
803Generic and Personalized Web/Mobile Services by Abstracting and Specializing SQL Queries

Generic and Personalized Web/Mobile Services by Abstracting and
Specializing SQL Queries

Muhammad Saleem1, Iqbal Qasim2, Ata ur Rehman3

1Digital Enterprise Research Institute, National University of Ireland Galway, Ireland
2Department of Computer Science and Engineering, Hanyang University, Korea

3Department of Electronics, Politecnico di Torino, Torino, Italy
muhammad.saleem@deri.org, qasim@hanyang.ac.kr, ata.rehman@polito.it

Abstract

This paper proposes a query abstraction mechanism
which allows web/mobile-service administrator to formulate
a skeleton of a sequence of SQL queries by parameterizing
holes, later being filled by end-users. The mechanism is
generic as the administrator can use it to register multiple
services, and expandable as the existing service can
be specialized, to automatically generate new kinds of
personalized services. An end-user’s input, when given in
its entirety, initiates the automatic generation of appropriate
SQL queries suitable for the user’s requested service. A
personalized service can be devised by designating the end-
user’s input parameters into static or dynamic. When static
input arguments are given, a specialized skeleton service
with respect to the given input is created. The mechanism
is implemented to be used in systems for web/mobile-based
information and transaction services.

Keywords: Query formulization, Generic information/
transaction services, Skeleton queries,
Personalized services.

1 Introduction

Many big firms greatly depend upon the functions of
online databases as their daily business operations cannot
be accomplished without the availability of databases.
Remote database information and transaction services
are considered as a lifeline of their profitability in today’s
highly mobile society. These remote services make life
easier for human being. Instead of waiting in long queues,
operations can be done remotely any time anywhere [26-27].

The increasing demand for new remote services
makes it hard to develop a standalone system for every
new Web/SMS-based information or transaction service.
Programmers are interested in developing systems which
can provide multiple services using a single system and also
take the extensibility and re-usability into consideration [1].
Currently, the extendable generic systems presented in [1-3]
only provide generic data retrieval services and cannot be
used for data insertion, deletion and updating services such
as bill payments, reservation, etc. Moreover, generating

dedicated, personalized and user-specific services by
decomposing the root service has been a source of recent
research interest. This service personalization generates
records according to the user requirements with minimum
effort and time.

Keeping in view the need for generic web/mobile-based
database services; we propose an efficient mechanism for
generic information and transaction services using a single
extendable system. Administrator formulates Skeleton SQL
queries for various information/transaction services using a
graphical interface. A skeleton query is the template of the
original SQL query containing some holes/gaps to be filled
from the input provided by users. Each registered service
can contain a sequence of SQL queries. For a specific
service, a user has to provide certain information either by
sending an SMS message in a predefined format or by using
a website input form.

The structure of every service is exactly similar to a
typical programming language function having unique
service number as function name, user provided inputs as
function arguments and all the skeleton queries as function
body. All the services data is stored in a repository as
functions. For a specific service, a user input is forwarded
to the proposed extendable system for necessary queries
execution. Based on the user input, a proper service
function is invoked from the service repository with proper
arguments values selected from the user input. The skeleton
queries are then transformed to the actual SQL queries
and execute one by one against a specific database. After
successful queries execution, a prompt reply is forwarded
to the user.

We used the concept of partial execution of queries
for personalized services generation; in which part of the
service queries are already constructed using the static
information provided by the user. With this concept,
personalized services [4-8] are provided to the users with
minimum possible user-provided data. Once a mobile/web-
service administrator registers a new service (root service),
end user can personalize (sub service) this by specifying
his/her static inputs. Each personalized service is dedicated
to a single end user. Every user-specified static input fills
a specific hole/gap permanently in the skeleton queries of
the root service. This means that a specific end-user is not

*Corresponding author: Muhammad Saleem; E-mail: muhammad.saleem@deri.org

11-Saleem.indd 803 2012/9/24 下午 02:19:42

Journal of Internet Technology Volume 13 (2012) No.5804

required to provide static inputs for his/her personalized
service. A personal ized service is automatical ly
generated by the end user rather than mobile/web-service
administrator. Service personalization makes the system
highly scalable as the mobile/web-service administrator
can register any number of root services and each end-user
can personalized a root service any number of times. The
details of service personalization are given in Section 4.

In case of the SMS based input, a user will send an
SMS in a predefined format to mobile Gateway which will
forward it to the extendable generic system for necessary
query execution. After the successful operation, a prompt
reply will be forwarded to the user in reverse order. While,
for the web based input, a user will fill an input form
available on a specific services website. The proposed
system is more worth for the SMS based services because
of the no restriction of internet connectivity.

 y Motivating Example: Consider a transaction service
“Bus Ticket Reservation and Payments” in which
passengers reserve and pay for various bus tickets
either through SMS or using web pages. For a specific
reservation, a passenger provides ID, password, starting
and destination locations, and reservation date. Every
passenger needs to register a specific account and should
have enough money in his/her account for the reservation
payment. The ERD (Entity Relationship Diagram) for the
given system is shown in Figure 1.

Figure 1 ERD of the Ticket Reservation

Table Ticket_Details stores complete information about
various available, reserved tickets, Passenger_Account
stores passengers’ data and account information, and Pass_
TravelHistory stores all the traveling history of passengers
for querying in the future. The column Ticket_Status has
a default value as Available. If the passenger query is
matched to an available ticket, the reservation takes place
by changing the status to Reserved and inserting passenger
Id into the Ticket_Details.Passenger_Id column.

