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Abstract

Plants interact with their environment by modifying gene expression patterns. One mechanism for this interaction

involves epigenetic modifications that affect a number of aspects of plant growth and development. Thus, the

epigenome is highly dynamic in response to environmental cues and developmental changes. Flowering is

controlled by a set of genes that are affected by environmental conditions through an alteration in their expression

pattern. This ensures the production of flowers even when plants are growing under adverse conditions, and thereby

enhances transgenerational seed production. In this review recent findings on the epigenetic changes associated

with flowering in Arabidopsis thaliana grown under abiotic stress conditions such as cold, drought, and high salinity
are discussed. These epigenetic modifications include DNA methylation, histone modifications, and the production

of micro RNAs (miRNAs) that mediate epigenetic modifications. The roles played by the phytohormones abscisic

acid (ABA) and auxin in chromatin remodelling are also discussed. It is shown that there is a crucial relationship

between the epigenetic modifications associated with floral initiation and development and modifications

associated with stress tolerance. This relationship is demonstrated by the common epigenetic pathways through

which plants control both flowering and stress tolerance, and can be used to identify new epigenomic players.
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Introduction

Plants can adapt their growth and developmental processes in

response to environmental conditions. Under stress condi-
tions such as drought, high salt, high temperature, and high

light intensity, physiological processes are induced to reduce

the cellular damage caused by stress and, at the same time,

alter developmental timing to complete their life cycle in

a timely manner. Plants that experience stress transition to

reproductive development earlier than non-stress-treated

plants, typically at the expense of decreased seed number that

allows for some seed production to occur during periods of
environmental stress. Stress environmental factors that induce

flowering have been discussed thoroughly in a previous review

(Wada and Takeno, 2010). Most notably, salicylic acid, which

usually induces defence genes, also induces early flowering

under UV-C light stress, presumably by interacting with

key floral transcription repressors such as FLOWERING

LOCUS T (FT) and other components of the autonomous

flowering pathway (Martinez et al., 2004; Wada et al.,
2010). However, evidence of physical interaction is not yet

available. Similarly, high temperature stress induces flower-

ing, a process mediated by FLOWERING LOCUS M

(FLM) and FT, which integrates input from CONSTANS

and other floral inductive pathways (Blazquez et al., 2003;

Balasubramanian et al., 2006), while stress associated with

low nitrate availability induces early flowering through

a novel pathway (Castro Marı́n et al., 2010).
The effect of stress on flowering time can be ascribed, in

part, to induced changes in the epigenome. Epigenetics

refers to heritable, self-perpetuating changes in gene activi-

ties that are not caused by changes in nucleotide sequence

and are associated with chemical modifications of chroma-

tin (Bonasio et al., 2010). These modifications take place in
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the nucleosome at different levels through reversible bio-

chemical reactions that include DNA methylation and

histone tail modifications. DNA methylation occurs by

covalently adding a methyl group to cytosine of the DNA

backbone, while histone modifications occur when specific

lysine or arginine residues within the amino acid terminal

tail of histones are post-translationally modified either by

acetylation (Grunstein, 1997), ADP-ribosylation (Tanigawa
et al., 1984), glycosylation (Cervantes-Laurean et al., 1996),

methylation (Zhang and Reinberg, 2001), phosphorylation

(Lo et al., 2001), ubiquitination (Sridhar et al., 2007), or

SUMOylation (David et al., 2002; Miller et al., 2010).

Typically, DNA methylation leads to reduced gene expres-

sion, whereaas histone modifications are more complicated

and can lead to various gene expression alterations depend-

ing on the modification (Richards and Elgin, 2002). More
recently, it was discovered that small non-coding RNA

plays an important role in regulating gene expression by

specifying DNA methylation patterns (Matzke and Birchler,

2005). Each of these types of modifications have been

involved in modulating flowering, and many of these are

associated with response to abiotic and biotic stress.

