age,
prior experience on virtual reality, level of knowledge
of computing, and whether they had experienced any
similar experiments before (as the participants were
students from Technische Universitit Miinchen, there
was a possibility that they had participated in previous
studies involving the robot performing the handshakes).
At the end of the experimental session, the subjects
were required to complete a postexperiment question-
naire that assessed various aspects of presence. The
complete set of questions is given in the Appendix.

3.2.2 Handshake Score (HS). The main
response variable studied for the evaluation was provided
by the subjects throughout the experiment. Namely,
immediately after performing cach handshake, the sub-
jects were required to call out a score between 1 and
10 representing the degree of belief that the handshake
had been exchanged with a human. A value of 1 meant
that it had definitely not been with a human, and 10
definitely with a human.

3.2.3 Number of Correct Classifications
(NCC). In order to examine the impact of factors such
as age, gender of the subjects, and their relationship with
the presence scores, a new response variable was con-
structed: the number of correct classifications (NCC)
out of the 18 choices made by the participants. This clas-
sification was defined as follows: for a given response by
the participant, a variable x was classified as true if:

* The response was between 1 and 3 for the basic
robot.

* The response was between 4 and 7 for the
interactive robot.

* The response was between 8 and 10 for the human-
driven robot.

The total number of true xs for every participant
defined the NCC of that participant.

3.2.4 Hypotheses. Our hypothesis was that
on average, HS would be greater for the interactive
robot than for the basic robot. A very good result
would be that on the average, HS would not be

Figure 9. Experimental setup.

significantly different between the interactive robot and
the human-driven condition. The overall hypothesis was
therefore

Mean(HS(human-driven))

= Mean(HS(interactive robot))>Mean(HS(basic robot)).

Regarding the effect of gender of the avatar, this was
an exploratory issue to examine whether there was any
impact of avatar gender on the response, as well as any
possible interaction between gender and robot type.

3.3 Materials and Methods

3.3.1 Equipment. For the purposes of this exper-
iment, two ViSHaRD10 robotic arms were used: one
robotic arm was used as a handshaking device, while the
other was used as the haptic interface in order to enable
the participants to shake hands remotely with another
human. Two identical 6-DOF force /torque sensors
integrated within each of the robotic arms were used
to measure the interaction forces exerted between the
users. Similar to the objective performance evaluation
experiments, the robotic arm used by the participant
was mounted on a platform and a dummy hand made of
rubber was mounted on this robotic arm (see Figure 9).

The participants wore an nVISOR SX 60 stereo head-
mounted display (HMDj; NVIS, 2011) for the display of
the visual scenario, and a pair of sound-isolating head-
phones for the sound inside the virtual world, which was
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also used for the purpose of isolating the motor noise of
the robot.

In order to map the body and head motions into the
virtual system, Intersense IS 900 motion trackers (Inter-
sense, 2011) were placed on the head, back, and wrist of
the participant. An Immersion data glove (CyberGlove
Systems, 2011) was used to measure the participant’s
hand movement in order for it to be reflected by his or
her avatar.

In order to validate the performance of the developed
robot control algorithms, a human handshake partner
was used as a comparative condition during the evalua-
tion experiment. Although it is possible to use a specially
designed end-effector that two humans can hold, as
shown in Wang, Lu, Peer, and Buss (2010), here a dif-
ferent approach was used: teleoperation. When using the
two-sided end-effector as formerly proposed in Wang
et al., each handshake partner held on to one end of
the end-effector, but only one force sensor was used,
providing only one combined force measurement for
both sides. As a consequence, it was not possible to dis-
tinguish between the forces applied by each side. To
achieve separate force measurements, in this work, the
two humans were separated by using a teleoperation
setup. This setup consisted of two robotic arms, each
equipped with one force sensor mounted at the end-
effector, such that the force applied by either side could
be accurately measured. In addition, a universal virtual
impedance was employed to govern the force /position
relationship at both sides. Force measurements were
exchanged bilaterally to calculate the correspond-
ing desired position for each robot (see Peer & Buss,

2008).

