The Flowering Process and its Control in Plants: Gene Expression and Hormone Interaction

Editor

Mahmoud W. Yaish

Department of Molecular and Cellular Biology, University of Guelph Guelph, Ontario, Canada; Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman

Published by Research Signpost

2011; Rights Reserved Research Signpost T.C. 37/661(2), Fort P.O., Trivandrum-695 023, Kerala, India

Editor

Mahmoud W. Yaish

Managing Editor

S.G. Pandalai

Publication Manager

A. Gayathri

Research Signpost and the Editor assume no responsibility for the opinions and statements advanced by contributors

ISBN: 978-81-308-0436-1

About the Editor

Dr. Mahmoud W. Yaish was born in the where he finished his Middle East undergraduate studies. After that he obtained fellowships continue his several to postgraduate studies in Europe. After finishing his Ph.D. in plant molecular genetics from the University of Leon, Spain, he migrated with his family to Canada where he directly got a job as a postdoctoral fellow at the Department of Biology, University of Waterloo. His research was focused on the role of antifreeze proteins in the cold tolerance mechanisms in

winter rye. After 3 years he moved to the University of Guelph, Canada where he spent about four years studying the mechanisms associated with development in Arabidopsis and rice. Dr. Yaish was able to publish his scientific work in some prestigious scientific journals such as Nature Biotechnology, Plant Journal, Plant Physiology and PLOS genetics.

Recently, Dr. Yaish has moved back to the Middle East where he got an Assistant Professor position at the Department of Biology, College of Science, Sultan Qaboos University, Oman.

Preface

Flowering is a reproductive stage that occurs prior to the appearance of fruits in seed-bearing plants (Gymnosperms) and it is a critical stage which determines the over whole yield produced by the plant. Flowering process is controlled by a set of interactions between genes and hormones which in turn are affected by environmental changes. Despite the tremendous progress which has been achieved toward understanding this process, some information is still unclear and therefore flowering in plants requires further investigation.

Interesting discoveries in the recent years have added new knowledge to our understanding of the physiological mechanisms associated with the flowering process in plants. In this book which is composed of sixteen chapters, scientists from fourteen different countries have reviewed and summarized recent findings and have focused on various aspects that control flowering in plants. Three chapters discuss the molecular aspects associated with floral development and evolution; four chapters present topics which cover the abiotic factors affecting flowering time such as light and sugars; four chapters discuss the role of phytohormones in flowering. In addition, five chapters of this book covers some other important issues such as the flowering signal controlled by MADS-box transcription factor in *Arabidopsis*, floral structure and size, and also flowering process *in vitro*, in the genus *Chenopodium* and in dioecious plants.

This book will serve as a useful reference for postgraduate students and researchers who are working in fields classified under the broad umbrella of plant physiology, biochemistry and genetics.

I would like to thank the authors for their outstanding contribution which led to the production of this book. Finally, I would like to thank Dr. Joseph Colasanti, University of Guelph, Canada for his encouragement in editing this book.

Mahmoud W. Yaish, Ph.D.

Department of Molecular and Cellular Biology
University of Guelph
Guelph, Ontario, Canada
and
Department of Biology
College of Science
Sultan Qaboos University
Muscat, Oman

Author Index

Chapter 1

Harley M.S. Smith, University of California, Riverside, USA

Chapter 2

Lisha Shen and Hao Yu, National University of Singapore Singapore

Chapter 3

Lílian Cristina Baldon Aizza and Marcelo Carnier Dornelas Universidade Estadual de Campinas, **Brazil**

Chapter 4

Christina Kühn, University of Berlin, Germany

Chapter 5

Lisheng Kong, Patrick von Aderkas and Suzanne R. Abrams University of Victoria, **Canada**

Chapter 6

Pablo Cerdan, University of Buenos Aires, Argentina

Chapter 7

Dario Prada, University of Lleida, Spain

Chapter 8

María Josefina Poupin, José Tomás Matus, Andrés Leiva-Ampuero and Patricio Arce-Johnson, Universidad Adolfo Ibáñez, Chile

Chapter 9

Luciana Delgado-Benarroch, Julia Weiss and Marcos Egea-Cortines Universidad Politécnica de Cartagena (UPCT), **Spain**

Chapter 10

David W.M. Leung, University of Canterbury, New Zealand

Chapter 11

Hilary J Rogers and Anthony D. Stead, Cardiff University, UK

Chapter 12

Evgeny Kirichenko, Russian Academy of Sciences, Russia

Chapter 13

Helena Storchova, Academy of Sciences of the Czech Republic

Czech Republic

Chapter 14

Hakimeh Mansouri, Shahid Bahonar University, Iran

Chapter 15

Reidunn Birgitta Aalen, University of Oslo, Norway

Chapter 16

David R. Guevara and Steven J. Rothstein, University of Guelph Canada

Contents

Chapter 1 Molecular and cellular events that control floral evocation in plants <i>Harley M. S. Smith</i>	1
Chapter 2 Function of MADS-box proteins in the integration of flowering signals in <i>Arabidopsis</i> Lisha Shen and Hao Yu	31
Chapter 3 A role for pollinators in the "genomic tinkering" that modulates evolutionary changes in molecular networks controlling flower development Lílian Cristina Baldon Aizza and Marcelo Carnier Dornelas	51
Chapter 4 The role of the sucrose molecule in the induction of photoperiodic responses: Flowering and tuberization in potato plants share common pathways Christina Kühn	71
Chapter 5 A metabolomic plant hormone analysis of cone induction in conifers Lisheng Kong, Patrick von Aderkas and Suzanne R. Abrams	101
Chapter 6 Regulation of flowering time by light Pablo D. Cerdán	123
Chapter 7 Flowering time in major crops: The adaptive benefit under agronomic conditions Dario Prada	157

Chapter 8	
Flower development in grapevine: A tale of two seasons	173
María Josefina Poupin, José Tomás Matus, Andrés Leiva-Ampuero	
and Patricio Arce-Johnson	
Chapter 9	
Sizing up the flower	199
Luciana Delgado-Benarroch, Julia Weiss and Marcos Egea-Cortines	1))
Chapter 10	
Perspectives on induction and biology of flowering <i>in vitro</i>	217
David W.M. Leung	
Chapter 11	
Petal abscission: Falling to their death or cast out to die?	229
Hilary J Rogers and Anthony D. Stead	
Chapter 12	
From shoot apical meristem to pollen grains: Factors predetermining	
and controlling flowering in winter wheat	259
Evgeny Kirichenko	
Chapter 13	
Control of flowering in the genus <i>Chenopodium</i>	279
Helena Storchova	
Chapter 14	
Flowering in dioecious plants	289
Hakimeh Mansouri	
Chapter 15	
Flower and floral organ abscission – control, gene expression	
and hormone interaction	307
Reidunn Birgitta Aalen	
Chapter 16	
Hormone and sugar interactions regulating transcriptional	
networks during transition to flowering	329
David R. Guevara and Steven J. Rothstein	