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Abstract 

This paper evaluates the technical, 
economical and environmental feasibilities 
for the application of advanced oxidation 
technologies (AOTs) for decentralised 
wastewater treatment systems. A 
comprehensive process selection and 
assessment framework for the application 
of AOTs in decentralised wastewater 
systems for water recycling and reuse 
purposes has been developed.

In this case study, different AOTs  
were assessed for their suitability 
as retrofit to a small decentralised 
wastewater plant in South-East 
Queensland (SEQ) as an advanced 
wastewater treatment option. Results 
showed that the H2O2/UV treatment 
process was the best AOT treatment 
option in terms of the technical, economic 
and environmental benefits, as well as 
in the quality of treated wastewater for 
non-potable reuse. This study has also 
provided a new insight into the future 
application of AOTs for decentralised 
wastewater treatment, given the increased 
awareness of environmental protection 
coupled with strong legislation in final 
wastewater discharge requirements.

Introduction

With the increased awareness of 
environmental protection, coupled with 
strong legislation for the final discharge 
requirements for treated sewage effluent 
– together with the potential for non-
potable re-use – the need for green 
wastewater treatment technology is 
growing fast. The advanced oxidation 
technologies (AOTs) are considered an 
attractive eco-environmental wastewater 
treatment technology, considering their 
reported high destruction efficiency of 
toxic pollutants that are usually resistant 
to conventional biological wastewater 
treatments (Laera et al., 2011). 

 Previous studies have shown good 
removal efficiency by AOTs in degrading 
ubiquitous, refractory and recalcitrant 
chemical compounds such as aromatics,

pesticides, pharmaceuticals, personal 
care products, endocrine disruptors 
and others (Synder et al., 2006; Suárez 
et al., 2008; Chong et al., 2010). In 
general, all these AOTs are characterised 
by a common chemical mechanism 
that involves the exploitation of in-situ 
generation of high reactivity OH radicals 
to react and degrade even the less 
reactive pollutants found in the targeted 
water sources to achieve a complete 
mineralisation state (Chong et al.,  
2009 and 2010). 

 The benefits of utilising AOTs for 
advanced wastewater treatment include: 
(i) reduction of the potential formation 
of disinfection by-products (DBPs); 
(ii) operating conditions at ambient 
temperature and pressure; (iii) complete 
mineralisation of refractory organic 
compounds to innocuous carbon dioxide, 
water or other harmless by-products 
(Chong et al., 2010). 

 This study was a case study  
to assess the feasibility of using  
different AOTs for a decentralised 
wastewater plant in SEQ. A process 
selection and assessment framework for 
the application of AOTs in decentralised 
wastewater treatment systems for 
water recycling and reuse purposes has 
been developed to guide the selection 
of the best AOT in terms of technical, 
economical and environmental criteria. 
It is anticipated that this study would 
also promote the future uptake of AOTs 
as an advanced treatment option for 
decentralised wastewater treatment 
for wastewater recycling and reuse, 
as well as meeting the strict discharge 
requirements to environment.

Types of Advanced  
Oxidation Technologies 

Table 1 shows the different generic  
types of AOTs considered in this  
study, which are (1) Ozonation; (2)  
Fenton and photo-Fenton processes; 
(3) UV-based photolysis and chemical 
oxidation processes; and (4) 
Photocatalytic processes. 

Decentralised Wastewater 
Treatment Plant – Case Study  
in SEQ

A decentralised wastewater treatment 
plant at Capo di Monte (CDM), Mount 
Tamborine (SEQ), that serves 46 detached 
and semi-detached residential dwellings 
and a large community centre was 
used as a case study for assessing the 
feasibility of using AOTs as an advanced 
wastewater treatment option. Currently, 
the plant is operating with a hydraulic 
capacity of 11,000 L/d, and is comprised 
of a raw sewage primary holding wet-well 
followed by an MBR (with submerged 
Kubota flat sheet membranes), alum 
dosing for phosphorus removal, UV 
disinfection and chlorination. 

 Figure 1 (overleaf) shows the  
schematic for the decentralised 
wastewater case study treatment  
plant. The treated Class A+ effluent is 
reticulated via a dual reticulation system 
and is used for toilet flushing at the 
households and for external irrigation. 
A vegetated buffer zone of 6,000m2 is 
available for land application of excess 
treated wastewater to prevent direct 
discharge into the local waterway. 