Plants that are adapted to extreme environments have the

capacity to cope with adverse environmental cues with
minimum cellular damage. Eukaryotic cells respond to the

environment by modifying their gene expression profiles,

a process which usually involves specific chromatin mod-

ifications. The correlation between epigenetic changes in

plants and stress tolerance has been previously discussed

(Boyko and Kovalchuk, 2008; Chinnusamy and Zhu, 2009;

Alvarez et al., 2010; M Chen et al., 2010). Chromatin

modifications both influence and are influenced by other
responses to abiotic and biotic stresses.

DNA methylation, environmental stress, and
the flowering process

DNA methylation (5-methylcytosine) can account for >30%

of the cytosine (CpG) residues in plants (Gruenbaum et al.,

1981a, 1981b) and >60% in mammals (Gruenbaum et al.,

1981b; Razin et al., 1984). In Arabidopsis, DNA methylation is

often associated with gene repression (Zilberman et al., 2007),

although some reports show a weak relationship between the

hypermethylation status of the genes and their expression
level. For example, Vaillant et al. (2006) showed that

expression levels of the Arabidopsis 5S rRNA gene repeats

can be increased in the MORPHEUS’ MOLECULE 1

(MOM1) mutant lines despite the presence of the same

amount of DNA methylation (Vaillant et al., 2006). In

addition, recent evidence showed that short-term heat

stress induced the expression of genes in heterochromatin

that contain transcriptionally inert non-coding repeated
DNA. This occurs despite the presence of epigenetic

modifications that are typically associated with repression

of gene expression such as a high level of DNA methylation

and histone deacetylation, suggesting that the effect can

vary depending on circumstance (Pecinka et al., 2010;

Tittel-Elmer et al., 2010). DNA methylation is often a pre-

requisite for gene silencing via methylation directed by small

RNAs. In particular, flowering time in Arabidopsis can be

controlled by silencing of the homeodomain floral transcrip-

tion factor FWA by de novo methylation of a specific region

within the 5’ end of the transcribed region. Once FWA is

methylated, small interfering RNA (siRNA) is more efficient

at directing further methylation to the locus, which sub-
sequently enhances stable gene silencing (Chan et al., 2006).

The Arabidopsis genome encodes 12 methyl-CpG-binding

domain (MBD) proteins, which function with chromatin

remodelling proteins to inactive gene expression (Berg et al.,

2003; Springer and Kaeppler, 2005). These proteins interact

with other proteins to form chromatin modifier complexes.

For example, AtMBD7 interacts with arginine methyltrans-

ferase (PRMT11) (Scebba et al., 2007), and the AtMBD5–
AtMBD7 proteins co-localize in vivo and bind in vitro to the

DECREASE IN DNA METHYLATION 1 (DDM1) pro-

tein (Zemach et al., 2008). Loss-of-function studies showed

that plants with mutations in AtMBD9 display a pleiotropic

phenotype that leads to a decrease in histone acetylation

and an increase in DNA methylation at the FLC locus

(Peng et al., 2006; Yaish et al., 2009). As a result, transcript

levels for FLC decline, resulting in an early flowering
phenotype. Prolonged exposure of some plant species to

cold conditions or vernalization induces flowering, a process

which is widely considered as a non-stress condition.

AtMBD8 has been shown to control flowering in the

Arabidopsis vernalization-responsive C24 ecotype. Mutation

of AtMBD8 leads to a delay in flowering under both long-

and short-day photoperiods. While FLC expression is not

affected in atmbd8-1, the expression of FT and SOC1,
which are major flowering promoters, is down-regulated in

the mutant (Stangeland et al., 2009). The mechanism by

which the expression of these genes is decreased in the

atmbd8-1 mutant has not yet been determined. Global gene

expression analysis revealed that the C24 ecotype differen-

tially expresses a set of biotic and abiotic stress-related

genes during the vegetative stage compared with the

Columbia ecotype. This finding may highlight a relationship
between the flowering process and stress response, although

the direct role of MBD proteins in the stress tolerance

phenotype has not been determined.

