
GPU based Detection and Mapping of Collisions
for Haptic Rendering in Immersive Virtual Reality

Bernhard Spanlang∗, Jean-Marie Normand∗, Elias Giannopoulos∗ and Mel Slater∗†‡
∗EVENTLab, Facultat de Psicologia, Universitat de Barcelona, Spain
†ICREA – Institució Catalana de Recerca i Estudis Avançats, Spain
‡Department of Computer Science, University College London, UK

Abstract—We present a method that maps collisions on a
dynamic deformable virtual character designed to be used for
tactile haptic rendering in Immersive Virtual Reality (IVR). Our
method computes exact intersections by relying on the use of
programmable graphics hardware. Based on interference tests
between deformable meshes (an avatar controlled by a human
participant) and a few hundred collider objects, our method gives
coherent haptic feedback to the participant. We use GPU textures
to map surface regions of the avatar to haptic actuators. We
illustrate our approach by using a vest composed of vibrators for
haptic rendering and we show that our method achieves collision
detection at rates well over 1kHz on good quality deformable
avatar meshes which makes our method suitable for video games
and virtual training applications

I. INTRODUCTION

In this paper we propose a precise collision detection
technique to control vibrotactile devices for IVR applications.
Our method is based on a geometry shader, thus collisions
are correctly detected without relying on bounding volumes
but based on the exact geometry of the virtual characters. The
main benefit of our method from a computational point of
view is that by taking advantage of the programmable graphics
hardware, our approach is fast, extremely easy to implement
and that it is performed in a single render pass. For precise
tactile feedback, our system detects exact collisions in the
Virtual Environments (VE) based on the deformable geometry
of each 3D avatar.

The remainder of this article is structured as follows:
the next section is devoted to some background on tactile
feedback. Section III presents our GPU based collision de-
tection technique for deformable dynamic characters in VE,
Section IV gives performance results while Section V covers
the hardware vibrotactile setup we used. Section VI presents
how we mapped the collision detection results of our geom-
etry shader to the vibrotactile actuators. Finally we present
conclusions and suggest future work.

II. BACKGROUND

Lécuyer et al. [1] showed that haptic feedback (rotating the
participant’s wrist) improves the perception of self-motion in
VR, reinforcing the idea that haptic feedback is important
to enhance the feeling of presence. In [2], Bloomfield and
Badler used vibrotactile feedback in order to enhance Karate
training in VR by correcting students’ Karate movements using
a Tactor suit that uses vibrator arrays.

Haptic feedback for VE can also be applied through pneu-
matic actuators. TNGames1 propose the FPSVest, a haptic
vest composed of 8 pneumatic cells designed to simulate the
direction and force of bullet impacts in a first person shooter
game. The University of Pennsylvania developed the Tactile
Gaming Vest2 (TGV) designed for the same purposes as the
FPSVest. The TGV uses 4 solenoids actuators on the chest and
shoulders and 2 in the back of the vest. Moreover, vibrators
are clustered around the shoulders to recreate slashing effects.

LindeMan et al. [3] presented a haptic feedback vest devel-
oped for military purposes. It was composed of 16 vibrotactile
devices designed to improve soldiers experience during virtual
training. As for the other vests, tactors are fired whenever
collisions are detected in the virtual world. However, this
system only relies on a fairly simple collision detection based
on bounding boxes of the skeleton of the soldier’s virtual
avatar.

Next we introduce our exact, fast and easy to implement
GPU based collision detection which is tailored to map colli-
sions to tactile actuators.

III. GPU BASED COLLISION DETECTION GEOMETRY
SHADER FOR DEFORMABLE DYNAMIC VIRTUAL

CHARACTERS

Methods to detect collisions have been the topic of intensive
research over the last three decades mainly for computer
graphics and virtual reality applications. Many methods have
been introduced that are based on volume hierarchies, in which
the volumes range from roughly fitting bounding spheres to
tighter fitting axis or object aligned bounding boxes to even
closer fitting volumes.