 The current feasibility study  
assessed the type of AOT suitable  
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Table 1: Generic types of AOTs used for advanced wastewater treatment.

Process Chemicals or equipment used

Ozonation O3

Fenton and photo-Fenton processes Fe2++H2O2, Fe2++H2O2+UV

UV-based photolysis & chemical oxidation processes UV+O3, UV+H2O2, UV+O3+H2O2

Photocatalytic process Semiconductor (TiO, ZnO)/UV
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to be used after MBR treatment to 
ensure and improve the quality of 
treated Class A+ effluent, reduce 
the DBPs’ formation potential and 
minimise the associated public  
health and environmental risks.  
Table 2 shows the summary of license 
requirements, measured influent 
wastewater quality at CDM, and  
its comparison with the common 
values from centralised WWTPs.

Process Selection and 
Assessment Framework

Figure 2 shows the comprehensive 
process selection and assessment 
framework developed to assess 
the feasibility of using AOTs as an 
advanced treatment option in the 
decentralised wastewater case 
study treatment plant. Six major 
process selection criteria of technical 
suitability, system robustness, 
economic costing, environmental 
impacts, sustainability and space 
requirements were used to guide  
the selection process.

 In this study, however, only  
the three main process selection 
criteria of technical, economic  
and environmental feasibility  
were targeted to give a preliminary 
overview on the best AOT suitable 
for the case study. Other process 
selection criteria will be assessed 
once the suitable AOT is selected, 
as well as the availability of all the 
relevant process inventory data 
sets that permit a comprehensive 
evaluation process.

 For the technical suitability  
criterion, the AOTs were assessed 
based on their compatibility for 
wastewater characteristics and 
operating conditions if being applied 
downstream of the MBR process.  
The technical assessments include 
the evaluation of whether (i) the  
AOTs can handle the wastewater 
characteristics (i.e. COD, BOD, 
nitrogen, phosphorus and total 
suspended solids) after the MBR 
treatment; (ii) the use of additive 
chemicals (i.e. pHcorrection,  
alum dosing, chlorination and 
other oxidants); and (iii) the needs 
for alteration of process operating 
conditions (i.e. temperature  
and pressure). 

 The economic feasibility was 
assessed by using the engineering 
cost estimation method based on 
the available data in the literature. 
A recent review of the costs of all 
AOT processes, including those 

Table 2: Summary of license requirements, measured influent wastewater qualities  
at CDM-STP and its comparison with common values from centralised WWTPs.

Wastewater 
Parameters

Units
CDM 

License 
Limits

CDM Influent 
Values Range

CDM 
Average 
Values

Common Values 
Range at Centralised 

WWTPs

CODtotal mg/L 10 590–1060 825 314–438

BODtotal mg/L 10 240–430 335 120–190

Ntotal mg/L 10 69–140 105 87–94

Ptotal mg/L 5 14–27 21 -

Suspended solids 
(TSS)

mg/L 10 120–260 190 144–207
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Figure 1. Schematic of decentralised wastewater system at Capo di Monte.  
RAS flow is the return activated sludge stream.

Figure 2. A comprehensive process selection and assessment framework for the application  
of AOTs in decentralised wastewater systems for water recycling and reuse purposes.
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involving ultrasonics, was published by Mahamuni and Adewuyi 
(2010) and extracts from their work has formed the basis of our 
estimates in economic feasibility. From their work, important 
information such as reaction rate constant (k, min-1), base  
reactor volume (L) and treatment cost ($/1000 US gallon).

  The total reaction time required to achieve the anticipated 
final 10 mg/L COD concentration level was taken as the 
hydraulic retention time to size the AOT reactor for this feasibility 
study. The unit treatment cost ($/L) was estimated by using 
available data in the literature, which has taken into account 
both the capital and operating and maintenance (O&M) costs 
(Mahamuni and Adewuyi, 2010). The total treatment cost for the 
AOTs was amortised at a rate of 7% over an effective plant life 
of 30 years. In this instance, the power relationship known as 
the six-tenths factor rule was used to estimate the unit treatment 
costs for each AOT assessed in this study (Peters et al., 2004). 
This is based on the literature data available on the base reactor 
volume and the corresponding unit treatment cost ($/1000 
US gallon). Similarly, the specific energy for different AOTs 
was estimated using the energy intensity data (kWh/kL) from 
literature with relation to the corresponding base reactor volume 
(Mahamuni and Adewuyi, 2010).