The step-by-step functionalities for the service are as
under:
Step 1: For a specific ticket reservation and payment,
the registered passenger provides ID, Password, Starting
Terminal Name , Destination Terminal Name , and
Reservation Date as inputs. These inputs can either be
provided through SMS in a proper format or using a
specific input form in a web page.
Step 2: All the Passengers must be authenticated before
making any type of reservation. The authentication should
be based on passenger ID, Password.
Step 3: The available total amount Available_Amount
in the passenger account must be large enough to pay
for a specific ticket, which satisfies the passenger input
requirements.
Step 4: After the completion of step 2 and 3, a specific
ticket in a particular bus should be reserved for a passenger.
The reservation must take place according to the supplied
input conditions. If multiple condition matches, only one
ticket will be reserved, prioritised by bus timing.
Step 5: The customer Available_Amount amount must

be updated after the successful payment for the specific
journey ticket.
Step 6: The travelling details should be stored in the Pass_
TravelHistory so that in the future a passenger can query
for his/her journey details.

After proper authentication, ticket reservation and
payment, the response to the passenger about reservation
will be Seat no, Travelling date, Departure time, Platform
no, Fare amount, Total distance, approximate time and the
remaining amount in the account.

For a successful bus ticket reservation and payment
operation, each of the steps from 2 to 7 requires an SQL
query to be executed against the given database. Step 2, 3
and 7 require SQL Select queries, step 4 and 5 requires SQL
Update queries and step 6 require an SQL Insert query.

A specific passenger’s input data “MobileService#1
saleem greatwazir ansan suwon 3/10/2010” means a
passenger saleem having password greatwazir wants to
reserve a bus ticket from Ansan to Suwon on 3/10/2010.

Since the step 4, step 5 updates and step 6 insert
records in to the database; the generic systems [1-3] are
not able to provide such type of transaction services. The
main aim of the proposed system is to provide services in
which multiple insert, delete and update query processing is
required for every new user input and let the end user able
to further personalize any root service.

In stand alone system’s implementation, all the required
service queries are written by a programmer and are fixed
in a specific program location. While in the proposed
system, all the service queries are graphically generated
by the administrator and are stored in the repository. The

11-Saleem.indd 804 2012/9/24 下午 02:19:42

805Generic and Personalized Web/Mobile Services by Abstracting and Specializing SQL Queries

corresponding queries are then dynamically retrieved from
the repository and are executed based on the input data.
Hence in the traditional way of implementation, query
execution is fixed while it is dynamic in the proposed system.

The paper is organized as follows. Section 2 highlights
related work, Section 3 define service abstraction as
series of SQL queries, Section 4 describes the concept of
personalized service registration and its details, Section 5
introduces the visual tool for mobile-services generation,
Section 6 define proposed architecture for implementing
this generic queries processing system, Section 7 shows a
typical user input processing, Section 8 contains practical
example of information’s service for which this model can
be used and Section 9 describes the conclusion.

2 Related Work

Authors [1-2] developed a generic application, which
can be used to provide more than single service. The system
administrator is able to register new messaging services in
a simple way without any programming or design changes.
The generic application dynamically communicates with
databases and extracts information based on the contents of
the SMS. However, the system only provides information
services and cannot be used for transactions like inserting,
updating or deleting records. These systems only relies
on execution of generic SQL- Select queries and cannot
consider the generic execution of SQL-Insert, Update
and Delete queries. Also these systems does not support
personalized service registration.

Ahmad and Kareem [3] design a database language
called Free-Form; which enable user to issue any type of
query. The users are able to formulate new queries and
get information according to their interest. This model is a
very good alternative for those stand alone systems which
only provide minimal querying capabilities. The possible
queries that can be formulated on these systems are mostly
pre-determined by the developers. Such a measure tends to
limit the usage of these systems. It leaves no room for users
to issue any query of interest. However, this work does not
address the issues of [1] as well. It allows users to formulate
only SQL-Select queries and service personalization is not
supported. Furthermore, database experts believe that it is
hard for an ordinary user to formulate a desired complex
query using only schema information.

Jarir et al. [4] proposed an SOA based architecture for
personalized on-the-fly web services for web information
extraction. Web extraction services can be modified on-
the-fly without stopping the current process. Georgia
and Yannis [5] developed a personalized framework for
database systems based on the user-interests shown in the
profile. Some of the other research related to personalized

services generation is shown in [6-8][28]. However, none
of the above described the SMS based personalized services
generation.

In SOA, there are standards like, Web Service
Definition Language (WSDL) [21], Business Process
Execution Language (BPEL) [22], WS-Coordination [23],
WS-Atomic Transaction [24] and WS-Business Activity
[25] used to describe transactional services and their
compositions. Some of them like WSDL provides graphical
user interface to modify XML files used for a specific
service. These standards are very useful for generating
information and transactional services. However, we
believe that it is not trivial to generate and control large
number of personalized services with the above standards.

Other notable applications based on SMS/Web
technology are hospital search and appointments [9-10],
Regional information services [11], Public Transport
Service [12-13], Mobile commerce and Banking [14-
15], Sales Reporting [16], Mobile-Quiz [17], SMS
Blogging [18], Real time information exchange [19] and
Payments [20]. Each of these applications provides specific
information and did not take the extensibility and re-
usability into consideration. Thus if system administrators
want to add some new functionalities to an existing system,
they have either to make changes to the existing system or
rebuild the entire system from scratch [1].

3 Service Abstraction

We regard each mobile service as a procedural
abstraction of a sequence of database queries. Each mobile
service is treated as a procedure having a unique identifier.
The mobile service, like usual procedure in programs,
can have zero or more formal parameters that are to be
bound to the values supplied later by mobile-service users.
The body of a mobile service consists of a sequence of
database queries. Mobile-service declarations are prepared
by a mobile-service administrator. A mobile-service user
can invoke a mobile service by supplying a service name
followed by input data corresponding to formal parameters
of the service. Then the input values are bound to formal
parameters and the queries in the body are sequentially
executed in that environment. The following is an example
of a mobile-service declaration for the motivating example.