The level of CpG methylation in Arabidopsis is controlled

by the METHYTRANSFERASE1 (MET1), MET2, and

MET3 genes (Henderson and Jacobsen, 2007), which are

homologous to the (Dnmt1) mammalian DNA methyltrans-

ferase. In addition, the methylation level is also affected by
the CHROMOMETHYLASE3 (CMT3) DNA METHYL-

TRANSFERASE (Lindroth et al., 2001), which helps

maintain DNA methylation at CpNpG and CpNpN sites.

The met1-6 mutation leads to late flowering, and met1 and

cmt3 mutants exhibit improper embryo development, cell

division, seed viability, and abnormal auxin gradient (Xiao

et al., 2006). Moreover, loss of DNA methylation reduces

the ability of Arabidopsis plants to tolerate salt stress
conditions. Loss-of-function met1-3 mutants are hypersen-

sitive to salt stress due to a major loss in cytosine
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methylation in a putative small RNA target region that

lowers the expression of the sodium transporter gene

(AtHKT1), which is essential for salt tolerance (Baek et al.,

2011). In rice, drought stress increases DNA methylation in

a genotypic-specific fashion and only 70% of the total

changes in DNA methylation are reset even after recovery

in non-drought conditions (Wang et al., 2010). In addition,

temperature stress modulates the flowering pattern by
reducing the number of spikelets and overall fertility at

anthesis in some rice genotypes (Jagadish et al., 2007).

Treating plants with the cytosine methyltransferase in-

hibitor 5-azacytidine (5-azaC) (Jones, 1985; Haaf, 1995)

promotes flowering in the vernalization-requiring Arabidopsis

ecotype C24 (Burn et al., 1993a; Dennis et al., 1998;

Finnegan et al., 1998a) and in wheat (Brock and Davidson,

1994). This treatment was sufficient to substitute for the
vernalization process. Reducing the amount of DNA meth-

ylation can also be achieved by genetically manipulating the

enzymes that catalyse DNA methylation and demethylation

in the cell. Alterations in DNA methylation levels show

inconsistent effects on observed phenotypes. Reverse genetic

studies have shown that mutations within the genes DE-

CREASE IN DNA METHYLATION1 (DDM1) and DDM2,

the DNA METHYLTRANSFERASE1 gene (MET1) (Vongs
et al., 1993; Kakutani et al., 1996; Jackson et al., 2004), and

the DNA demethylase gene, REPRESSOR OF SILENCING

GENES1 (ROS1) (Agius et al., 2006), affect the global level

of cytosine methylation and lead to some developmental

abnormalities in Arabidopsis including changes in flowering

time. The effect of DNA methylation level on Arabidopsis

phenotype depends on the Arabidopsis ecotype studied. For

example, reduction of DNA methylation in ddm1 and met1-1

mutant lines causes late flowering in Columbia and Lands-

berg erecta ecotypes (Kakutani et al., 1996; Kakutani, 1997;

Kankel et al., 2003). However, low DNA methylation

induced by vernalization or 5-azaC treatment promoted

flowering in the vernalization-responsive Arabidopsis eco-

type C24 (Burn et al., 1993b; Finnegan et al., 1998b). In

other plant species such as the long-day plant Silene

armeria, whose flowering state is photoperiodically stable,
and the short-day plant Pharbitis nil, whose flowering state

is photoperiodically unstable, DNA demethylation using

5azaC induced flowering under non-inductive photope-

riod. However, floral induction of other species such as

Xanthium strumarium and Lemna paucicostata could not be

achieved using similar agents under the same conditions

(Kondo et al., 2007).