Early approaches mainly aimed at detecting collisions be-
tween rigid objects but, with increasing processing power,
collisions between deformable objects such as in cloth or soft
tissue simulations were introduced. An overview of collision
detection with deformable objects on the CPU and GPU is
given in [4]. For a detailed and complete survey on recent
real-time collision detection methods both on CPU and GPU
the reader is invited to refer to [5].

Our method performs an intersection test between every
triangle of the deformable meshes and the rays formed by

1http://tngames.com/
2http://haptics.seas.upenn.edu

978-1-4244-6509-5/10/$26.00 ©2010 IEEE

Fig. 1. Illustration of our Geometry shader. When a collision is detected,
the actuator ID map is looked-up in order to know which actuator should be
triggered for haptic feedback.

the previous and current position of all potentially colliding
objects (cf. Fig. 1).

On the CPU such an approach would be highly inefficient
and has a complexity of O(n2). However, because we perform
this computation on the GPU’s highly parallel geometry shader
units it remains efficient enough for haptic rendering (cf.
Section IV) even without possible additional optimisation.

Whenever a collision between a triangle of a mesh and a ray
(representing the movement of each collider since last frame)
is detected, we look-up in the actuator ID texture and emit a
vertex from the geometry shader that has as an attribute the
ID of the corresponding actuator, cf. Fig. 1. If no collision
is detected, no vertex is emitted and nothing is written in the
collision texture. As a consequence, fragments corresponding
to the colliders that did not collide will contain the clear color
value (illustrated by ∞ in Fig. 1) since nothing is written into
it.

The encoding of the collision information is performed by
writing the actuator ID of the colliding point of the avatar
surface into the corresponding address in a floating point
render target. This requires converting the ID of the collider
to the normalized device coordinate (NDC) system for the
texture, where both X and Y values are in the interval [−1, 1].
We thus map the collider’s ID (i.e. a value between 0 and
the number of colliders nc) to the interval [−1, 1], collider 0
being mapped to the first pixel (i.e. the pixel corresponding
to the NDC -1) while collider nc corresponds to the last pixel
(which NDC coordinate is 1).

In the fragment shader we write the information required for
the collision response to the fragment color. In our case, this
information corresponds to the ID of the actuator that should
be activated in case of collision. Fig. 1 illustrates a collision
between collider ci and a triangle of the mesh that activates
vibrator number 7 (since 7 is stored in the actuator texture
addressed by the vertex texture coordinates of the triangle).

On recent GPUs we can also store additional information

Fig. 2. Collision detection shader performance. One dynamic avatar (∼5000
triangles) is tested against up to 100 dynamic colliders.

that could be required for the haptic rendering (e.g. speed of
the vibrator or pressure of an air cell) in up to 16 additional
render targets (depending on the GPU hardware) where each
target consists of fragments that contain a vector of 4 floating
point values.

IV. PERFORMANCE

In this section, we give details about the performance
achieved with our geometry shader for collision detection. The
system we used to test our method was a Windows 7 32bit ma-
chine with 3GBytes of RAM and an nVidia Geforce GTX285
graphics card embedding 1GByte of GDDR3 memory. The
virtual characters we used were composed of approximately
3000 vertices (5000 triangles), fully textured and animated. In
our tests we used linear blend skinning to deform the avatars’
meshes in the GPU’s vertex shader according to the skeletal
state of the avatar. This was achieved through HALCA [6], a
hardware accelerated library for character animation.

The time required for collision detection on a fully animated
virtual character with approximately 5k triangles is given
in Figures 2. Our test showed that our collision detection
runs at over 5kHz for a single collider and at more than
1kHz for up to 40 colliders. These tests were designed to
measure how fast the collision detection could be and were
performed with gDEBugger GL. This software developed by
graphicRemedy3 can give precise performance measurements
on OpenGL applications.

In order to obtain such performance on an application,
note that one would have to implement two threads using
two separated OpenGL contexts. One of those threads would
be dedicated to detecting the collisions, filling the actuator
textures within a first OpenGL context and firing the vibra-
tors, while the second thread and OpenGL context would be
dedicated to the animation of the avatars and the rendering of
the 3D scene.

