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Abstract 
 
The use of virtual reality is often uncomfortable since it induces simulator sickness. This 
especially occurs when there is a misalignment between vision and somatosensory and 
vestibular input – for example, where visual flow indicates movement through space, but in 
fact the body is stationary. Sensory conflict theory proposes that this is the prime cause of 
simulator sickness. Here we show that simulator sickness may be reduced through the 
exploitation of the ambient light of an environment. Participants move through a virtual 
street at a velocity determined by how much they depress a hand held controller.  In 
experiment 1 they first moved through 4 street alternating street segments: either dark first, 
then bright, then dark, and then light, or alternating the same way but with the light street 
first. It was found that the mean velocity over the 2 dark streets and the 2 light streets, were 
not different. However, those who started in the dark street first maintained overall a 
greater velocity throughout and had less simulator sickness. We derived a statistical model 
that accounted for these results. In experiment 2 participants traversed a street that started 
out dark and gradually became bright, or a street that was bright throughout. The same 
statistical model was able to account for the results showing that the first exposure in a dark 
environment led to greater overall velocity and lower simulator sickness. This method 
suggests that in order to reduce the likelihood of simulator sickness in environments where 
traversal through the space plays a major role, that participants should start out in an 
environment that is dark which can gradually become brighter over time. 
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Introduction 
 
Simulator sickness (cybersickness) is the bane of virtual reality (VR), perhaps a major reason 
why in spite of highly significant advances in the technology in recent years, and a dramatic 
fall in costs, it has still not taken off with consumers in a major way. If one’s first experience 
of VR involves a significant degree of nausea and discomfort, it is unlikely that there will be 



any great desire to try it again. This problem is heightened by the tendency to demonstrate 
VR to novices with exactly the types of scenarios most likely to cause simulator sickness – 
such as roller coaster rides where the optic flow indicates rapid movement but the body is 
stationary.   The reference paper for simulator sickness, which introduced a widely used 
questionnaire (Kennedy et al., 1993), suggests that simulator sickness is signified by Nausea 
(N), Oculomotor Disturbance (O) and Disorientation (D).  N consists of general discomfort, 
increased salivation, sweating, feelings of nausea, difficulty concentrating, stomach 
awareness and burping. O includes general discomfort, fatigue, headache, eyestrain, 
difficulty focusing, difficulty concentrating, and blurred vision. D includes difficulty focusing, 
feelings of nausea, fullness of head, blurred vision, dizziness with open or closed eyes, and 
vertigo. This questionnaire (the SSQ – simulator sickness questionnaire) has stood the test of 
time (Balk et al., 2013), although some caveats have been noted by Bimberg et al. (2020) in 
the context of its use for VR, especially regarding the use of the correct formula for 
computing final scores, and issues of interpretation. For more recent systematic review of 
the symptoms see (Davis et al., 2014). 
 
Stanney and Kennedy (2009) provided an overview of simulator sickness where they pointed 
out that the most widely accepted cause is sensory conflict. Sensory Conflict Theory argues 
that simulator sickness is caused by discrepancies between the sensory inputs, where, for 
example, the optical flow indicates movement through space but the vestibular and 
somatosensory systems do not detect any corresponding physical movement. Hence this 
mismatch between the various signals can cause symptoms similar to motion sickness, such 
as nausea, dizziness, or disorientation. Sensory conflict theory is based on earlier work on 
motion sickness by Reason and Brand (1975) and was explored in relation to simulator 
sickness in virtual reality by Kolasinski (1995). The postural instability theory of simulator 
sickness (Riccio and Stoffregen, 1991) is an alternative to sensory conflict theory and 
originally developed to explain motion sickness. It suggests that the sickness may be caused 
by the inability of a person to control their posture in response to a conflicting sensory 
environment. The argument is that the difficulty to maintain balance and to control posture, 
rather than the sensory conflict itself, which may be caused by individual predisposition, 
leads to symptoms of simulator sickness. Warwick-Evans and Beaumont (1995) and 
Warwick-Evans et al. (1998) reported experiments that supported the sensory conflict 
theory rather than postural instability, although in relation to motion sickness rather than 
simulator sickness in VR. Keshavarz et al. (2015) review a number of studies that relate 
vection to visually induced motion sickness and conclude that vection is a necessary but not 
sufficient prerequisite for motion sickness. In the context of VR, Ng et al. (2020) provided 
direct evidence in support of sensory conflict theory by that showing simulator sickness is 
minimized (based on the SSQ) when visual and physical motions are synchronously aligned.  
 
In addition to questionnaire approaches such as the SSQ, attempts have been made to 
assess simulator sickness with physiological markers. The groundwork was laid by Kennedy 
et al. (2003) who showed that physiological responses could be used to classify different 
levels of severity of sickness in a flight simulator.  Bertin et al. (2005), in the context of a 
driving simulator, investigated the relationship between simulator sickness as assessed by a 
subjective ‘sickness score’ ranging from 0 (“all is fine”) to 10 (“I’m about to vomit”) 
represented on a linear scale that participants could continually adjust. The physiological 
responses recorded were skin potential, skin resistance, skin temperature and heart rate. 



There were effects shown in all 4 physiological responses between those who became sick 
and those who did not, most pronounced in skin resistance and temperature both of which 
were lower in the sick participants, with physiological results correlating with the sickness 
score. Li et al. (2022) measured skin temperature, ECG, vestibular function measurement 
(VNG), and skin colour on both cheeks, while motion sickness was induced in subjects on a 
rotating chair. A machine learning classifier was used to develop an objective assessment 
model for motion sickness based on combinations of these measures.  
 