Histone modifications associated with
environmental stress and flowering

The role of histone acetylation and methylation in controlling
eukaryotic gene expression was first described in 1964 (Allfrey

et al., 1964). Trichostatin A (TSA) has been used to reduce

histone deacetylation globally and, consequently, leads to an

increase in acetylated histones. However, TSA has negative

pleiotropic effects since increased acetylation has been shown

to lead to impaired sister chromatid separation in human

fibroblasts (Cimini et al., 2003) and also induces chromo-

somal abnormalities during tobacco cell division (Li et al.,

2005). In addition, increasing histone acetylation activity in

Arabidopsis by expressing antisense of the histone deacetylase

gene AtHD1 results in pleiotropic phenotypes with various

developmental defects including ectopic expression of si-

lenced genes, suppression of apical dominance, heterochronic
shift toward juvenility, floral structure abnormalities, and

male and female sterility (Tian and Chen, 2001).

Similar to DNA methylation, histone modification is

regulated by environmental conditions (Boyko and

Kovalchuk, 2008; Kim et al., 2010). Recently, global gene

expression analysis coupled with chromatin immunoprecip-

itation (ChIP) assays showed that histone H3 Lys4 methyl-

ation (H3K4) patterns respond dynamically to dehydration
stress in Arabidopsis (van Dijk et al., 2010). One example of

the interplay between environmental stressors and flowering

is demonstrated in studies of the floral initiator SHK1

KINASE BINDING PROTEIN1 (SKB1) mutant line skb1.

SKB1 binds to chromatin and increases the histone 4 Arg3

(H4R3) symmetric dimethylation (H4R3sme2) level, which

in turn leads to the down-regulation of FLC expression as

well as a number of stress-responsive genes. As a result, the
phenotypes present in this mutant exhibit salt hypersensitiv-

ity, late flowering, and growth retardation (Zhang et al.,

2011). In the same study, H4R3sme2 expression is reduced

in wild-type Arabidopsis plants that are exposed to high

salinity conditions, allowing for the release of SKB1 from

chromatin and therefore enhancing the expression of FLC

and other stress-induced genes.

The histone deacetylase HDA6 of Arabidopsis is involved
in modulating seed germination and salt stress as well as the

abscisic acid (ABA) response. HDA6 RNA interfering lines

are hypersensitive to salt and ABA (Chen and Wu, 2010;

LT Chen et al., 2010). Along with phytochrome B, HDA6

regulates the global chromatin organization in some

Arabidopsis genotypes that are typically grown in different

geographical latitudes (Tessadori et al., 2009). Quantitative

trait locus (QTL) mapping based on relative heterochroma-
tin fraction (RHF) analysis and microscopic examination

showed that HDA6 controls chromatin remodelling capac-

ity, which also depends on light intensity, a factor that

usually regulates flowering time, thereby providing evidence

of direct involvement of HDA6 in environmental adapta-

tion. Similarly, hda19-1 mutants are hypersensitive to salt

and ABA, and the expression of ABA-responsive genes,

ABI1, ABI2, KAT1, KAT2, and RD29B, is reduced in this
mutant (Chen and Wu, 2010).

The Arabidopsis histone deacetylase 2 gene (AtHD2C) is

highly expressed in ovules, embryos, shoot apical meris-

tems, and primary leaf tissues (Sridha and Wu, 2006). The

same study showed that AtHD2C is repressed by ABA, and

transgenic lines overexpressing AtHD2C showed an ABA

insensitivity phenotype where the expression of several

ABA-related genes is affected. In addition, transgenic lines
exhibited a reduction in the transpiration rate and enhanced

tolerance to salt and drought stresses.
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In Brassica napus, the putative transcription factor

harbouring a kinase-inducible domain bnKCP1 interacts

with HDA19, through which it controls expression of the

gene. The bnKCP1 gene, which is induced by cold and

highly expressed in flowers, may have a transcriptional

regulatory role in cold stress (Gao et al., 2003). Interest-

ingly, overexpression of HDA19 resulted in increased

expression of jasmonic acid (JA)- and ethylene-regulated
pathogenesis-related genes such as the ETHYLENE RE-