Our approach is therefore well suited for the haptic feedback
purpose in IVR applications which we focus on. Indeed, in

3http://www.gremedy.com/

this context the number of characters controlled is likely to be
low, allowing us to compute our collision detection efficiently
(in less than 2ms, i.e. more than 500Hz). This is for 100
potentially simultaneous colliders which is sufficient for many
haptic applications. We haven’t measured the latency of the
system in detail but owing to our observations it is very low.

V. HAPTIC HARDWARE SETUP

The haptic interface used for this system is a haptic vest
that we have developed at the EVENTLab. It is composed of
a Velcro R© vest, an array of six vibrators and a microcontroller
board.

The microcontroller board is an Arduino4 MEGA which
utilizes the ATmega12805 programmable microcontroller. Fur-
thermore the microcontroller is coupled with an Xbee shield,
which allows the microcontroller to communicate wirelessly
with the computer, through the Zigbee6 specification. The
microcontroller is programmed to trigger the appropriate vi-
brators connected through the board’s output pins according
to the collision detection texture retrieved from the GPU.

The vibrators are coin type vibrators, which are encapsu-
lated within a metal casing, ensuring that no moving parts
come in contact with the user’s body. The vibrators, used
with our haptic vest, operate at a rate of 9000 rpm. The
intensity of the vibration can be controlled by modulating
the output signal, resulting in a reduced output voltage and
thus lower motor speed and smaller vibration. This can be
achieved through Arduino’s custom Pulse-Width Modulated
(PWM) output pins or through any other digital output pins,
provided that the microcontroller has been programmed to
efficiently modulate the output signal. The vibrators have been
mounted on small boards that can be clipped on custom made
Velcro R© strips, cf. Fig. 3. This way, the vibrators can be
placed anywhere on the vest to accommodate a variety of
configurations to meet the requirements of the application.

VI. MAPPING COLLISION INFORMATION TO
VIBROTACTILE HAPTIC RENDERING

Section III presented our GPU based collision detection
algorithm for virtual characters controlled by a user while the
previous section detailed the hardware vest we used for haptic
rendering. Now we explain how we map collision information
and the haptic feedback that should be felt by the participant.
The choice of this mapping can be easily modified depending
on the experiment carried out and the hardware setup used for
haptic rendering.

The mapping is coherent, meaning that the participant will
feel haptic feedback on his or her chest if the collisions were
detected on the chest of the virtual character in which he or
she is embodied. Of course, one can easily imagine a mapping
that would give haptic feedback on a different location on the
body than where the collision happened in the IVE. Fig. 4

4http://www.arduino.cc/
5http://www.atmel.com
6http://www.arduino.cc/en/Main/ArduinoXbeeShield

Fig. 3. Haptic rendering setup on a participant (top). Illustration of the
corresponding virtual character (bottom left) and of the actuator ID texture
used for collision to vibrators mapping (bottom right).

illustrates how we mapped 6 parts of the avatar’s torso to 6
different vibrators we used for the haptic feedback.

Each of the 6 gray areas of the torso on the right hand side
of Fig. 4 corresponds to a unique vibrator identifier in our
haptic vest. Areas outside those 6 colors (i.e. black values in
the texture) will not trigger any haptic feedback.

Whenever a collision is detected in the geometry shader,
cf. Section III, the texture coordinates of the vertices of the
triangle involved is used to look-up the vibrator index in the
actuator ID texture (highlighted in Fig. 4, right). To illustrate
our method, we only used 6 vibrators; but obviously any
number of vibrators that can be uniquely encoded in the texture
can be used.

As a consequence, the collision detected on a triangle of
the top right part of the chest of the avatar (highlighted in red
on left hand side of Fig. 4) will fire vibrator number 1, while
a collision detected on a triangle on the bottom left part of
the chest of the avatar (cf. blue highlight of Fig. 4 left hand
side) will activate vibrator 4. The same technique is applied
for each triangle of the avatar.

Fig. 4. The actuator ID texture (right) is created in order to map the triangles of the avatar (based on the diffuse map, left) to the vibrators of the haptic
vest. Level of gray areas of the actuator map will be mapped to some vibrators, while black areas will not be mapped to any vibrator.