3.3.2 Visual Rendering. In order to provide mul-
timodal feedback during handshaking, a virtual cocktail
party scenario was created (see Figure 10), which shows
the view of the participant into the virtual world. An
extended visual scene was developed based on the pro-
totype reported in Wang et al. (2010). In comparison
with recently reported similar systems (Giachritsis, Bar-
rio, Ferre, Wing, & Ortego, 2009; Spanlang, Frohlich,
Fernandez, Antley, & Slater, 2007), the new visual sce-
nario generates full body human animations online with

(b)

Figure 1 1. Comparison of virtual character decorations: (a) before
decoration, (b) after decoration.

the input data from the haptic subsystem as well as from
the motion trackers placed on the human participant.
At the same time, high-fidelity facial details are main-
tained to provide realistic interaction experiences for the
participants.

Building on the visual rendering algorithm developed
in Wang et al. (2010), facial details of the virtual charac-
ters were significantly improved by importing external
textures to the face model to restore lost information
due to importing the character from development soft-
ware to real-time rendering software. Figure 11 shows a
comparison between the initial virtual character and the
one after decoration. Significant improvements can be
observed for the eye, eyebrow, lips, hair, and so on.

A high fidelity virtual hand model of 24 DOF (see
Cobos, Ferre, Ortego, & Sanchez-Uran, 2008) was used
to represent the hands of virtual characters. The hand
model is capable of real-time hand animation with the
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Figure 12. The first virtual environment used in training sessions.

input data measured from a data glove worn by the par-
ticipant. The location and orientation of the hand in the
virtual world was registered with the location and ori-
entation of the robot end-effector in the real world. An
unactuated rubber hand was mounted on the robot arm,
such that after fine calibration, the participant could
reach out and grab this hand at the same location of the
virtual hand as in the virtual world.

Eighteen virtual characters were created with differ-
ent clothing and facial details. They were all used in the
evaluation experiment as virtual handshake partners. An
additional virtual character was created as the avatar or
virtual representation of the human participant. Since
the avatar’s head was always behind the virtual cam-
era, it never appeared in the view. In order to minimize
computational load, the avatar’s head was not designed.

Two virtual environments were designed, one sim-
plified for use during training sessions, the other for the
main experiment. The first environment was kept sim-
ple, consisting of an empty space with a floor with black
and white mosaic bricks, with one fixed virtual character
together with the virtual representation of the partici-
pant. A single spotlight was used to light the virtual
world, as shown in Figure 12. This environment was
used during training sessions. The aim was to familiarize

Figure 13. The rendered result of the second virtual environment.

the participant with the virtual reality without experi-
encing the main experimental environment. Therefore,
an empty space was provided instead of the barroom
scenario, with a fully functional virtual character as

the handshake partner who happened to be in a fixed
location.

The second virtual environment was much more com-
plex than the training environment; in this case, the
virtual world represented a cocktail bar. A number of
virtual characters were programmed to approach the
human participant in order to shake hands, while the
actual robot location was fixed in the physical world,
meaning the participant was required to stand in the
same place the virtual characters came over to greet
him or her and then leave again. Figure 13 shows the
design of the virtual bar environment, consisting of the
following elements:

1. There was a virtual room equal to the physical
room in which the virtual reality was embedded,
and which was designed to be a bar.

2. Two doors were placed on each side of the room,
so that characters could enter and leave the room.

3. In the real world, the participant stood ona 1 x 1 m
platform. A table was placed in front of the par-
ticipant such that the participant could reach the
robot over the table while preventing an accidental
walking away from the platform.

4. In accordance with the table in the real world, a
virtual table of the same height was placed in the
virtual world. The participant, similar to a bar-
tender, was hence constrained by this table, being
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able to see and shake the hand, but not to actually
walk into the virtual world.

5. To address the ambient noise of the bar, a number
of additional virtual characters were placed around
the room. However, to minimize processing time,
these characters did not move.

6. The lighting condition in the room was set to be
dim, with rotating lights of time-varying colors.

3.3.3 Sound Rendering. In order to display plau-
sible sounds that are typical for a cocktail bar, a sound
rendering algorithm was developed, which was able
to replay background sound as well as the real-time
conversations of virtual characters.

For sound rendering, one background sound clip was
prerecorded with a number of virtual character dialogue
clips as add-ons to it, which were mixed in online and
were triggered by events. During the experiment, the
background noise started to play first. When the robot
was ready, the experimenter controlling the events hit
one key that triggered the playback of an animation that
moves the character’s mouth and the playback of'a cor-
responding dialogue at the same time. In order to fit
mouth motion with the dialogue, synchronization of
auditory and visual cues was required.