Another approach is to measure postural instability before and after exposure to the VR. For 
example, Sinitski et al. (2018) had participants walking on a treadmill in VR for 45 minutes 
and measured postural instability before and after the exposure, and found that although 
postural instability increased this was associated with mild simulator sickness symptoms that 
did not prevent participants from completing the task. With long VR exposures (up to 3 
hours) Murata (2004) found postural instability to increase with time, arguing that the 
immersion experience was responsible both for simulator sickness and postural instability 
(so that it could not be inferred that postural instability was itself the cause of the simulator 
sickness). However, Arcioni et al. (2019) found that participants in VR with a predisposition 
to postural instability were more likely to experience simulator sickness irrespective of 
sensory conflict, and thus could be used as a method of prediction of disposition. In a VR 
study where participants were rotated by 15 degrees out of their body, and an expectation 
of simulator sickness, in fact little was found both with SSQ nor with extensive postural 
stability measures (Blom et al., 2014). 
 
If sensory conflict is a primary cause or at least prerequisite for simulator sickness then 
diminishing the possibility of conflict provides an obvious way to reduce it. Fernandes and 
Feiner (2016) attempted this by dynamically reducing the visual field-of-view as a function of 
potential mismatch between physical and virtual motion. Hence while a participant was 
stationary the full field-of-view would be displayed, but diminished as they moved. They 
found that this method did reduce simulator sickness overall compared to no change in the 
field-of-view. A similar technique is to blur non-salient parts of the image, such as the 
periphery, during movement (Nie et al., 2019; Lin et al., 2020; Hussain et al., 2021). This 
technique also reduced simulator sickness compared to the control groups.  
 
The virtual environment reported in (Barberia et al., 2018) alternated between simulated 
day and night. Participants were required to move through the environment by pressing a 
controller button (thus causing a strong mismatch between visual optical flow and vestibular 
sensations). In order to avoid serious simulator sickness, we had to make the maximum 
velocity of movement very slow. However, anecdotally we noticed that during the ‘night’ 
and hence darker phases of the experience, participants tended to move faster. Hence, we 
wondered whether speed of movement might be used as a surrogate for simulator sickness 
and whether symptoms could be modulated as a function of ambient light in the 
environment.  
 
Our hypothesis was that darker environments would lead to greater speed, and that speed 
would be inversely proportional to the scores on the SSQ. In order to address this, we 
carried out two experimental studies. The results of the first led to a statistical model of how 
the velocity of moving through the environment was influenced by brightness. We found 



that the SSQ was negatively correlated with speed, but that the darkness of the first 
exposure only, led to greater speed of movement through the environment and less 
simulator sickness. We then carried out a second study in order to test the statistical model 
derived from the first and found the model supported by these data. Our conclusion was 
that although all participants eventually adapt and increase velocity, at least in the specific 
conditions of this experiment, the level of brightness in the first exposure is critical. 
 

Methods 
 

Ethics 
The experiment was approved by the Comissió de Biotètica, Universitat de Barcelona. 
Participants gave written and informed consent and all procedures were followed 
accordingly.  
 

Materials 
Both experiments were carried out using a Meta Quest 2. This has display resolution of 

1832  1920 per eye with a field of view of 104 degrees horizontal, 98 degrees vertical and 
113 degrees diagonal. The refresh rate is 90 Hz and the weight is 503 grams. It has 6 degrees 
of freedom head tracking. Participants held a controller in each hand but only the trigger on 
either hand was used for locomotion speed and the B button to stop early.  
 

Scenario 
The scenario consisted of a street of length 1256.5m with buildings at the side, and 
occasionally a bridge with buildings in the distance. In experiment 1 the street consisted of 4 
segments that alternated between brighter and darker ambient lighting.  Participants were 
standing and were asked to move in a straight line along the whole length of the street by 
depressing the trigger button. The trigger button was connected to velocity by a simple 
curvilinear function such that initial pressing of the button would increase the velocity 
slightly but continual press of the button would increase the speed more. They would be 
stationary if the trigger button were not depressed, and could reach a maximum velocity of 
12 metres per second  if it were fully depressed. In experiment 2 the street was the same 
except it was either bright throughout, or started off dark and gradually reached full 
brightness as the full length of the road was traversed. This was implemented using a day-
night cycle which updated the lighting conditions according to the travelled distance, in a 
way that at the beginning was full darkness (night) and at the end of the path, full brightness 
(day). A real time directional light was used in this case and two main factors were updated 
according the travelled distance: the light’s direction and colour. If we consider ‘t’ as the 
normalized travelled distance, we have that for t = 0 (night, full darkness) the light’s direction 
was (50, -30, 0) expressed in Euler angles, whilst light’s colour was (1,1,1) in the normalized 
RGB format. On the other hand, at t = 1 (day, full brightness) the light’s direction was (194, 0, 
0) and colour was (0.1882, 0.1098, 0.0627). A linear distribution was used to update the 
lighting (direction and colour) thorough the path. Examples are shown in Figure 1 and 
Supplementary Video S1.  
 



Experimental Design  
Both experiments were between groups. In experiment 1 there were two conditions: Light 
First where the first segment of the road was bright, and Dark First where the first segment 
of the road was dark. The brightness of the successive segments alternated between light 
and dark. There were two conditions in experiment 2: Light where the street was bright 
throughout, and Dark where the street started out dark but gradually increased in 
brightness as described above. 
 