Obviously the same technique can be applied for a much
larger number of vibrators that could cover the whole body
of the user. Our method could then allow a full-body haptic
feedback with collision detection using the exact geometry of
the dynamic deformable meshes. The mapping of vibrators to
the avatar’s body can be easily changed by editing the actuator
ID map. This can be achieved either by using image editing
software like Photoshop, or if required by programming.
Obviously the mapping can be changed also dynamically by
modifying the actuator ID map.

VII. CONCLUSION & FUTURE WORK

In this paper we have presented a novel method to perform
exact vibrotactile feedback based on collision detection per-
formed on the GPU. Our method is very flexible and efficient,
requires only a single render pass, performs exact collision
detections and has no restrictions on the shape of the meshes.

Such an approach could not be performed relying on
classical CPU-based collision detection techniques because we
do not have direct access to the geometry of the meshes on
the CPU if they are deformed by an avatar’s skeleton on the
GPU. Hence, a similar method on the CPU would be very
time consuming because the mesh information would either
have to be computed on the CPU or it would have to be
transferred from the GPU to the CPU in every animation cycle.
Our method has the advantage of being independent of the
shape of the model since our geometry shader only relies on
triangular meshes. Moreover unlike image based approaches
our method is view independent.

The method is most suitable for applications in which
meshes are deformed on the GPU in which there are a few, up
to several hundred, simple colliders. In order to demonstrate
the effectiveness of our approach, we applied it in an IVR ap-
plication. In this setup, a participant controlled a virtual avatar
and was equipped with a vibrotactile haptic vest composed of 6
vibrators. We used our collision detection technique to activate
the vibrators whenever a collision appeared on the virtual body
of the avatar.

For very large meshes the performance of the collision de-
tection can be improved by pre-culling mesh regions that will

definitely not collide, using the traditional bounding volumes
on the GPU. Haptic feedback can be improved by storing
additional information such as speed of the vibrator, etc. in
the texture by using the gl FragData GLSL mechanism in the
geometry and fragment shaders in order to take advantage of
multiple render targets, which number is GPU dependent. This
extra storage space would allow us to store more information
on how to perform the haptic rendering (e.g. storing the
rotation speed of the vibrators, the pressure of the air in air
cells, etc.).

As future work, we plan to focus on improving the way we
store information in the collision texture in order to perform
smooth transitions from one actuator to another. This could
be used for example to perform haptic rendering for when a
virtual object slides along the chest of an avatar. Instead of
enabling the actuators one after the other, we plan to create
the sensation of sliding by varying the actuator intensities.

ACKNOWLEDGMENT

This work was started under the EU FET project PRES-
ENCCIA, and has continued under the EU FP7 project
BEAMING and the ERC project TRAVERSE.

REFERENCES

[1] A. Lécuyer, M. Vidal, O. Joly, C. Mégard, and A. Berthoz, “Can
haptic feedback improve the perception of self-motion in virtual reality?”
Haptic Interfaces for Virtual Environment and Teleoperator Systems,
International Symposium on, vol. 0, pp. 208–215, 2004.

[2] A. Bloomfield and N. I. Badler, “Virtual training via vibrotactile arrays,”
Presence: Teleoper. Virtual Environ., vol. 17, no. 2, pp. 103–120, 2008.

[3] R. W. Lindeman, R. Page, Y. Yanagida, and J. L. Sibert, “Towards
full-body haptic feedback: the design and deployment of a spatialized
vibrotactile feedback system,” in VRST ’04: Proceedings of the ACM
symposium on Virtual reality software and technology. New York, NY,
USA: ACM, 2004, pp. 146–149.

[4] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, L. Raghupathi,
A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnetat-Thalmann, and
W. Strasser, “Collision detection for deformable objects,” in Eurographics
State-of-the-Art Report (EG-STAR), Eurographics Association.
Eurographics Association, 2004, pp. 119–139. [Online]. Available:
http://www-evasion.inrialpes.fr/Publications/2004/TKZHRFCFMS04

[5] C. Ericson, Real-Time Collision Detection. Morgan Kaufmann, 2005.
[6] M. Gillies and B. Spanlang, “Comparing and evaluating real time

character engines for virtual environments,” Presence: Teleoper. Virtual
Environ., vol. 19, no. 2, pp. 95–117, 2010.