 It should be stressed that the estimated treatment cost used 
to assess the economic feasibility of AOTs only serves as a 
preliminary guide towards the selection of the most appropriate 
AOT at this early stage. A detailed validation of the estimated 
treatment cost would be ascertained once the most feasible  
AOT is selected by quotations from the vendors. Such a 
validation would enable the development of a cost function  
that can be used to accurately predict the economic feasibility 
for the application of AOTs in decentralised wastewater systems, 
where the cost database is currently scarce and incomplete.

Technical Evaluation

To assess the technical feasibility of retrofitting AOTs as an 
advanced wastewater treatment option for the existing case 
study, it is important to understand the quality of treated sewage 
effluent after MBR treatment. This is to ensure that the selected 
AOT can be retrofitted without much modification of either 
the effluent characteristics or process operating conditions or 
both. Figure 3 shows the quality characteristics of the treated 
sewage effluent, which was obtained by using grab sampling 
methodology (from N = 6 events). From Figure 3,  
it can be observed that the statistics presented for the five 
common wastewater parameters of suspended solids (SS), total 
nitrogen (TN), pH, biological oxygen demand (BOD) and chemical 
oxygen demand (COD) are quite constant. For each wastewater 
parameter, their relevant mean, median 25th and 90th percentile 
concentrations are given. The corresponding concentrations  

(± S.D.) for the measured wastewater parameters are: suspended 
solids: 4.5 ± 0.5 mg/L; total nitrogen: 11.68 ± 1.70 mg/L; pH: 
7.78 ± 0.17; BOD: 5.83 ± 2.04 mg/L and COD: 21.50 ± 3.27 
mg/L). According to the Australian guidelines for water recycling, 
all the measured concentration values for these common 
wastewater parameters are deemed safe, acceptable and are 
within the current threshold limits for both the public health  
and environmental risks (NRMMC-EPHC-AHMC, 2006). 

 From the measured pH values, it was easy to determine  
which AOTs can be retrofitted without much use of additive 
chemical reagents (e.g. for pH correction) as well as the 
alterations of operating conditions of the wastewater treatment 
train. Since the measured pH values are in alkaline conditions, 
it would be more appropriate to retrofit AOTs that operate well 
within this alkaline pH regime. From all the reviewed AOTs, it 
can be concluded that only ozonation (O

3), ozonation/ultraviolet 
irradiation (O3/UV), hydrogen peroxide/ultraviolet irradiation 
(H2O2/UV) and TiO2 photocatalysis would be suitable. Although 
the Fenton-based treatment processes have shown proven 
treatment efficiency, especially for the UV/Fe3+-Oxalate/H2O2 
process with high quantum yield and lower operational energy, 
their application in this case study might still be hampered by 
their operating requirements of low acidic pH. Thus, only the 
assessed AOTs of O3, O3/UV, H2O2/UV and TiO2 photocatalysis 
are considered technically feasible and, subsequently, their 
treatment cost was estimated.

Economic and Environmental Feasibility

The economics of treatment by the AOTs of O3, O3/UV, H2O2 

/UV and TiO2 photocatalytic processes was assessed based  
on the design hydraulic flow rate considered for this study,  
which was 11,000 L/day (i.e. the current flow rate of the 
decentralised wastewater treatment plant). Figure 4 shows  
the summary of estimated treatment cost ($/L) of various AOTs 
assessed for the current decentralised wastewater treatment 
plant case study in SEQ.