SPONSE FACTOR1, basic chitinase, and b-1,3-glucanase.
Moreover, these overexpression lines are more resistant to

the pathogen Alternaria brassicicola but also displayed late

flowering and a reduction in seed fertility (Zhou et al.,

2005). Therefore, HDA19 interconnects the hormone re-

sponse to pathogen pathways and floral induction through

a common epigenetic mechanism.
The Arabidopsis acetyltransferase GENERAL CON-

TROL NON-REPRESSED PROTEIN5 (AtGCN5)

(Stockinger et al., 2001) is a major histone acetyltransfer-

ase in Arabidopsis. Mutation within the coding region of

this gene causes pleiotropic effects on plant development

and also leads to impaired floral production where petals

are transformed into stamens and sepals into filamentous

like-structures (Bertrand et al., 2003). It was also found
that gcn5 mutants have altered expression of a large

number of genes, including those involved in floral

initiation and development as well as those associated with

stress tolerance. The transcriptional co-activators ADA2a

and ADA2b are components of AtGCN5-containing

complexes in Arabidopsis (Stockinger et al., 2001). Muta-

tion of ADA2a leads to delayed flowering and fruit setting

and to the production of shorter inflorescences. Recently it
was shown that ADA2b positively regulates salt-induced

genes by maintaining the required acetylation level of

histones H4 and H3, with the ada2b-1 mutant being

hypersensitive to salt and ABA (Hark et al., 2009; Kaldis

et al., 2010). Interestingly, the gcn5-1 mutant line also

displays an ABA hypersensitivity phenotype (Hark et al.,

2009), indicating that AtGCN5 and ADA2b integration

are important for proper ABA response in Arabidopsis.
SGF29A-1 is another component of the AtGCN5 complex

that helps control floral initiation. Compared with wild-

type plants, the sgf29a-1 mutant displays late flowering,

and smaller and fewer rosette leaves. Unlike the ada2b-1

mutant, sgf29a-1 displays enhanced salt tolerance com-

pared with the wild type (Kaldis et al., 2010).

In addition to its conventional role in controlling gene

expression by acetylating and deacetylating specific histo-
nes, a recent study showed that AtGCN5 is also involved

in the production of microRNAs (miRNAs), including

those induced by environmental stress (W Kim et al.,

2009). These results demonstrate a diverse role for the

AtGCN5 complex in controlling the expression of stress-

and flowering-related genes by tightly controlling the

histone acetylation levels of their loci. Hence AtGCN5

represents a central point in the relationship between
histone modification and miRNA production, which is

discussed below.

Cold treatment affects flowering via
epigenetic modifications

As was noted earlier, exposure to cold conditions for

a sufficient time induces flowering in some plant species

through the vernalization process and is a comparatively

well studied example of how cold induces epigenetic

changes that in turn affect flowering. In addition to
vernalization, which is crucial to induce flowering in some

plant species by modulating the expression of certain genes,

cold stress also modulates the expression of some genes,

including those involving chromatin modulation. For

example, global gene expression analysis of cold-stressed

Arabidopsis showed up-regulation of some epigenetic modi-

fiers such as NRPD1, which is a DNA-binding bromodo-

main-containing protein, AtGCN5-related GNAT family 5
(acetyltransferase 5), and histone deacetylase (Lee et al.,

2005). In general, low temperature often has been shown to

be associated with DNA demethylation in Arabidopsis and

other plant species such as maize (Steward et al., 2002),

Antirrhinum majus (Hashida et al., 2003), and wheat

(Sherman and Talbert, 2002). Vernalization down-regulates

the expression of FLC, a MADS box transcriptional

repressor that maintains the vegetative stage in Arabidopsis

apices. Thus, epigenetic changes at the FLC locus accelerate

flowering (DH Kim et al., 2009). Trimethylation of Lys27 of

H3 histones (H3K27me3) is crucial for the regulation of

some genes that are involved in plant development, in-

cluding those that control flowering time in Arabidopsis.