 
Figure 1 – The street used for the experiment. (A, B) different points along the dark street. 
(C,D) different points along the bright street. 
 

Participants 
Advertisements around the University campus requested interested participants to register 
on our laboratory data base that was available on Qualtrics (https://www.qualtrics.com). 
Participants had to be at least 18 years of age, and exclusion criteria included consumption 

https://www.qualtrics.com/


of alcohol at any time during the day of the experiment, taking any kind of psychoactive 
medication or any pathology that causes dizziness, being strongly susceptible to motion 
sickness in daily activities such as travelling in a vehicle, and having epilepsy. Participants 
also had to sign that they would not be driving a motor vehicle within 3 hours of completing 
the study. 
 
There were 34 participants in experiment 1, 17 were randomly allocated to the Light First 

condition and 17 to the Dark First. The mean  SD age was 25.9  8.47, and 10 self-declared 
as male, 23 as female and 1 as other. Full details of the participant characteristics are 
available in Supplementary Table S1.  
 
There were 36 participants in experiment 2, 18 were allocated randomly to the Light 

condition and 18 to the Dark. The mean  SD age was 23.5  5.07, 12 self-declared as male 
and the rest as female. Full details are available in Supplementary Table S1. 
 

Implementation 
The experiment was developed using Unity as the graphics engine. We also made use also of 
QuickVR (Oliva et al., 2022), a VR library for Unity which extends its VR capabilities and adds 
additional features such as avatar tracking, logic workflow management and locomotion 
systems.  
 
The hardest part of the implementation was to optimize the scene for VR. We used as a base 
the city scene provided in this Unity package. Since we required the experiment to run on a 
wide variety of VR devices, from mobile (Quest, Pico) to desktop (HTC VIVE, Oculus Rift), we 
needed to spend some time on improving the overall framerate performance. We applied 
several optimization techniques in order to do so: 
 
1. Polygon reduction: One of the most immediate optimization techniques consists of 
simplifying the geometry by reducing the number of polygons. For the simplest buildings, we 
just approximated them by using the closest 3D geometric primitive (cube, cylinder, 
hexagon…). Then we projected the original building onto the faces of the n-gon to generate 
the texture. For the most complex and intricate details, we used Simplygon, which is the 
standard for simplification on 3D gaming applications.  
 
2. Texture optimization: We reduced the maximum resolution of textures to 

20482048, but we also grouped several textures into a single one, producing what is known 
as an Atlas. This way, we could dramatically reduce the number of draw calls that the GPU 
needed to do since many objects can share the same material.  
 
3. Object culling: As the participant follows a predefined path, we simply removed all 
the elements that were not visible from the point of view of the participant. Furthermore, 
the scene consisted of 4 identical patches, but they were not loaded all at once. Instead, 
they were loaded as the participant progressed through the path, and patches that were left 
behind a certain distance were progressively unloaded. Furthermore, each patch was 
subdivided into different chunks of buildings, so each chunk is loaded when the participant 
is at a specific distance, and unloaded when it is left behind.  
 



4. Batch rendering: Unity allows for batch rendering, which means that the objects 
using the same material are grouped all together, so they can be rendered during the same 
GPU draw call.  
 
5. Shadow optimization: We have been tweaking the shadow attributes in order to get 
the best compromise between render quality and performance.  
 
This is an iterative process, so we were constantly checking the performance on the different 
target device, especially the low-end devices, to check the impact on performance of each 
step until we got a decent and stable framerate thorough the experience in all the devices. 
 

Procedures 
Upon arrival at the VR Lab, participants were asked to read an information sheet and 
consent form. After obtaining the signed consent, we told participants that they would be 
standing on a virtual street when they entered the VR. Then, we showed participants the 
controllers and described all the buttons and their functioning. We explained to participants 
that their task would be to move forward in the virtual street by using either of the trigger 
buttons on the left hand or right hand controllers, and the application would stop when they 
arrived at the end of the street. We also explained that forward velocity was positively 
correlated with how much the trigger was depressed.  
 
We explained about simulator sickness and told participants to move as fast as possible 
along the road but slow enough not to experience simulator sickness. We explained that if 
they experienced simulator sickness or moved too fast, they should slow down by adjusting 
their speed with the trigger button. Participants were told that they were free to stop the 
experiment at any time without giving reasons, and could do so by pressing the B button on 
the right hand controller and informing the experimenter.  
 
After the study description and information had been described, participants answered a 
questionnaire on the Qualtrics platform. This included the same information we previously 
had verbally explained in writing, and included a pre-questionnaire to be answered prior to 
the VR experience, and a post-questionnaire afterwards. The pre-questionnaire consisted of 
demographic questions about gender and age, questions regarding previous VR experience, 
knowledge of computer programming, video game playing frequency, as well as their 
proneness to motion sickness. After completing this pre-questionnaire, participants donned 
the head-mounted display and carried out the task.  
 
When participants completed the virtual reality task, which took approximately 15 minutes, 
they removed the HMD, and continued with the post-questionnaire. This included the 
Simulator Sickness Questionnaire (SSQ) and some questions about their reactions to the 
light and dark parts of the street. The whole experimental session, including the ethics 
protocols, pre- and post-questionnaires, as well VR-exposure, lasted a maximum of 30 
minutes. All the participants were compensated for their participation in the study with  
€10. Finally we debriefed participants about the purpose of the experiment. 
 