In order to achieve mouth synchronization in the
virtual characters, Voice-O-Matic (2011) was used to
generate mouth motion information out of voice clips.
Once this information was available, it was mapped to
key frames in visual rendering, while keeping the timing
information. For each dialogue clip, such a sequence was
created oft-line. An audio library FMOD (2011) then
read in this information and switched key frames to gen-
erate the talking animation that was synchronized with
the voice.

3.4 Experimental Procedure

Twenty-one participants were recruited (10 male,
11 female). They were full-time students from Tech-
nische Universitit Miinchen. Each of them signed an
informed consent for their participation to the experi-
ment. Each participant took around 30 min to finish the
experiment, and was given €5 as compensation.

The experiment consisted of three parts: preex-
periment briefing, the training session, and the main
experiment. The participants were not allowed to see
the robot throughout the experiment, avoiding the
appearance of the robot which could interfere with the
immersion into the VR environment. A trained exper-
imenter guided the participants through the entire
procedure.

1. Preexperiment Briefing. Once the participant
arrived at the site, the trained experimenter intro-
duced the experiment and handed all the necessary
documentation to be filled out (consent form, pre-
experiment questionnaire) outside the experiment
room, thus preventing the participant from viewing
the robot prior to the conclusion of the experi-
ment. Upon completion of the documentation,
the participant was blindfolded and guided into the
experiment room again to prevent visual contact
with the robot. The participant was then requested
to put on the necessary devices (HMD along with
backpack and data glove) and run a set of required
calibrations.

2. The Training Session.  The participant per-
formed six handshakes of the basic condition.

At this stage, the participant saw a female virtual
character in front of him or her with her hand pro-
truding as if awaiting a handshake. The participant
was then asked to reach for the hand of the virtual
character and perform a handshake. At this point,
the experimenter explained to the participant about
the rating procedure, that after each handshake a
score from 1 to 10 needed to be provided verbally
by the participant, about how close the handshake
felt to shaking hands with a real person, where a
score of 1 meant that the handshake was definitely
not performed by a human, while a score of 10
that the handshake definitely was performed by a
human. The participant then continued with the
training session for another six handshakes, this
time giving a score after each one. Throughout
this training session, the handshakes were with the
basic robot and the interactive robot, presented in a
random order.
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3. The Main Experiment.
18 handshakes, matching the number of different
avatars that had been created. There was an arbi-
trarily determined sequence of male and female
avatars, but it was the same sequence used for all
subjects. Specifically it was:

M-F-M-F-F-M-F-F-M-F-M-M-F-F-M-M-F-M

At this stage, the third condition was introduced,
namely the human-driven condition, where the
handshake was performed between the partici-
pant and an experimenter in a remote location via
teleoperation of the robotic arm. Each of the three
conditions in comparison were repeated six times
in random order. The visual environment presented
to the participant at this stage was the cocktail bar-
room, which had been unknown to the participant
up to that moment. Therefore, initially the partic-
ipant was given some time to look around and get
accustomed to the environment as well as his or her
virtual representation and get familiar with mov-
ing his or her virtual hand. A prerecorded cocktail
party background sound, with people chatting and
background music, was played back. At intervals of
15 s a virtual character entered the room, walked
toward the participant, performed a handshake,
and then left the room. After each handshake, the
participant was supposed to rate the handshake
performed (as practiced throughout the training
session ), according to their experience. No further
interaction between the expert and the participant
was expected, as the participant was fully instructed
by the virtual events occurring in the virtual world.
4. Postexperiment. After the experiment, the par-
ticipant was led out of the experiment room to fill
out the postexperiment questionnaire and provide
further comments.

3.5 Statistical Analysis

This was a two-factor within-groups design. In
order to account for the within-group eftect, this was
analyzed as a 3-way ANOVA (Robot Type, Gender, and
Subject) with interactions.

This session consisted of Table 3. Mean and Standard Errors of Handshake Scores for

Each Robot Type

Robot type Mean SE
Basic robot 3.0 0.17
Interactive robot 5.3 0.17
Human-driven 6.8 0.21
10
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Figure 14. Mean and standard errors of the handshake scores by
robot type.