Interestingly, the same genes are also affected by vernaliza-

tion (Shindo et al., 2006; Finnegan and Dennis, 2007; Greb

et al., 2007). Likewise, H3K27me3 decreases the expression
of the floral regulators AGL19, FT, and AGAMOUS

(Schonrock et al., 2006; Schubert et al., 2006; Saleh et al.,

2007; Jiang et al., 2008).

Exposure to cold induces expression of the Arabidopsis

VERNALIZATION INSENSITIVE 3 gene (VIN3), a chro-

matin remodelling plant homeodomain (PHD) finger protein

that increases acetylation levels. This protein is required to

repress FLC and enhance flowering. Mutant lines for VIN3

do not respond to vernalization and therefore remain in

a vegetative state longer because FLC expression is not

reduced by cold treatment (Sung and Amasino, 2004).

Increased H3K27me3 levels at FLC after vernalization are

due to a reaction mediated by the Polycomb-group Re-

pressive Complex 2 (PRC2) (De Lucia et al., 2008). This

complex binds to chromatin of the VIN3 locus during

vernalization (Schonrock et al., 2006). In contrast, a decrease

in H3K27me3 modifications within histones of the cold-

responsive gene COR15A and the GALACTINOL SYN-

THASE gene ATGOLS3 (Taji et al., 2002) leads to increased

gene expression in Arabidopsis (Kwon et al., 2009). Likewise,

the plant trithorax factor (ATX1) (Alvarez-Venegas et al.,

2003) tri-methylates Lys4 residues of histone H3 (H3K4me3),

thereby regulating floral organ development and modulating

expression of transcription factor WRKY70 during dehydra-

tion stress (Alvarez-Venegas et al., 2007; Ndamukong et al.,
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2010). Mutation of ATX1 causes major defects in the floral

architecture (Alvarez-Venegas et al., 2003).

Small RNA production is associated with
environmental stress tolerance and
flowering

Flowering in Arabidopsis is induced through several path-

ways including autonomous, gibberellic acid, photoperiod,

and vernalization. Global gene expression analysis of

Arabidopsis harbouring defective genes in the photoperiod

signal pathway and the pathway integrator genes suggests
a critical involvement of miRNAs in mediating the effects

of floral induction (Schmid et al., 2003).

miRNAs that control gene expression at a post-

transcriptional level are encoded by 20–24 nucleotides

that are not translated. These small RNA molecules are

also able to direct DNA methylation to a particular locus

by an RNA-directed DNA methylation (RdDM) process

(Matzke et al., 2001, 2007; Pikaard, 2006). miRNAs have
been shown to control the expression of some genes when

plants are exposed to biotic (Madlung and Comai, 2004;

Ruiz-Ferrer and Voinnet, 2009; Covarrubias and Reyes,

2010) and abiotic stress (Madlung and Comai, 2004;

Hirayama and Shinozaki, 2010; Urano et al., 2010). This

is often accompanied by a reprogramming of genes

associated with floral initiation and development.

Environmental cues regulate the expression of miRNAs
in plants. For example, stress-inducible miRNAs and their

predicted targets were identified in Arabidopsis and found to

be conserved among other plant species (Sunkar and Zhu,

2004). In rice, global expression analysis revealed a crucial

role for miRNAs in controlling gene expression when plants

are exposed to stress conditions such as cold, drought, high

salt, and ABA treatment (Shen et al., 2010). A study of loss-

of-function mutations in the miRNA biogenesis machinery
DICER-LIKE 1–4 genes (DCL1, DCL2, DCL3, and DCL4)

revealed a predominant epigenetic role for miRNAs in

controlling gene expression in Arabidopsis (Laubinger et al.,

2010). In addition to conventional mechanisms of gene

repression via binding of miRNA to the target genes, the

same study showed that DCL1 is involved in a process that

leads to the repression of a subset of transposons by

enhancing DNA methylation. Because they control the
production of miRNA, DCL2 and DCL3 proteins are

believed to direct the transgenerational memory of stress in

plants (Boyko and Kovalchuk, 2010).