MobileService#1
 Input Parameters:
 PId: string
 Paswd: string
 StrtTerm: string
 DestTerm: string
 TravDate: string

11-Saleem.indd 805 2012/9/24 下午 02:19:42

Journal of Internet Technology Volume 13 (2012) No.5806

 {
--- Step 2 (Skeleton SQL-Select Query) ---
Select *from Passenger_Account where
Passenger_Id = PId and passenger_Pswd =
Paswd ;

--- Step 3 (Skeleton SQL-Select Query) ---
Select *from Passenger_Account,Ticket_
Details where Passenger_Account.
Passenger_Id = PId and
Passenger_Account.Passenger_Pswd =
Paswd and Ticket_Details.Starting_
Terminal = StrtTerm and Ticket_
Details.Destination_Terminal = DestTerm
a n d T i c k e t _ D e t a i l s . T r a v e l l i n g _
Date = Convert(datetime, TravDate)
and Convert(int,Passenger_Account.
Available_Amount)>= Convert(int,Ticket_
Details.Fare_Amount);

--- Step 4 (Skeleton SQL-Update Query) ---
Update Top(1) Ticket_Details set
Ticket_Status = ‘Reserved’,Passenger_Id
= PId where Ticket_Details.Ticket_Status
= ‘Available’ and convert(int,Ticket_
Details.Seat_No) =(Select TOP 1
Ticket_Details.Seat_NO from Ticket_
Details where Ticket_Details.Starting_
Terminal = StrtTerm and Ticket_
Details.Destination_Terminal = DestTerm
and Ticket_Details.Travelling_Date =
Convert(datetime, TravDate)and Ticket_
Details.Ticket_Status = ‘Available’)
order by Starting_Time;

--- Step 5(Skeleton SQL-Update Query) ---
Update Passenger_Account set Passenger_
Account.Available_Amount = Passenger_
Account.Available_amount - Convert
(int,(Select top 1 Ticket_Details.Fare_
Amount from Ticket_Details where Ticket_
Details.Passenger_Id = PId and
Ticket_Details.Starting_Terminal =
StrtTerm and Ticket_Details.Destination_
Terminal = DestTerm and Ticket_Details.
Travelling_Date = Convert(datetime,
TravDate)and Ticket_Details.Ticket_
Status = ‘Reserved’)) Where Passenger_
Account.Passenger_Id = PId ;

--- Step 6 (Skeleton SQL-Insert Query) ---
Insert into Pass_TravelHistory values
(PId, StrtTerm, DestTerm, TravDate);

---Step 7 (Skeleton SQL-Select Query) ---
Select Seat_no,Travelling_Date,
Starting_Time, PlateForm_No,Fare_Amount,
Total_Distance,Approx_Time,Available_
Amount from Ticket_Details, Passenger_
Account Where Passenger_Account.
passenger_id = PId and Travelling_Date =
Convert(datetime, TravDate) and ticket_
status = ‘Reserved’

 }

Each query in the body of a mobile-service declaration
is called a skeleton query because some parts of the query
are filled with a formal-parameter variables. For the
skeleton query of step 3, there are two possible executions;
either a direct bus from Ansan to Suwon does not exist at
the given date or the available amount in the passenger
account is not sufficient. Here we are assuming that the bus
service always exist between the two terminals. However,
we can also divide the above query into two: first will check
for the availability of the bus service between the source
and destination and second will check for the sufficient
amount in the passenger account. If any of the queries is
failed then a corresponding response will be forwarded to
the passenger. Also, for simplicity we are not considering
the timing constraint of ticket reservation.

If a user wants to use this service and to know the
availability of a bus from Ansan to Suwon on March 10,
2010, then she can invoke this service by supplying all
actual arguments “MobileService#1 saleem greatwazir
ansan suwon 3/10/2010.”

If a user wants to personalize the service in her
mobile phone, she can do so by specializing the service
with respect to her identifier. This specialization can be
carried out by invoking the service with only the first
argument, say “MobileService#1 saleem _ _ _ _.” The
underscore “_” means that the argument is not going to be
supplied this time. Then the specialized service is named as
“MobileService#1_saleem” and every instance of PId in the
body is replaced by ‘saleem’ as followed.

MobileService#1_saleem
 Input Parameters:
 Paswd: string
 StrtTerm: string
 DestTerm: string
 TravDate: string

11-Saleem.indd 806 2012/9/24 下午 02:19:42

807Generic and Personalized Web/Mobile Services by Abstracting and Specializing SQL Queries

 {
--- Step 2 (Skeleton SQL-Select Query) ---
Select *from Passenger_Account where
Passenger_Id = ‘saleem’ and passenger_
Pswd = Paswd ;

--- Step 3 (Skeleton SQL-Select Query) ---
Select *from Passenger_Account,Ticket_
Details where Passenger_Account.
Passenger_Id = ‘saleem’ and Passenger_
Account.Passenger_Pswd = Paswd and
Ticket_Details.Starting_Terminal =
StrtTerm and Ticket_Details.Destination_
Terminal = DestTerm and Ticket_Details.
Travelling_Date = Convert(datetime,
TravDate)and Convert(int,Passenger_
A c c o u n t . A v a i l a b l e _ A m o u n t) > =
Convert(int,Ticket_Details.Fare_Amount);

--- Step 4 (Skeleton SQL-Update Query) ---
Update Top(1) Ticket_Details set
Ticket_Status = ‘Reserved’,Passenger_
Id = ‘saleem’ where Ticket_Details.
Ticket_Status = ‘Available’ and
convert(int,Ticket_Details.Seat_No)
=(Select TOP 1 Ticket_Details.Seat_
NO from Ticket_Details where Ticket_
Details.Starting_Terminal = StrtTerm
and Ticket_Details.Destination_
Terminal = DestTerm and Ticket_Details.
Travelling_Date = Convert(datetime,
TravDate)and Ticket_Details.Ticket_
Status = ‘Available’) order by
Starting_Time;

--- Step 5(Skeleton SQL-Update Query) ---
Update Passenger_Account set Passenger_
Account.Available_Amount = Passenger_
Account.Available_amount - Convert
(int,(Select top 1 Ticket_Details.Fare_
Amount from Ticket_Details where Ticket_
Details.Passenger_Id = ‘saleem’ and
Ticket_Details.Starting_Terminal =
StrtTerm and Ticket_Details.Destination_
Terminal = DestTerm and Ticket_Details.
Travelling_Date = Convert(datetime,
TravDate)and Ticket_Details.Ticket_
Status = ‘Reserved’)) Where Passenger_
Account.Passenger_Id = ‘saleem’ ;