NCC can be considered as a binomial random variable
with » = 18, and hence logistic regression can be carried
out on the explanatory variables such as gender, age,
game playing, and so on.

Additionally we can consider Classification as Human
(CH), which is a score of how often they felt they were
shaking hands with a real human. This is defined as the
number of times out of 18 they gave a score of >8. Cor-
relations of CH with the presence-related scores from
the questionnaires could be used as a consistency check,
since we should expect, for example, that the more often
the participants had felt that they were shaking hands
with a real person, the greater should be the CH.

3.6 Results

3.6.1 Handshake Scores. The means and stan-
dard errors of the 126 observations for each robot
type are shown in Table 3 and Figure 14. The 3-way
ANOVA showed a highly significant difference between
the means of Robot Type (p = .0000), but not for
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Gender (p = .68). Moreover there was no signifi-
cant interaction between Robot Type and Gender
(p = .54) and the 3-way interaction term was also
not significant (p = .09). However, the Jarque-Bera
test rejected the assumption of normally distributed
errors (p = .004). Investigation of the residual errors
showed that there was one outlier, and when this was
removed the ANOVA satisfied the assumption of nor-
mality with Jarque-Bera (p = .16). Qualitatively, the
results do not change with this outlier removed. The dif-
ference between the main effects of Robot Type remain
highly significant (p = .0000), there is no difference
between the Gender types (p = .97), no interaction
effect (p = .32) and the full 3-way interaction is not
significant (p = .13).

A multiple comparisons test of the differences
between the main effects shows that

Mean(RT(basic robot)) < Mean(RT(interactive robot))

< Mean(RT(human-driven)),

even at an overall level of significance P < 1.0 x 10715,

Hence, although the evidence is extremely strong that
the interactive robot was considered more like a real
handshake than the basic robot, it is equally strong that
it could be reliably distinguished from the real human
handshake.

Table 4 shows the handshake score frequency distri-
butions across the three types of interface. It is clear that
although on the whole each of the three types of inter-
face were correctly recognized, there were classification
errors. For example, the human operator was scored as a
robot (handshake score < 2) 11 out of 126 times, and
there was even one classification of the basic robot as
human (a score of 9).

Figure 15 provides a view of the distribution that
is easier to understand, where the scores have been
grouped into successive pairs. The basic robot distri-
bution is approximately a reverse J-shaped distribution
with the mode at scores (1,2), and the human is almost
J-shaped with the mode at (7,8) which has a frequency
just slightly higher than that for (9,10). However, the
interactive robot distribution is more symmetrical about
the modal scores of (5,6), with some skew toward the

Table 4. frequency Table of Handshake Score by Type of

Robot
Handshake Basic Interactive Human-
score robot robot driven Total
1 39 3 4 46
2 23 12 7 42
3 14 11 4 29
4 20 12 6 38
5 17 30 14 61
6 6 19 12 37
7 3 21 22 46
8 3 13 19 35
9 1 5 28 34
10 0 0 10 10
Total 126 126 126 378
70 . .
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Figure 15. Frequency distribution of the handshake scores grouped in

successive pairs.

higher scores of (7,8). Using Kolmogorov-Smirnov
tests, the three distributions are highly significantly
different with the basic different from the interactive
(p < 2.05 x 10712) and the interactive different from
the human (p < 4.0 x 1079).

3.6.2 Individual Differences. Next, we con-
sider whether the results could have been influenced
by the characteristics of the participant—their age,
gender, previous experience with computers, with vir-
tual reality in general, their computer game playing,
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Figure 16. Scatter diagrams for CH on three presence-related questions.

and whether they had either taken part in any previ-

ous experiment, or seen the robot before. For this we
use the constructed variable NCC. The mean of NCC is
10.2 with 8§D 3.3. Logistic regression of NCC on these
possible explanatory variables derived from the preex-
periment questionnaire found no significant associations
atall.

3.6.3 Consistency Checks. Finally for con-
sistency checks we use the variable CH and examine
how well this correlated with various presence-related
questions in the postexperiment questionnaire, in par-
ticular how much they felt to be in a place (place), how
much they felt that they were socializing with real peo-
ple (social), and how much they felt they were shaking
hands with a real person (real person).