The relationship between miRNA biogenesis machinery

proteins, stress response, and flowering is clear in some

Arabidopsis mutant lines. For example, ABH1 and CBP20

(Papp et al., 2004) encode cap-binding factors that are

necessary for RNA maturation. The abh1 mutant displays
ABA hypersensitivity and the cbp20 mutant line shows

enhanced drought tolerance as well as ABA hypersensitivity

(Hugouvieux et al., 2001; Kwak et al., 2005). The abh1

mutant also displays an early flowering phenotype due to the

production of an alternative form of mRNAs for the key

flowering time genes CONSTANS, FLC, and FLM com-

pared with the wild type (Kuhn et al., 2007). The STRESS

RESPONSE SUPPRESSOR1 and 2 (STRS1 and 2) genes

code for DEAD-box RNA helicases that are suppressed

when plants are exposed to salt and osmotic stress con-

ditions. Mutant lines for these genes display higher tolerance

than the wild type (Kant et al., 2007). Once again, the

relationship between stress conditions and flowering is clear
in this example as the strs mutants showed slightly early

flowering, perhaps suggesting a common epigenetic pathway

in controlling both mechanisms.

In addition to their role in environmental stress responses

(Sunkar and Zhu, 2004), miRNAs are also involved in

controlling flowering in Arabidopsis (Aukerman and Sakai,

2003; Chen, 2004). Interestingly, recent evidence showed

that H3K27me3 at FLC is mediated by a long intronic non-
coding RNA (COLDAIR). The association of COLDAIR

triggers PRC2 targeting to FLC, a situation which leads to

FLC repression during vernalization (Heo and Sung, 2010).

Expression of FLC is partially controlled by miRNAs since

mutations within miRNA biogenesis genes DCL1 and

DCL3 lead to delayed flowering due to excessively high

expression of FLC in these mutant backgrounds (Schmitz

et al., 2007). Late flowering phenotypes were also observed
in HYPONASTIC LEAVES 1 (HYL1) mutant lines (Lu

and Fedoroff, 2000). This gene encodes a double-stranded

RNA (dsRNA)-binding protein that also plays a role in

miRNA-mediated gene regulation (Han et al., 2004). Recent

studies also show that, in addition to hyl1, mutants within

the miRNA biogenesis factors SERRATE (SE), DCL1,

HUA-ENHANCER 1 (HEN1), and HASTY of Arabidopsis

display a salt and ABA hypersensitivity phenotype (Lu and
Fedoroff, 2000; Han et al., 2004; Zhang et al., 2008; Rasia

et al., 2010).

miRNAs are important regulators of ABA and salt

tolerance genes; sets of these molecules were identified

recently and found to have roles in stress tolerance in

different plant species such as Arabidopsis (Liu et al., 2008),

rice (Zhao et al., 2007), and maize (Ding et al., 2009). For

example, miR159, which controls the expression of
MYB101 and MYB33 transcription factors by mediating

their cleavage and is also involved in floral development

(Reyes and Chua, 2007), and miR160, which controls floral

morphology by modulating the expression of an AUXIN

RESPONSE FACTOR 10 (ARF10) (Liu et al., 2007), are

also potential ABA regulatory miRNA molecules and are

induced by ABA.

Plants interact with their environment and accordingly
modify their flowering programmes. Recent research shows

that plants use common and parallel epigenetic modification

pathways in order to modify the expression of genes that are

involved in stress tolerance and flowering processes. These

modifications are associated with changes in DNA methyla-

tion, histone modifications such as acetylation and methyla-

tion, and also the production of specific miRNA molecules.

Together these changes underlie intricate mechanisms that
ensure plant survival and optimize reproductive success

under a variety of stress conditions. Information derived
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from epigenomic profiles of plants exposed to abiotic stresses

is highly important for the production of genetically fertile

crop species that can tolerate a warmer globe.
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