Information about the time and velocity of movement of each participant was automatically 
recorded on a server. The questionnaire responses and information from the server were 



tied together through a unique number that was generated at the end of the VR session and 
which participants had to write into the post-questionnaire. 
 

Response Variables 
There were two main response variables – the responses to the SSQ and velocity of 
movement along the road. The SSQ is further subdivided into the original components: 
scores for Nausea (nausea_ssq), Oculomotor Disturbance (oculomotor_ssq), Disorientation 
(disorientation_ssq) and the total score (ssq). 
 

Statistical Methods 
The analyses of the results of both experiments are in two parts. First, a descriptive analysis 
without formal statistical inference, and second, a statistical model. We use the Bayesian 
method to make inferences about the parameters of the model. This involves choosing prior 
distributions for each parameter which are updated by the data to produce posterior 
distributions. We can compute any probabilities of interest from the posterior distributions. 
The model includes all response variables simultaneously, so there is no issue with multiple 
comparisons (which results in problems in the interpretation of significance levels in classical 
null hypothesis testing). The model was evaluated using the Stan (mc-stan.org) probabilistic 
programming language (Carpenter et al., 2016) with RStudio (www.rstudio.com) using the 
rstan interface (mc-stan.org/users/interfaces/rstan). This was with 4 chains and 10000 
iterations. The model converged without problem. See Supplementary Data S1 for the 
complete data and Stan program.  
 

Results 
 

Experiment 1 
 

SSQ and velocity 
 
Figure 2 shows the relationship between the total SSQ and overall mean velocity by 
condition. For those who started out in the light street there is a negative linear relationship. 
For those who started in the dark street the overall velocity is greater with one apparent 
outlier, and there is no relationship with SSQ.  
 

https://mc-stan.org/
http://www.rstudio.com/
https://mc-stan.org/users/interfaces/rstan


 
Figure 2 – Scatter diagram showing the relationship between total SSQ and mean velocity by 
condition. 
 
Table 1 shows the correlations for each of the SSQ scores, indicating that there is no 
relationship between velocity and the nausea sub score, but there is a negative correlation 
with oculomotor and disorientation, but only in the condition where the first street segment 
was light. (The P values are only to give an idea about the strength of the correlation and are 
not meant for significance testing). 
 
 
Table 1 – Pearson Correlations (r) between mean velocity and the SSQ scores, and their 
significance values (P) 

SSQ Light Dark 

nausea_ssq (r) -0.15 0.28 

P 0.565 0.280 

     
oculomotor_ssq (r) -0.49 0.19 

P 0.048 0.476 

     

disorientation_ssq (r) -0.49 -0.14 

P 0.047 0.600 
     

ssq_total (r) -0.45 0.14 

P 0.067 0.601 
 
Table 2 shows the mean SSQ scores by condition. The mean score is lower for each measure 
in the Dark First condition, and the effect size as measured by Cohen’s d is moderate for 
disorientation, and between small and moderate for the total. 
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Table 2 – Mean  Standard Error of the SSQ scores by condition (Light First, Dark First) 
 

condition nausea oculomotor disorientation total 

Light First 14.03  3.07 17.84  3.37 36.03  6.43 23.98  4.03 

Dark First 12.91  4.48 16.05  3.11 21.29  6.22 18.70  3.98 

Cohen’s d 0.07 0.13 0.57 0.32 
 
 
 

Velocity 
It is not the case that participants move at greater overall velocity when the environment is 
dark. The bright street was experienced by those in the Light First condition in street 
segments 1 and 3, and by those in the Dark First condition in segments 2 and 4. Similarly the 
dark street was experienced by those in the Light First condition in segments 2 and 4 and for 
those in the Dark First condition in street segments 1 and 3. The mean velocity over all the 

bright streets was  10.3  2.15 (SD), and over all the dark streets  10.18   2.05 (SD). 
However, the brightness of the first street had an influence on velocity. Figure 3A shows the 
mean velocity per street segment showing that this increased over time tapering off to a 
maximum. Figure 3B shows the mean velocity by street segment and condition. Those in the 
Dark First condition moved at greater mean velocity through each street segment than those 
in the Light First condition.  
 

 
 

Figure 3 – Bar chart showing means and standard errors of velocity (A) By the first street 
encountered. (B) By the first street encountered and the condition. 
 
Figure 4 shows the histograms of mean velocity by condition. Both histograms are clearly 
non-normally distributed, and the in the Dark First condition the density is greater towards 
the maximum velocity.  
 



 
Figure 4 – Histogram of mean velocity by condition 

 
   

Conclusion from descriptive analysis 
The brightness of the first street influences velocity, with greater velocity if the first street is 
dark, and greater velocity is associated with lower simulator sickness. However, considering 
a street-by-street level, dark streets do not seem to lead to greater velocity than light 
streets. The confounding issue is that velocity is influenced by two factors: the order of the 
street (greater velocity for later streets tapering off to a maximum), and the brightness. We 
next consider a statistical model that accounts for these two factors. 

 

Statistical model 
As can be seen in Figure 3 both street segment and brightness contribute to velocity, in a 
non-linear way – i.e., velocity increases but levels out at a maximum. Here we present a 
model that attempts to separate out their influence. 
 