--- Step 6 (Skeleton SQL-Insert Query) ---
Insert into Pass_TravelHistory values
(‘saleem’, StrtTerm, DestTerm, TravDate);

---Step 7 (Skeleton SQL-Select Query) ---
Select Seat_no,Travelling_Date,
Starting_Time, PlateForm_No,Fare_Amount,
Total_Distance,Approx_Time,Available_
Amount from Ticket_Details, Passenger_
Account Where Passenger_Account.
passenger_id = ‘saleem’ and Travelling_
Date = Convert(datetime, TravDate) and
ticket_status = ‘Reserved’
 }

The personalized service is deposited at the server and
can be invoked by the requested user over and over again.
That is, the user can now invoke her personalized service
“MobileService#1_saleem” with 4 arguments instead of
the general service “MobileService#1” with 5 arguments.
If the user does not want to type the password every time
she uses this personalized service, she can even register the
service with respect to both identifier and password, say
“MobileService#1 saleem greatwazir _ _ _.” From then
on, she can use her service “MobileService#1_saleem +
greatwazir” with 3 arguments over and over again.

4 Service Personalization

Consider the motivating example again: if a specific
passenger frequently uses the bus service from Ansan to
Suwon, she can further specialize the personalized service
with respect to the route by invoking “MobileService#1_
saleem (_ , ansan, suwon, _)”. This invocation asks the
server to create a specialized service for Saleem with
Starting_Terminal and Destination_Terminal fixed as Ansan
and Suwon, respectively. Then the specialized service
generated by the server is as follows:

MobileService#1_saleem+suwon+ansan
 Input Parameters:
 Paswd: string
 TravDate: string

 {
--- Step 2 (Skeleton SQL-Select Query) ---
Select *from Passenger_Account where
Passenger_Id = ‘saleem’ and passenger_
Pswd = Paswd ;

11-Saleem.indd 807 2012/9/24 下午 02:19:42

Journal of Internet Technology Volume 13 (2012) No.5808

--- Step 3 (Skeleton SQL-Select Query) ---
Select *from Passenger_Account,Ticket_
Details where Passenger_Account.
Passenger_Id = ‘saleem’ and Passenger_
Account.Passenger_Pswd = Paswd and
Ticket_Details.Starting_Terminal =
‘ansan’ and Ticket_Details.Destination_
Terminal = ‘suwon’ and Ticket_Details.
Travelling_Date = Convert(datetime,
TravDate)and Convert(int,Passenger_
A c c o u n t . A v a i l a b l e _ A m o u n t) > =
Convert(int,Ticket_Details.Fare_
Amount);

--- Step 4 (Skeleton SQL-Update Query) ---
Update Top(1) Ticket_Details set
Ticket_Status = ‘Reserved’,Passenger_
Id = ‘saleem’ where Ticket_Details.
Ticket_Status = ‘Available’ and
convert(int,Ticket_Details.Seat_No)
=(Select TOP 1 Ticket_Details.Seat_
NO from Ticket_Details where Ticket_
Details.Starting_Terminal = ‘ansan’ and
Ticket_Details.Destination_Terminal =
‘suwon’ and Ticket_Details.Travelling_
Date = Convert(datetime, TravDate)
and Ticket_Details.Ticket_Status =
‘Available’) order by Starting_Time;

--- Step 5(Skeleton SQL-Update Query) ---
Update Passenger_Account set Passenger_
Account.Available_Amount = Passenger_
Account.Available_amount - Convert
(int,(Select top 1 Ticket_Details.Fare_
Amount from Ticket_Details where Ticket_
Details.Passenger_Id = ‘saleem’ and
Ticket_Details.Starting_Terminal =
‘ansan’ and Ticket_Details.Destination_
Terminal = ‘suwon’ and Ticket_Details.
Travelling_Date = Convert(datetime,
TravDate)and Ticket_Details.Ticket_
Status = ‘Reserved’)) Where Passenger_
Account.Passenger_Id = ‘saleem’ ;

--- Step 6 (Skeleton SQL-Insert Query) ---
Insert into Pass_TravelHistory values
(‘saleem’, ’ansan’, ‘suwon’, TravDate);

---Step 7 (Skeleton SQL-Select Query) ---
Select Seat_no,Travelling_Date,
Starting_Time, PlateForm_No,Fare_Amount,
Total_Distance,Approx_Time,Available_

Amount from Ticket_Details, Passenger_
Account Where Passenger_Account.
passenger_id = ‘saleem’ and Travelling_
Date = Convert(datetime, TravDate) and
ticket_status = ‘Reserved’

 }

Then the user can invoke her own specialized service
whenever she wants to travel from Ansan to Suwon, say
“MobileService#1_saleem + ansan + suwon greatwazir
3/10/2010”. Such type of dedicated services can greatly
increase the importance of the system. Based on the
existing services, the user will be able to generate new
personalized services according to their wishes. The input
format errors will be greatly reduced and users will get
various services with the less possible inputs.

With this idea each root service can have more than
one personalized services. Each personalized service is
dedicated to only one user as it is generated by a specific
user according to its wishes. All the personalized services
must have a single root service.

Beside user facilitation, personalized services also
reduces the communication cost and possibility of security
attacks such as SQL injections as each of the above metric
is directly proportional to the number of user-supplied
arguments.

5 A Visual Tool for Generating Mobile
Services

In this section, we demonstrate a visual tool that
assists a mobile-service administrator to compose a new
mobile service consisting of a sequence of SQL queries.
Each SQL query is generated by the visual tool. For each
of the available database, the whole database schema is
graphically made available in drop-down lists and menus.
Names representing formal parameters of the mobile
service should be prepared by the administrator beforehand.
Then the mobile-service administrator is only required
to pick a specific attribute from the list and assign proper
value or name to construct SQL queries just as shown in
Figure 2. Each attribute value can be; a constant string,
SQL function, another attribute, output of an SQL query or
a formal-parameter name. In this way, the complexity of
understanding data structures is moved to the graphical tool.