 From the estimated treatment costs, it was evident that the  
O3 treatment process was the most economically feasible AOT  
($0.03/L) at an average dosage of 6.8 mg/L and a residence time 
of 0.5 h. This was followed by the AOT options of H2O2/UV and 
O3/UV treatment processes with an estimated treatment cost 
of $0.14/L and $0.21/L respectively. The O3 treatment process 
was a more economical AOT treatment option than the O3/UV 
and H2O2/UV treatment options, as the latter require higher O&M 
costs for the UV systems, which include higher energy intensity 
and constant bulb replacements for the UV systems involved 
(Mahamuni and Adewuyi, 2010). 
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Figure 3. Characteristics of the treated sewage effluent from  
the decentralised wastewater treatment plant.
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 From the economic analysis, the TiO2 
photocatalytic treatment appeared to be 
the most expensive AOT option for the 
current decentralised wastewater case 
study plant. This is due to the cost of  
TiO2 particles used, part replacement 
cost of UV systems, catalyst holder 
replacements for the catalytic systems,  
as well as the issue with the post-
separation of semiconductor TiO2 
particles after wastewater treatment.

 In addition, the specific energy 
requirement (in kWh/kL) for each AOT  
was estimated. This information is 
important as it allows for determining  
the energy efficiency of various AOTs,  
as well as their indirect GHG emissions 
from fossil fuel combustion. Figure 
4 shows that the H2O2/UV treatment 
process was the least energy intensive 
AOT, with a specific energy requirement  
of 0.23 kWh/kL. This might be owing to 
the OH. radicals generation via the use  
of chemical reagents (i.e. H2O2). This  
was followed by the specific energy for 
O3/UV and TiO2 photocatalytic treatment 
processes of 6.15 kWh/kL and 7.09 kWh/
kL, respectively. The O3 treatment process 
was the most energy-intensive process 
with a specific energy of 11.93 kWh/kL. 
The reason for the lower specific energy  
in the O3/UV treatment process than 
the O3 treatment process is the shorter 
residence time required to achieve the 
final COD concentration requirement.  
The high specific requirement for O3 
treatment was also due to the low 
solubility level of O3 in wastewater. 

 When the estimated specific energy  
was converted to indirect carbon footprints 
(i.e. 0.9 kg CO2-e/kWh), the indirect 
GHG emission was estimated to be in 
the range of 0.20 kg CO2-e/kL (H2O2/UV 
treatment process) to 10.73 kg CO2-e/kL 
(O3 treatment process) (see Figure 4) (Hall 
et al., 2009). It is apparent, however, from 
Figure 2 that a comprehensive sustainability 
assessment cannot be made, as these 
estimations were not validated through 
energy system monitoring, as well as the 
fugitive GHG emissions which add up to 
the overall carbon footprint for sustainability 
assessment of different AOTs. Further 
inventory data sets from different pilot or 
full-scale AOT plants are needed to allow 
for a more accurate and comprehensive 
multi-criteria assessment of AOTs for 
decentralised wastewater applications. 
However, the costs estimated in this study 
still present a useful guide on the selection 
of AOTs based on technical, economical 
and environmental criteria. 

In conclusion, the H2O2/UV treatment 
process was considered as the best AOT 
treatment option that can be retrofitted to 

the current decentralised wastewater  
case study plant in an effort to improve  
the quality of treated sewage effluent  
for non-potable reuse, as well as  
minimising the potential public health  
and environmental risks. 

Conclusion

This study has provided a new insight  
into the application of AOTs for 
decentralised wastewater treatment,  
in an attempt to improve the quality 
of treated sewage effluent for reuse 
purposes. The quality of treated sewage 
effluent is often impacted by the stability 
of the decentralised wastewater plant, 
which in turn might pose serious public 
health and environmental risks if the 
effluents were being reused. 

 From the outcomes of this feasibility 
study, it can be concluded that the  
H2O2/UV treatment process is the best 
AOT option in terms of fulfilling the 
technical, economical and environmental 
criteria. The H2O2/UV treatment process 
was assessed to be capable of meeting 
the quality requirements for treating the 
wastewater stream following the MBR 
process. At present, however, the overall 
GHG footprints are incomplete due to 
missing information on the fugitive  
GHG component.

  It is anticipated that more inventory 
data sets from different pilot or full-
scale AOT plants are needed to allow 
for a more accurate and comprehensive 
assessment of AOTs for decentralised 
wastewater applications. However, the 
results presented in this study are still a 
useful guide for decentralised wastewater 
applications going forward.
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