Considering Figure 3A the relationship between velocity (𝑉) and street number (𝑆) is of the 
form: 
 

𝑉 = 𝛼 − 𝛾𝑒−𝜃.𝑆 
(1) 

 
where 𝛼, 𝛾 > 0, 𝜃 > 0 are parameters with unknown value. As 𝑆 increases 𝑉 increases but 
up to the theoretical limit of 𝛼. However, the model should also allow darkness (𝐷 = 0 light, 
𝐷 = 1, dark) to modify the outcome. 
 
Consider the model with linear predictor: 
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𝜂𝑖 = 𝑢𝑖𝑑𝑖
+ 𝛽0 + 𝛽1𝐷𝑖 − 𝛽2𝑒𝑥𝑝(−𝛽3𝑆𝑖(𝐷𝑖𝜆 + 1 − 𝐷𝑖)) 

(2) 
𝑖 = 1,2, … , 𝑁 = 136 

 
 
When 𝐷𝑖 = 0 (light) this reduces to the same form as (1). When 𝐷𝑖 = 1 (dark) then through 
𝛽1 the velocity may be changed, and similarly the rate of decay would also depend on the 
parameter 𝜆. The relationship is easier to see as: 
 

𝜂𝑖 = {
𝑢𝑖𝑑𝑖

+ 𝛽0 − 𝛽2𝑒𝑥𝑝(−𝛽3𝑆𝑖),             𝑤ℎ𝑒𝑛 𝐷𝑖 = 0

𝑢𝑖𝑑𝑖
+ 𝛽0 + 𝛽1 − 𝛽2𝑒𝑥𝑝(−𝛽3𝑆𝑖𝜆), 𝑤ℎ𝑒𝑛 𝐷𝑖 = 1 

 

 
𝑢𝑖𝑑𝑖

 is a random effects term, since each participant traverses 4 streets, and therefore the 

model must allow for variations between participants – the 136 observations are not 
independent, but may be clustered by participant. 𝑖𝑑𝑖 is the identifier for the participant in 
the 𝑖th trial. Hence 𝑖𝑑 is of the form: 1,1,1,1, 2,2,2,2, …, 𝑛, 𝑛, 𝑛, 𝑛 (where 𝑛=34), with the 𝑖𝑑s 
labelled from 1 to 𝑛. 
 
Instead of using the raw data for velocity we transform it to the interval [0,1], and refer to 
the transformed variable as 𝑣. Instead of the assumption of a normal distribution, we use 
the Beta distribution as a model for this linearly transformed response variable, conditional 
on the parameters since Figure 4 indicates great departure from normality. The Beta 
distribution was chosen since it can adapt to many different shapes (skewed, J-shaped, 
reverse-J, U shaped, symmetrical around 0.5 with the mode at 0.5, etc.) depending on the 
parameters, and it is bound to the [0,1] range. 
 
The Beta distribution has two parameters, 𝛼 > 0 and 𝛽 > 0, referred to as the 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 

distribution, which has mean 
𝛼

𝛼+𝛽
. The probability density is 0 outside of the range [0,1]. 

For the response variable 𝑣  the likelihood function (the probability distribution of the data 
conditional on the parameters) is 

 

𝑣𝑖 ~𝐵𝑒𝑡𝑎(𝜙𝜇𝑖 , 𝜙(1 − 𝜇𝑖)), 0 < 𝑣𝑖 < 1 

(3) 
which ensures that the mean is 𝜇𝑖. The parameter 𝜙 > 0 is a scale parameter and is not of 
any interest here. 
 
We want to relate the mean 𝜇𝑖 to the linear predictor (2), but since 𝜇𝑖 ∈ [0,1] the standard 
approach is to use the logit link function (the link function relates the mean to the linear 
predictor), in this case the log odds: 
 

log (
𝜇𝑖

1 − 𝜇𝑖
) = 𝜂𝑖  

(4) 
 
 



Therefore, the inverse link function is: 
 

 𝜇𝑖 =  
1

1 + 𝑒−𝜂𝑖
 

(5) 
 
Hence the overall model is given by (2), (3) and (5). 
 
The prior distributions chosen: 
 

𝛽𝑗~𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, 𝑆𝐷 = 2),  

𝜙~𝐺𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒 = 2, 𝑟𝑎𝑡𝑒 = 0.1), 𝜙 > 0 
𝑢𝑖𝑑𝑖

~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, 𝑆𝐷 = 2) 

𝜆 ~𝐺𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒 = 2, 𝑟𝑎𝑡𝑒 = 0.1), 𝜆 > 0 
 

Posterior distributions 
 
Table 3 shows the summaries of the posterior distributions of the parameters.  𝛽1 is one way 
that darkness might directly influence velocity. However, the 95% credible interval for this 
parameter well includes 0 and the probability of the parameter being positive is 0.669. The 
evidence is not strong enough to infer that 𝛽1 > 0. The second way that darkness can 
influence velocity in this model is through the parameter 𝜆. The greater the value of 𝜆 the 
higher the velocity for each street segment if 𝛽2 > 0, which is almost certain. For increasing 
values of 𝜆 > 1,    𝛽2𝑒𝑥𝑝(−𝛽3𝑆𝑖𝜆) < 𝛽2𝑒𝑥𝑝(−𝛽3𝑆𝑖) indicating that the velocity for the Dark 
First condition will be greater than the Light First. The mean of the distribution of 𝜆 is 2.64, 
and the median is 2.12. The probability of 𝜆 > 1 is 0.88. This is illustrated in Figure 5 which 
shows the probabilities 𝑃(𝜆 > 𝑥) for increasing values of 𝑥. 
 