Figure 16 shows the scatter diagrams and gives the
corresponding Pearson correlation coefficients for CH
on the scores for these three questions. It is clear that
generally people gave handshake scores that were con-
sistent with their later subjective evaluations in the sense
that the more they classified the handshake as human
the greater the likelihood that they would later say

that they felt that they had been in a place that was a
social situation where they were interacting with real
people.

3.7 Discussion

The experiment demonstrates a fundamental
advantage of the interactive robot over the basic robot,
in that participants were more likely to rate it higher on
the scale toward being like a human handshake. How-
ever, it is also the case that there was a great discrepancy
between the interactive robot and the actual human
handshake on this same score.

A possible cause can be found from the comments
given by participants after the experiment, where many
mentioned that the robot controller at times failed
to stop a handshake at the right time. Currently, due
the fact that there is no hand with movements that
are directly robot controlled, the robot controller can
only decide when to stop a handshake by the measured
arm interaction force, as discussed in Section 2.3.2. In
other words, for the current setup, the interactive robot
could only stop handshaking after the human partici-
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pant stopped first. This sometimes resulted in lingering
handshakes and hence lower presence scores for the
interactive robot.

4 Conclusions and Future Work

We have described an interactive controller
designed to adapt the reference trajectory of the low-
level controller for human-robot handshaking according
to the actual interaction. HMMs with haptic inputs were
employed for human interaction strategy estimation.

A fast online parameter identification method was used
to provide estimations of human behavior parameters.
An HMM-based estimator then estimated the current
human interaction strategy according to the identified
human behavior parameters.

Multimodal virtual scenarios were created and inte-
grated with haptics. Human-robot experiments were
carried out to evaluate the performance of the overall
system. Finally, the robot operating in interactive mode
was scored much more human-like than the robot in
basic mode.

The interactive controller can be improved and gen-
eralized in several ways. The system can be extended to
generate a variety of other types of handshakes, since
active and passive do not necessarily cover all human
interaction strategies. The interactive controller was
designed with a high potential for generalization, and
the number of HMMs and the number of states within
each HMM can both be modified to meet the need of
specific tasks; continuous HMMs could be studied when
considering HBPs as HMM inputs. HMMs could also
be considered for motion generation. Currently, the par-
ticipant grips an unactuated rubber hand, which could
be replaced by an actuated robotic hand in the future,
which would provide the participant with improved
overall experience. The fields of application could be
generalized, for instance to rehabilitation, where robotic
assistance can be provided with the functionality of
adapting to human interaction strategies, as well as sen-
sorimotor skill training, where robotic experts can guide
human trainees.
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Appendix: Preexperiment and
Postexperiment Questionnaires

Please state your level of computer literacy on a scale from 1 to 7.
(Novice) 11 2(] 31 40 50 60 70 (Expert)

Please rate your level of experience with computer programming.
(Novice) 101 201 31 400 50 6] 70 (Expert)

Have you ever experienced ‘virtual reality’ before?
(No experience) 171 21 301 4[] 50 6] 70 (Extensive experience)

How many times did you play video games (at home, work, school, or arcades) in the

last year?
Never

1-5
6-10
11-15
16-20
21-25
>25

Oooooo

How many hours per week do you spend playing video games?
0 0
<10
130
350
5-70
790
>9 O

Figure 17. Preexperiment questionnaire.

4.

Indicate your experience of being in a real bar on a scale from 1 to 7, where 7
represents a normal experience of being in a real place.

lab 100 200 30 40 50 60 70 RealBar

On a scale from 1 to 7, how often did you have the feeling that you were
socializing with real people?

Notatall 1 20) 30 401 50 6l 70 Verymuch

On a scale from 1 to 7, how often did you have the feeling that you were shaking
hands with a real person?

Notatall 101 200 30 40 50 60 70 Verymuch

On a scale from 1 to 7, throughout the experiment how often did you think
about the type of person you might be shaking hands with?

Notatall 101 200 30 400 50 60 70 Verymuch

In how many of the 24 handshakes did you have the illusion that you were
shaking hands with a human?

In how many of the 24 handshakes did you have the illusion that you were
shaking hands with a machine?

If you felt that sometimes you were shaking hands with a machine, what specifically

about the handshake seemed to you to be nonhuman?

Further Comments:

Figure 18. Postexperiment questionnaire.