After generating all the queries, the administrator builds
the final service by sequentially concatenating the queries.
The graphical tool arranges all the formal parameters and
generated queries in the specified service format and stores
service data in the repository. Figure 2 shows the screen
shot of the graphical tool used for new service registration.

11-Saleem.indd 808 2012/9/24 下午 02:19:42

809Generic and Personalized Web/Mobile Services by Abstracting and Specializing SQL Queries

The mobile-service administrator is able to use various
filters (e.g, +, *, >, <=, != etc), SQL functions (e.g, Int,
Convert, Max etc), query pipes (query within query), and
various table joins for multiple-table records retrieval in
graphical way. Using the query pipes, queries within query
can be formulated such that the output of one query can be
used as an input value for another attribute.

The graphica l way of quer ies formul iza t ion
significantly facilitates the administrator in terms of
database schema understanding, fast query formulization,
and also avoids the possibility of syntax errors while
manually typing the service queries.

6 Proposed System Architecture and
Implementation

Figure 3 shows the proposed architecture for providing
information and transaction services. The Generic Mobile-
Services Provider becomes the main entity, communicating
with the user as well as database systems. This application

runs on the server computer and provides graphical
interface to the mobile-service administrator for new
service registration. The application also processes the user
input for the generation and execution of final queries. The
details about the main entities of our proposed system are
explained below.
Mobile Services Generator (MSG): New services
are registered through MSG. Before users can get any
service, the mobile-service administrator must register it
first. MSG provides a graphical interface to the mobile-
service administrator to make Skeleton queries and also
automatically generates the user input format. The fixed
input format is only mandatory for the SMS based services.
For web based service, an automatic user input form is
created, and made available through a specific website.

The general format of the user input is given as:
<Service_No> <User-Provided_List> . Each of the
available services provided by the generic mobile-services
provider is uniquely identified by Service_No. Typically
Service_No starts from 1 and increases by 1 for every new
service added by the mobile-services administrator. User-

Figure 2 Screen Shot of Part of the Graphical Services Generator Tool

11-Saleem.indd 809 2012/9/24 下午 02:19:43

Journal of Internet Technology Volume 13 (2012) No.5810

Provided_List contains those input data which user has to
provide.
Input Format Checker: Checks if the number and types
of user-supplied input exactly matches those of required
input parameters for a specific service. It also checks a user
request for a personalized service. For personalized service,
the user input is forwarded to the Personalized Services
Generator.
Personalized Services Generator (PSG): The PSG is
used to generate new personalized services having specific
skeleton queries and input format. The PSG modifies the
original mobile-service skeleton queries, by assigning static
values provided by the user to specific input parameters.
The newly personalized service is then stored in the
repository.
Services Repository: The MSG stores all the service data,
input format for each of the available services into Services
repository. The service repository consists of three tables
storing various information and skeleton queries of all
the available services. For our motivating example, the
repository tables after a successful registration are shown in
Tables 1 ~ 3.

In Table 1, the Authentication column identifies
whether or not the user authentication is necessary for
a specific service. Trans_Qry specifies the necessity of
transactions like “SQL insert, SQL update, SQL delete.”
Simple_Resp shows whether the final reply is a simple
string message or result of the some query execution. In
our said example, the final reply is an SQL Select query. So
the Final_Reply column contains a skeleton query instead
of a simple string message. The DB_Name column is used

for the dynamic link to the concerned database and the
corresponding queries processing.

The authentication table stores those SQL-Select
queries which are used for authentication or specific
condition checking. Transactions table stores skeleton
queries for insertion, deletion and updating.

After adding a new service, the system administrator
must convey the input format to all users along with
the detailed description of input formats. The system
administrator may use website or TV advertisement. The
user can also send a query SMS to the server application,
asking for the format of the SMS. The server application
then replies with an SMS containing the exact format.
SQL Query Generator (SQG): Translates skeleton queries
into the actual SQL queries by replacing each holes/gaps in
the skeleton query with proper user input. The SQL Query
Generator takes user-input, skeleton query as an input, and
generates the corresponding final SQL query as output.

For the motivating example, after the user supplied
inputs “MobileService#1 saleem greatwazir ansan suwon
3/10/2010,” the corresponding results back to the user are
given below.

Seat_no = 3
Travelling_Date = 3/10/2010
Starting_Time = 11:00
PlateForm_No = 7
Fare_Amount = 4,500 KW
Total_Distance = 30 Km
Approx_Time = 45 Min
Available_Amount = 10,000

SMS Gateway

Mobile
Service

Mobile Services
Generator

Input Format
Checker

Main Table

Transactions
Table

Authentication
Table

SQL Query Generator

Mobile Services
Administrator

Database
Systems

 Generic Mobile-Services Provider
Services Repository

Internet UserMobile User

U
se

r I
np

ut

U
se

r I
np

ut

Database QueryQuery Result

Final Reply

Final R
eply

Final R
eply

User Input User Input

Store

Skeleton
Query

Input Format

Personalized
Services

Generator
User Input

Input Format
Store

Repository
Information

New Mobile
Service

Figure 3 Proposed System Architecture

11-Saleem.indd 810 2012/9/24 下午 02:19:44

811Generic and Personalized Web/Mobile Services by Abstracting and Specializing SQL Queries

Table 1 Main Service Records

Service_No DB_Name Input_Format Args Final_Reply Authenticaon
Trans_

Qry
Simp_
Resp

1 BusTicket_
Info

@ * 1 *
Passenger_id
* Passenger_

Pswd * Starting_
Terminal *

Destination_
Terminal *

Traveling_Date
* Bus_Type *
From_Time *

To_time

PId,
Paswd,

StrtTerm,
DestTerm,
TravDate,
ServType,
FromTime,

ToTime

Select Seat_no, Travelling_
Date, Starting_Time,
PlateForm_No, Fare_

Amount, Total_Distance,
Approx_Time, Available_

Amount from Ticket_
Details, Passenger_Account
Where Passenger_Account.