Table 3 - Summaries of the posterior distributions of the model showing the means, 
standard deviations and 95% credible intervals. Prob > 0 contains the posterior probabilities 
of the parameter being positive. 

Parameter Mean SD 2.5% 97.5% Prob > 0 

𝛽0 2.79 0.77 1.39 4.41 1.000  
𝛽1 0.38 0.91 -1.47 2.12 0.669  

𝛽2 3.56 0.62 2.42 4.86 1.000  
𝛽3 0.42 0.24 0.13 1.04 1.000 
𝜆 2.64 1.93 0.61 7.39  

𝜙 4.95 0.77 3.58 6.58  

 



 
Figure 5 – The survivor function for 𝜆: the probability of being > 𝜆 

 
 
Overall the model indicates that velocity is likely to be greater for the Dark First condition 
than the Light First. We discuss the overall goodness of fit of the model later.  

 

Experiment 2 
 
Recall that in experiment 2 there were again 2 conditions, Light where the street was light 
throughout, and Dark where the street started out dark and gradually became light over the 
course of the traversal. In order to use the statistical model above we nevertheless partition 
the street into 4 equal segments for analysis, exactly as for experiment 1. There were 18 

participants in each condition, with mean  SD age 23.5  5.07, and 12 identified as male 
and the rest as female. Full details are available in Supplementary Table S2. 
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SSQ and velocity 

 
Figure 6 demonstrates a very similar relationship between SSQ and mean velocity as 
experiment 1 (Figure 2). There is a negative association in the Light condition and no 
association in the Dark condition, since generally the velocities are higher except for two 
outliers. Table 4 shows the correlations with the components of the SSQ, and in this case all 
components are negatively correlated in the Light condition, and none in the Dark condition. 

   

 
Figure 6 – Scatter diagram showing the relationship between total SSQ and mean velocity by 
condition (experiment 2) 
 
 
Table 4 – Pearson Correlations (r) between mean velocity and the SSQ scores, and their 
significance values (P) 
 

SSQ Light Dark 

nausea_ssq (r) -0.50 0.01 

P 0.037 0.955 

     
oculomotor_ssq (r) -0.80 0.01 

P 0.000 0.977 
     

disorientation_ssq (r) -0.61 0.11 

P 0.007 0.667 

     

ssq_total (r) -0.819 0.053 
P 0.000 0.8339 
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Table 5 shows the mean SSQ scores by condition. The mean score is lower in the Dark 
condition for each measure, but the effect size is moderate only for disorientation. As was 
the case for experiment 1 the greatest difference is for disorientation. 
 

Table 5 – Mean  Standard Error of the SSQ scores by condition (Light, Dark) - experiment 2 
 

condition nausea oculomotor disorientation total 

Light  13.25  4.30 18.11  4.47 33.25  8.20 23.06  5.27 

Dark  12.72  3.93 14.74  3.70 22.43  4.79 18.28  3.69 

Cohen’s d 0.03 0.19 0.38 0.25 

 
 

 
 

Figure 7 – Bar chart showing means and standard errors of velocity for experiment 2 (A) By 
the street encountered without the outliers shown in Figure 6 (Dark). (B) By street and 
condition without the outliers shown in Figure 6 (Dark). (C) By street encountered using all 
data (D) By street encountered and condition using all data. 

 

Velocity, SSQ and Brightness 
 
Figure 7A shows the shows the means and standard errors of velocity by street, and Figure 
7B also by condition, but without the two outliers shown in Figure 6 (Dark). Figure 7C and 
Figure 7D show the same but including those outliers. These again follow the same pattern 



as experiment 1 (Figure 3). Notice that in the first street the velocity in the Dark condition is 
clearly greater than the Light condition, but then over time the two velocities become 
almost the same when the outliers are included but are almost the same as experiment 1 
(Figure 3B) when the outliers are excluded. For both conditions the velocities increase and 
taper off.  
 

 
Figure 8 – Bar charts showing the means and standard errors of velocity by condition. (A) 
With the outliers from Figure 6 (Dark) excluded. (B) For all data. 
 
Figure 8 shows the bar charts of means and standard errors of velocity by condition. Figure 
8A excludes the outliers found in Figure 6. Cohen’s d for the difference of the two means is 
0.59 which is above what is normally regarded as ‘moderate’. Figure 6B shows that when all 
the data is used, including the two outliers, then the means are almost the same (Cohen’s d 
= 0.10). 

 

Conclusion from descriptive analysis 
Over time both groups adapt (Figure 7). However, the group that starts in the dark 
environment has an initial advantage with respect to velocity. Since the velocity is already 
high, there is not great room for improvement – i.e., there is a ceiling effect that applies 
earlier than for the Light group. The results are very similar to experiment 1, especially when 
the outliers are excluded. Moreover, now we can use the predictive statistical model from 
experiment 1 and test this with experiment 2. 
 

Posterior distributions 
 
Table 6 shows the summaries of the posterior distributions of the parameters based on all 
the data. We do not exclude the outliers in order not to potentially bias the results in favour 
of the hypothesis that we started with.  The results are qualitatively similar to experiment 1. 
In particular there is a low probability that  𝛽1 < 0 (probability = 1 – 0.24 = 0.76).  𝛽2 > 0 
and 𝛽3 > 0 with probability 1, and 𝜆 > 1 with probability 0.988. Figure 9 shows the 
probabilities 𝑃(𝜆 > 𝑥) for increasing values of 𝑥. Even for 𝜆 = 4 the probability is still 
greater than 0.8. 
 
 



Table 6 - Summaries of the posterior distributions of the model showing the means, 
standard deviations and 95% credible intervals for experiment 2. Prob > 0 contains the 
posterior probabilities of the parameter being positive  
 

Parameter Mean SD 2.5% 97.5% Prob > 0 
𝛽0 2.97 0.57 1.89 4.12 1.00  
𝛽1 -0.49 0.72 -1.89 0.94 0.24  
𝛽2 3.81 0.90 2.19 5.75 1.00  
𝛽3 0.75 0.27 0.30 1.34 1.00 

𝜆 16.54 14.00 1.67 52.35  
𝜙 5.68 0.93 4.03 7.68  

 

 
Figure 9– The survivor function for 𝜆: the probability of being > 𝜆 

 

 

Predictions and goodness of fit for both experiments 
 
We can derive posterior distributions of velocity based on the posterior distributions of the 
model parameters for each condition, and each level of street. Figure 10 shows these 
distributions for each street segment, comparing the Light and Dark conditions. In each case 
there is a large difference between the Light (First) and Dark (First) conditions in both 
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experiments for street 1, which is maintained throughout in experiment 1, but for 
experiment 2 the difference is minimal by street 3.   
 

 
 

 
Figure 10 – probability density functions for the posterior distributions of velocity for each 

street by condition (light, dark)  for both experiments 



 
 
 

 
Figure 11 – Means of the posterior predicted distributions of velocity by observed velocity 
(A) experiment 1 (B) experiment 2.  
 
In order to examine how well the model fits the data, new simulated observations on 
velocity can be generated from the model, and compared with the observed values 
(transformed to the [0,1] interval). For each individual record a posterior probability 
distribution of the velocity is generated. These are called the ‘predicted posterior 
distributions’. The mean of each distribution is a point estimate of the predicted velocity for 
that record. Figure 11 shows the scatter plots of the means of the predicted posterior 
distributions of velocity against the true values. The fits are very good. For experiment 1 the 
correlation between the predicted and observed values is r = 0.901, 𝑃 <  2.2 × 10−16, and 
for experiment 2, r = 0.92, P < 2.2× 10−16. 
 
As a further test of the appropriateness of the model we used the ‘leave one out’ cross-
validation (loo) method (Vehtari and Gelman, 2014). Here a single observation is left out of 
the dataset, and the model is estimated using the remaining data, which is then used to 
compute the prediction error for the left-out observation. This process is repeated for all 
observations in the dataset, and the results are used to estimate the model’s out-of-sample 
predictive performance. So-called ‘Pareto k estimates’ derived from this analysis provide a 
diagnostic measure used to assess the validity of model. The Pareto k statistic identifies 
observations that may have a significant impact on the model’s predictive performance – 
i.e., it identifies potential outliers. The Pareto k statistic is calculated for each observation. A 
high Pareto k value (greater than 0.7) indicates that the observation may have an undue 
influence on the model. In experiment 1 there was one outlying value with  Pareto k > 0.7 
and in experiment 2, Pareto k < 0.7  for all observations. 
 
 



Discussion 
 
Our initial hypothesis was that participants would tend to traverse faster through a virtual 
environment which has a low level of ambient light than a brighter environment. This was 
not supported in experiment 1, where participants alternated between a dark and brighter 
street, since the overall mean velocity was almost the same over all the dark streets as the 
light streets. However, the illumination of the first street encountered did have an impact, 
with those who started in the dark street travelling at greater mean velocity compared with 
those who started out in the light street first (Figure 3B).  In experiment  2  all but two of the 
participants moved with greater mean velocity in the street that started out dark and 
gradually became light, compared with those who were on the street that was always light 
(Figure 7B).  
 
The second objective was to examine the relationship between velocity and simulator 
sickness, with the idea that these would be negatively correlated in our setup. Here both 
experiments had similar findings. In experiment 1 there was a negative correlation between 
velocity and the SSQ for those in the Light First condition and no correlation for those in the 
Dark First condition (Figure 2) where the mean velocities were uniformly greater. 
Oculomotor and disorientation sub-categories of the SSQ rather than nausea accounted for 
this (Table 1). In experiment 2 the same relationship was found, a negative correlation for  
the Light Condition and no correlation for the Dark condition (Figure 6). This was also the 
case for all three components of the SSQ (Table 4). It is well known that there is usually a 
positive correlation between velocity and simulator sickness in experimental studies 
(Chardonnet et al., 2015). Widdowson et al. (2021) measured SSQ for three different modes 
of displacement through a virtual hallway – constant velocity, a ramp where the velocity 
increased and then decreased linearly, and polynomial increase and decrease. The SSQ 
increased compared to a baseline in each case, but there was no evidence that the constant 
velocity was more effective in reducing sickness compared with the others. In these 
experimental studies participants do not have control over the velocity, since they are 
subject to different velocities as part of the experimental design. In our study participants 
were told to only go as fast as comfort allowed and were able to adjust their speed 
accordingly. This resulted in the negative correlation of velocity and SSQ, but only in the 
Light First or Light conditions. Giving participants the instruction to adjust their speed 
according to their level of sickness makes velocity an objective surrogate for sickness, other 
things being equal.  
 