passenger_id = PId and
Travelling_Date =
Convert(datetime,

TravDate) and ticket_status
= ‘Reserved’

Yes Yes No

Table 2 Authentication

Service_No Skeleton_Qry Failure_Message

1
Select *from Passenger_Account where Passenger_Id = PId and passenger_Pswd =
Paswd

Authentication Fail

1

Select *from Passenger_Account, Ticket_Details where Passenger_Account.Passenger_
Id = PId and Passenger_Account.Passenger_Pswd = Paswd and Ticket_Details.Starting_
Terminal = StrtTerm and Ticket_Details.Destination_Terminal = DestTerm and Ticket_
Details.Travelling_Date = Convert(datetime, TravDate) and Convert(int,Passenger_
Account.Available_Amount) > = Convert(int,Ticket_Details.Fare_Amount)

The available
amount is not
sufficient to pay the
current bill

Table 3 Transactions

Service_No Skeleton_Qry
1 Insert into Pass_TravelHistory values (PId, StrtTerm, DestTerm, TravDate)

1

Update Top(1) Ticket_Details set Ticket_Status = ‘Reserved,’ Passenger_Id = PId where Ticket_Details.
Ticket_Status = ‘Available’ and convert(int,Ticket_Details.Seat_No) = (Select TOP 1 Ticket_Details.Seat_
NO from Ticket_Details where Ticket_Details.Starting_Terminal = StrtTerm and Ticket_Details.Destination_
Terminal = DestTerm and Ticket_Details.Travelling_Date = Convert(datetime, TravDate) and Ticket_Details.
Ticket_Status = ‘Available’) order by Starting_Time

1

Update Passenger_Account set Passenger_Account.Available_Amount = Passenger_Account.Available_
amount - Convert (int,(Select top 1 Ticket_Details.Fare_Amount from Ticket_Details where Ticket_Details.
Passenger_Id = PId and Ticket_Details.Starting_Terminal = StrtTerm and Ticket_Details.Destination_
Terminal = DestTerm and Ticket_Details.Travelling_Date = Convert(datetime, TravDate) and Ticket_Details.
Ticket_Status = ‘Reserved’)) Where Passenger_Account.Passenger_Id = PId

11-Saleem.indd 811 2012/9/24 下午 02:19:44

Journal of Internet Technology Volume 13 (2012) No.5812

7 User Input Processing

For a specific service, the user supplied input is first
checked by input format checker for the required number
of supplied inputs. Then it is forwarded to the SQL query
generator, making the final SQL query using the skeleton
query and input data. The successful execution of required
service queries results in a reply to the user. The user input
processing is shown in the flow chart given in Figure 4.

After format verification, the user input is checked
for certain authentication, if required. For each service,
the Authentication column of the Main table stores value
either, “Yes” or “No.” If the column value is “Yes,” then all
the concerned skeleton queries stored in the authentication
table are extracted and passed individually through SQL
Query Generator for final query generation. If a specific
query execution does not satisfy the required condition, the
corresponding failure message stored in the Authentication
table is forwarded back and the user input processing is

stopped. After successful authentication, the Trans_Qry
column of the Main table is checked. If its value is “Yes,”
all the corresponding transacting skeleton queries (“SQL
insert, update, and delete”) are passed through SQG
separately for final query generation. After the successful
completion of all transactions, the Simp_Resp column of
the Main table is checked. If its value is “Yes,” the simple
string message stored in the Final_Reply coulumn is
forwarded back to the user. For the value “No,” the skeleton
query stored in Final_Reply column is passed through SQG
and corresponding results are forwarded back to the user.

8 Case Study

Consider the ERD of Figure 5, with information
about the students’ grades of different exams. Suppose
that the administrator wants to add a new service Exam
Result Checking in which a student provides her/his
student identification number, password, and exam name

Authentication
Required

Transacting Queries
Processing

Simple String
Response

Extract Authentication
Skeleton query from
Authentication Table

SQL Query
Generating Algorithm

Authentication
Successful

Extract Transacting
Skeleton query from
Transactions Table

SQL Query
Generating Algorithm

Commit All
Transactions

Extract Final
Response Skeleton

query from Main Table

SQL Query
Generating Algorithm Reply to the User

User Input Accept Yes

Yes

Yes

Yes

No

No

No

No

Input Format
Check

Reject

Authentication Failure Message

Format Problem

Query ResultsFi
na

l R
ep

ly
 to

 th
e

U
se

r

Figure 4 Flow Chart of User Input Processing

Figure 5 ERD of Exam

11-Saleem.indd 812 2012/9/24 下午 02:19:44

813Generic and Personalized Web/Mobile Services by Abstracting and Specializing SQL Queries

as input and gets the corresponding grade in response.
The initial step-by-step requirements set up by the system
administrator would be as follows:
(1) Every user must be authenticated before getting the

result. The authentication should be based on St_id and
St_pswd.

(2) Every user must provide her/his student identification
number, password, and exam name in a proper input
format.

(3) After proper authentication, the response to the student
will be subject code, marks obtained, corresponding
grade, and GPA.