The third major objective was to construct a statistical model for the results of experiment 1, 
and then use the same form of model for the analysis of the results of experiment 2. The 
models provided excellent fits to these data. The analysis confirmed the descriptive findings, 
that for experiment 1 the Dark First condition produced better overall outcomes for 
simulator sickness and in experiment 2 the Dark condition did so – in spite of including two 
clear outliers in the data used for the analysis. Both sets of results together strongly suggest 
that the first exposure is critical – if it is dark then the effect on simulator sickness carries 
over to the subsequent navigation through the environment.  
 
The method we have introduced is most similar to Fernandes and Feiner (2016) who 
reduced simulator sickness by restricting the field of view while moving, and the techniques 



to blur the periphery (Nie et al., 2019; Lin et al., 2020; Hussain et al., 2021). We argue that 
though these methods are similar in the sense of reducing sensory conflict the method 
exploiting darkness has two advantages. The first is that it is ‘natural’ in the sense that 
people do carry out activities in darkness, and restrictions of field of view or blurring may 
cause breaks-in-presence  (Slater and Steed, 2000) although Fernandes and Feiner (2016) 
argued that presence is maintained when their technique is employed. Second, even though 
the environment is darker, participants can nevertheless perceive the whole structure of the 
environment (e.g., there is a building on the left, a river to the right, and so on) at all times. 
This is particularly important during navigation – since critical areas of the visual field being 
shut down during movement, may lead to disorientation in the sense that participants may 
not see important landmarks during their movement, and thus wayfinding would be 
adversely affected. For example, a larger field-of-view positively influences distance 
judgements (Masnadi et al., 2022).  
 
 
The visual system operates differently in relative darkness compared to brighter 
environments, with varying activations of the photoreceptor rod and cone cells on the 
retina. Jonas et al. (1992) in a study of 21 human cornea donors found the mean number of 
rods to be 60,123,000 and cones 3,173,000 (with huge variances in both cases), though it is 
generally accepted that there are about 120 million rod cells and 6 million cone cells. See 
also the NIH report (Purves et al., 2001).  The cone cells in daylight are those that are mainly 
active, responsible for visual acuity and colour vision, and are highly concentrated in a 
relatively tiny area of the retina called the fovea. During daylight the rods are responsible for 
peripheral vision, especially responding to movement in the periphery, and have much less 
acuity. The rods are highly sensitive to light and motion and become more active in night 
time conditions but are not sensitive to colour. Hence vision in the dark is mediated 
primarily by the system of rods since they have the much greater sensitivity to light, but 
colour perception, visual acuity and depth perception are low. Hence, in darker conditions 
there is less visual load, acuity, detail, which possibly mitigates the conflict between the 
vestibular and sensorimotor systems, thus reducing simulator sickness. Darker environments 
may therefore overcome the discrepancies that according to the sensory conflict theory are 
a major cause of simulator sickness. A further experimental study is needed to test this 
explanation. This would involve participants being exposed to a dark environment for at 
least 30 minutes to give adequate time for full adaptation, followed by a series of tasks that 
would normally cause simulator sickness. It would then be interesting if after such a period 
of adaptation and task performance whether low simulator sickness would be maintained in 
conditions of gradually increasing brightness. The question is whether the brain somehow 
learns during the dark period to operate in VR without simulator sickness, and then carries 
over that learning to a brighter environment.  
 
There has been a huge amount of work on simulator sickness over the past 3 decades and 
also a substantial literature on motion sickness. With respect to simulator sickness in VR this 
is reflected in the number of review and meta studies, further highlighting its importance – 
for example (Davis et al., 2014; Leung and Hon, 2019; Chang et al., 2020; Saredakis et al., 
2020; Caserman et al., 2021; de Winkel et al., 2022; Li et al., 2023). It is also important to 
take into account that while system factors such as rendering and tracking latency are 
obviously critical, and which have been the main focus of many studies, individual 



differences are also important to achieve a full explanation and mitigation of sickness 
(Howard and Van Zandt, 2021). Individual differences may also be activated through 
different belief systems of individuals (Nooij et al., 2021) – it is likely that some readers will 
have encountered individuals who claim “I never get simulator sickness” and indeed they 
never report it. 
 
There are two main limitations to our study that would need to be overcome in future work. 
The first is that the greatest velocity attainable (12 m per s) was nevertheless quite slow. This 
was deliberate, in order to minimise the level of discomfort for participants. Our prediction 
is that if greater velocities had been allowed then the difference between the dark and light 
conditions would have been more pronounced – i.e., the Dark First or Dark conditions would 
have been substantially different to the Light First or Light conditions. The second limitation 
is that we only considered translational velocity – participants moved in a straight line. They 
could look anywhere, but there was no rotation.  Lo and So (2001) found significant 
increases in simulator sickness due to rotation, and we do not know whether darkness 
would alleviate this.   
 
Overall our results suggest that allowing participants to control their translational velocity, 
and starting the VR exposure with a dark environment could provide a useful way to 
minimise simulator sickness, and experiment 2 suggests that the light can gradually be 
increased without adverse effects. However, further studies on the lines suggested above 
would be needed. In both experiments we found that over time participants were able to 
achieve approximately the same velocity levels irrespective of condition, and therefore it 
could be argued that the initial darkness period is not needed. In other words there is 
adaptation notwithstanding the earlier levels of darkness. However, the early part of an 
exposure to a VR scenario is crucial – since people may withdraw if they quickly encounter 
strong simulator sickness, and thereby decide to never try VR again. When people first enter 
any virtual environment we should strive to do everything possible to achieve comfort – 
ranging from the design and weight of head-mounted displays through to the minimisation 
of the possibility of simulator sickness.  
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