(4) Once a student checks his result, the Checking_History
table must be updated. The history lets the administrator
know how many students are still to check the result.
For every student identification number and exam
name, the Is_Result_Checked field initially contains
a default value “No.” When a student checks his/her
result, the value should be updated from “No” to “Yes”
with corresponding date and time entry.
Once the administrator builds the service successfully

using MSG, the format of the input is like:
<Service_id> <St_id> <St_pswd> <Exam_name>
where <Service_id> is a unique service identifier for

the grade checking service. The MSG will generate three
Skelton queries to be executed against the given database
to fulfill the requirements. The first query authenticates
a specific student. If the authentication is successful, the
next query updates the Student_Checking_History table,
and then the final query collects the requested grade and
sends back to the student. The Authentication, Transactions
and Main table stores the first, second and third query,
respectively. The corresponding mobile service is given as
follows:

MobileService#3
 Input parameters
 StId: string
 Paswd: string
 ExmName: string
 {
--- Skeleton SQL-Select query (For
Authentication)---
Select *from Student where Student.St_id
= StId and Student.St_pswd = Paswd;

--- Skeleton SQL-Update query (To Update
History) ---
Update Student_Checking_History set Is_
Resut_Checked = ‘yes’ and Checking_
DataTime = GetDate() where
Student_Checking_History.St_id = StId

and Student_Checking_History.Exam_Name
= ExmName ;

 --- where GetDate() is an SQL function
for the current system date and time.
The SQGS system provides a list of
SQL functions to be used in a specific
skeleton query.---

---Skeleton SQL-Select query (for final
grades collection) ---
S e l e c t S t u d e n t _ G r a d e . S u b _ c o d e ,
Student_Grade.Marks,Student_Grade.
Grade, Student_Grade.Gpa from Student,
Student_Grade where Student.St_id = StId
and Student_Grade.Exam_name = ExmName
and Student.St_id = Student_Grade.St_id
 }

8.1 User Input and Corresponding Final Queries
For example, when a user provides the input:

MobileService#3 2008553025 jam342s, the final queries
are given as under:

Select *from Student where Student.St_
id = ‘2008553025’ and Student.St_pswd =
‘jam342s’

Update Student_Checking_History
set Is_Resut_Checked = ‘yes’ and
Checking_DataTime = GetDate() where
Student_Checking_History.St_id =
‘2008553025’and Student_Checking_
History.Exam_Name = ‘fall09’

S e l e c t S t u d e n t _ G r a d e . S u b _ c o d e ,
Student_Grade.Marks, Student_Grade.
Grade, Student_Grade.Gpa from Student,
Student_Grade where Student.St_id =
‘2008553025’and Student_Grade.Exam_name
= ‘fall09’ and Student.St_id = Student_
Grade.St_id

8.2 Results
Sub_code = cse1
Marks = 98
grade = A
GPA = 4.5
and
Sub_code = cse2
Marks = 94
grade = A0

11-Saleem.indd 813 2012/9/24 下午 02:19:45

Journal of Internet Technology Volume 13 (2012) No.5814

GPA = 4
and
Sub_code = cse3
Marks = 74
grade = C
GPA = 3

9 Conclusion and Future Work

In this article, we proposed a method of skeleton
SQL queries formulization to provide generic information
and transaction services. The proposed architecture is
fast, easy to understand and scalable. Also the user is
able to personalize a main service according to his/her
requirements. With service personalization, the numbers of
user-inputs are reduced. Consequently, the processing time
is increased and only user specific records can be retrieved.
Since this system can also provide transaction services due
to which only the administrator is allowed to formulate
various queries. Also, it is hard for a non-database expert
user to formulate complex SQL queries using only the
schema information.

As a future work, we are planning to propose a skeleton
SPARQL queries formulation language to provide generic
resource description framework (RDF) services. The
SPARQL will be used as query language and RDF datasets
will be used as data source at the endpoints. Moreover, as
the proposed system generates services in which all types
of database operations are possible, proper authentications
and secure database transactions are a must. The existing
ID-and-password-based security and authentication is not
enough. If the user ID and password are compromised in
some way, then any user can do various transactions using
someone else’s account. We also plan to use proper public
and private key management and input encryption to ensure
the proper authentication and secure transaction.

Acknowledgements

This work was sponsored by ‘Higher Education
Commission (HEC), Govt. Of Pakistan’ under the
scholarship program titled: MS Level Training in Korean
Universities/Industry.

References

[1] Muhammad Saleem and Kyung-Goo Doh, Generic
Information System Using SMS Gateway, Proc. 4th
International Conference on Computer Science and
Convergence Information Technologies (ICCIT),
Seoul, Korea, November, 2009, pp.861-866.

[2] Muhammad Saleem, Ali Zahir, Yasir Ismail and Bilal
Saeed, Enhanced Generic Information Services Using
Mobile Messaging, Proc. International Conference
on Grid and Pervasive Computing (GPC), Hualien,
Taiwan, May, 2010, pp.510-521.

[3] Rohiza Ahmad and Sameem Abdul-Kareem, Free-
Form Query for Cell Phones, World Academy of
Science, Engineering and Technology, Vol.59, 2009,
pp.11-16.

[4] Zahi Jarir, Mohamed Quafafou and Mahammed
Erradi , Personal ized Web Services for Web
Information Extraction, J. of Web Services Practices,
Vol.5, No.1, 2010, pp.22-31.

[5] Georgia Koutr ika and Yannis E. Ioannidis ,
Personalization of Queries in Database Systems,
Proc. 20th International Conference on Data
Engineering (ICDE), Boston, MA, March, 2004,
pp.597-608.

[6] Jarir Zahi and Mohammad Erradi , Dynamic
Personalization in Component-Based Application,
Asian Journal of Information Technology, Vol.3,
No.9, 2004, pp.796-800.

[7] Ladjel Bellatreche, Arnaud Giacometti, Patrick
Marcel, Hassina Mouloudi and Dominique Laurent,
A Personalization Framework for OLAP Queries,
Proc. 8th ACM International Workshop on Data
Warehousing and OLAP, Bremen, Germany, October,
2005, pp.9-18.

[8] Irene Garrigos, Jaime Gomez and Cristina Cachero,
Modell ing Dynamic Personalizat ion in Web
Applications, Proc. Interventional Conference on Web
Engineering, Oviedo, Spain, July, 2003, pp.472-475.

[9] Kevin Hung and Yaun-Ting Zhang, Implementation
of a WAP-Based Telemedicine System for Patient
Monitoring, IEEE Transaction on Information
Technology in Biomedicine, Vol.7, No.2, 2003,
pp.101-107.

[10] Tyrone Edwards and Suresh Sankaranarayanan,
Intelligent Agent Based Hospital Search and
Appointment System, Proc. 2nd International
Conference on Interaction Sciences: Information
Technology, Culture and Human, Seoul, Korea,
November, 2009, pp.561-567.

[11] Duklon Stenett and Suresh Sankaranarayanan,
Personal Mobile Information System, Proc. 2nd
International Conference on Interaction Sciences:
Information Technology, Culture and Human, Seoul,
Korea, November, 2009, pp.592-598.

[12] Lim Tai Ching, H. K. Garg, Designing SMS
Applications for Public Transport Service System in
Singapore, Proc. the 8th International Conference
on Communication Systems, Singapore, November,
2002, pp.706-710.

11-Saleem.indd 814 2012/9/24 下午 02:19:45

815Generic and Personalized Web/Mobile Services by Abstracting and Specializing SQL Queries

[13] Carl Collins, Amy Grude, Matthew Scholl and
Robert Thompson, Txt Bus: Wait Time Information
on Demand, Proc. of CHI, San Jose, CA, April, 2007,
pp.2049-2054.

[14] Hua Wang, Xiaodi Huang and Goutham Reddy
Dodda, Ticket-Based Mobile Commerce System and
Its Implementation, Proc. 2nd International Workshop
on Modeling Analysis and Simulation of Wireless and
Mobile Systems, Torremolinos, Spain, October, 2006,
pp.119-122.

[15] Md. Subrun Jamil and Fouzia Ashraf Mousumi, Short
Messaging Service (SMS) Based M-Banking System
in Context of Bangladesh, Proc. 11th International
Conference on Computer and Information Technology
(ICCIT), Khulna, Bangladesh, December, 2008,
pp.599-604.

[16] Ke Wan, An SMS-Based Sales Reporting System
for a Fashion-Clothes Franchising Company, Proc.
Engineering Management Conference (IEMC),
Managing Technologically Driven Organizations:
The Human Side of Innovation and Change, Albany,
NY, November, 2003, pp.330-334.

[17] Mohammad Shirali Shahreza, M-Quiz by SMS, Proc.
6th International Conference on Advanced Learning
Technologies, Kerkrade, The Netherlands, July, 2006,
pp.726-729.

[18] Archana Prasad, Sean Olin Blagsvedt and Kentaro
Toyama, SMSBlogging: Blog-on-the-Street Public
Art Project, Proc. 15th International Conference on
Multimedia, Augsburg, Germany, September, 2007,
pp.501-504.

[19] Felix-Robinson Aschoff and Jasminko Novak, The
Mobile Forum: Real-Time Information Exchange
in Mobile SMS Communities, Proc. Conference
on Human Factors in Computing Systems (CHI),
Florence, Italy, April, 2008, pp.3489-3494.

[20] Quratulain Aziz, Payments through Mobile Phone,
Proc. 6th International Conference on Emerging
Technologies (ICET), Peshawar, Pakistan, November,
2006, pp.50-52.

[21] Web Services Description Language (WSDL) 1.1,
2001, http://www.w3.org/TR/wsdl

[22] Web Services Business Process Execution Language
(WSBPEL) TC, 2003, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsbpel

[23] Web Services Coordination (WS-Coordination), 2009,
http://docs.oasis-open.org/ws-tx/wscoor/2006/06

[24] Web Services Atomic Transaction, 2009, http://docs.
oasis-open.org/ws-tx/wsat/2006/06

[25] Web Services Business Activity, 2009, http://docs.
oasis-open.org/ws-tx/wsba/2006/06

[26] Shangguang Wang, Qibo Sun, Hua Zou and
Fangchun Yang, Web Service Selection Based on
Adaptive Decomposition of Global QoS Constraints
in Ubiquitous Environment, J. of Internet Technology,
Vol.12, No.5, 2011, pp.757-768.

[27] C. Valliyammai and S. Thamarai Selvi, Mobile Agent
Based Resource Monitoring for Job Submission in
Grid with Virtual Database, J. of Internet Technology,
Vol.13, No.3, 2012, pp.445-452.

 [28] Rita Kuo, Chang-Kai Hsu, Maiga Chang and Jia-
Sheng Heh, A Personalized Webpage Reconstructor
Based on Concept Lattice and Association Rules, J. of
Internet Technology, Vol.12, No.6, 2011, pp.1015-1024.

Biographies

Muhammad Saleem has completed
his bachelor in Computer Software
Engineering from N-W.F.P University of
Engineering and Technology, in March
2007 and Master in Computer Science and
Engineering from Hanyang University,
South Korea in August 2010. His research

interests include Semantic web, Web services, Database
management, Information retrieval, and Social networks
analysis. Currently, he is working as PhD candidate at
Digital Enterprise Research Institute (DERI), National
University of Ireland, Ireland.

Iqbal Qasim received the BS degree
in Computer Science from Allam Iqbal
Open University, Islamabad, Pakistan, in
2005 and Master in Computer Science
from National university of Science and
Technology (NUST), Islamabad, Pakistan
in 2009. His research interests include

semantic web, web data mining, information retrieval,
multimedia systems and social networks analysis. Currently,
he is working as PhD candidate at Knowledge and Data
Engineering (KDE) laboratory, Hanyang University, South
Korea.

A t a u r R e h m a n h a s c o m p l e t e d
his bachelor in Telecommunication
Engineering from N-W.F.P University of
Engineering and Technology Pakistan,
in March 2007 and Master in Electronics
Engineering from Politecnico Di Torino
Italy, in September 2010. His research

interests include Wireless networks, Internet of things,
RFIDs, and Social networks analysis. Currently, he is
working as PhD candidate at Politecnico Di Torino Italy.

11-Saleem.indd 815 2012/9/24 下午 02:19:45

Journal of Internet Technology Volume 13 (2012) No.5816

11-Saleem.indd 816 2012/9/24 下午 02:19:45

