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Abstract. The COLORFUL MOTIF problem asks if, given a vertex-colored graph G, there exists a
subset S of vertices of G such that the graph induced by G on S is connected and contains every
color in the graph exactly once. The problem is motivated by applications in computational biology
and is also well-studied from the theoretical point of view. In particular, it is known to be NP-
complete even on trees of maximum degree three [Fellows et al, ICALP 2007]. In their pioneering
paper that introduced the color-coding technique, Alon et al. [STOC 1995] show, inter alia, that the
problem is FPT on general graphs. More recently, Cygan et al. [WG 2010] showed that COLORFUL
MorTiF is NP-complete on comb graphs, a special subclass of the set of trees of maximum degree
three. They also showed that the problem is not likely to admit polynomial kernels on forests.

We continue the study of the kernelization complexity of the COLORFUL MOTIF problem re-
stricted to simple graph classes. Surprisingly, the infeasibility of polynomial kernelization persists
even when the input is restricted to comb graphs. We demonstrate this by showing a simple but
novel composition algorithm. Further, we show that the problem restricted to comb graphs admits
polynomially many polynomial kernels. To our knowledge, there are very few examples of problems
with many polynomial kernels known in the literature. We also show hardness of polynomial ker-
nelization for certain variants of the problem on trees; this rules out a general class of approaches
for showing many polynomial kernels for the problem restricted to trees. Finally, we show that
the problem is unlikely to admit polynomial kernels on another simple graph class, namely the set
of all graphs of diameter two. As an application of our results, we settle the classical complexity
of CONNECTED DOMINATING SET on graphs of diameter two — specifically, we show that it is
NP-complete.

1 Introduction and Motivation

Algorithms that are designed to reduce the size of an instance in polynomial time are widely referred to
as preprocessing algorithms. It is natural to study such algorithms in the context of problems that are
NP-hard — preprocessing techniques are used in almost every practical computer implementation that
deals with an NP-hard problem. We study kernelization algorithms — these are preprocessing algorithms
that have provable performance bounds, both in the running time and in the extent of reduction in
instance size. In particular, we are interested in polynomial time algorithms that reduce the size of a
parameterized problem (cf. Section 2 and [7, 10] for definitions) to an instance whose size is a polynomial
in the parameter. Such a reduced instance is called a polynomial kernel.

It is natural to examine the possibility of preprocessing strategies when a problem is notoriously
intractable. In this work, our interests center around the COLORFUL MOTIF problem. The problem is
intractable, in the classical sense, even on seemingly “simple” classes of graphs. Using a recent framework
for showing lower bounds on polynomial kernelization, we establish that not only are these problems
unlikely to admit a polynomial time algorithm that solves them — they are unlikely to admit polynomial
time algorithms that reduce them to instances whose size is bounded by a polynomial in the parameter.

The GRAPH MOTIF problem concerns a vertex-colored undirected graph G and a multiset M of colors.
We are asked whether there is a set S of vertices of G such that the subgraph induced on S is connected
and there is a color-preserving bijective mapping from S to M. That is, the problem is to find if there is
a connected subgraph H of G such that the multiset of colors of H is identical to M.

The GrRAPH MOTIF problem has immense utility in bioinformatics, especially in the context of
metabolic network analysis (eg. motif search in metabolic reaction graphs with vertices representing



reactions and edges connecting successive reactions) [3,14] . The problem is NP-complete even in very
restricted cases, such as when G is a tree with maximum degree 3, or when G is a bipartite graph with
maximum degree 4 and M is a multiset over just two colors. When parameterized by |M|, the problem
is FPT, and it is W[2]-hard when parameterized by the number of colors in M, even when G is a tree [8].

The COLORFUL MOTIF problem is a simpler version of the GRAPH MOTIF problem, where M is a
set (and not a multiset). Even this problem is NP-hard on simple classes of graphs, such as when G is
a tree with maximum degree 3 [8]. The problem is FPT on general graphs when parameterized by |M|,
and the current fastest FPT algorithm, by Guillemot and Sikora, runs in O*(2/™!) time! and polynomial
space [12].

We now turn to an example of a seemingly simple graph class on which the problem continues to be
intractable. A graph is called a comb graph if (i) it is a tree, (ii) all vertices are of degree at most 3, (iii) all
the vertices of degree 3 lie on a single simple path. Cygan et al. [5] recently showed that the problem
is NP-hard even on comb graphs. Further, they show that the parameterized version of the problem is
unlikely to admit a polynomial kernel on forests unless NP C coN P/Poly, which would in turn imply
an unlikely collapse of the Polynomial Hierarchy [4].

We begin by pushing the borders of classical tractability. We show that while the problem is polyno-
mial time on caterpillars (trees where the removal of all leaf vertices results in a path, called the spine
of the caterpillar), it is NP-hard on lobsters (trees where the removal of all leaf vertices results in a
caterpillar). In fact, we show that even more is true: the problem is NP-hard even on rooted trees of
height two, or equivalently, on trees of diameter at most four.

Next, we extend the known results on the hardness of kernelization for this problem [5]. Specifically,
we show that the lower bound can be tightened to hold for comb graphs as well. This is established by
demonstrating a simple but unusual composition algorithm for the problem restricted to comb graphs.
The composition is unusual because it is not the trivial composition (via disjoint union), and yet, it does
not employ gadgets to encode the identity of the instances. To the best of our knowledge, this is an
uncommon style of composition. On the positive side, we show a straightforward argument that yields
polynomially many polynomial kernels for the problem on comb graphs, a la the many polynomial kernels
obtained for k-Leaf Out Branching [9]. Again, to the best of our knowledge, this is one of the very few
examples of many polynomial kernels for a parameterized problem for which polynomial kernelization is
infeasible.

However, in our attempts to obtain many polynomial kernels for the more general case of trees, we
learn that some natural approaches fail. Specifically, we show that two natural variants of the problem —
ROOTED COLORFUL MOTIF?, SUBSET COLORFUL MOTIF? — do not admit polynomial kernels unless
NP C coNP/Poly. This shows, for instance, that the “guess” for obtaining many polynomial kernels
has to be more than, or different from, a subset of vertices.

While we show that COLORFUL MOTIF is NP-hard on trees of diameter at most four, the kernelization
complexity of the problem on this class of graphs is still open. However, we show that COLORFUL MOTIF
is NP-hard on general graphs of diameter three, and the same reduction also shows that polynomial
kernels are unlikely for graphs of diameter three. We employ a reduction from COLORFUL MOTIF on
general graphs. Using similar techniques, we show that the problem is NP-hard on general graphs of
diameter two. This turns out to be useful to show the NP-hardness of CONNECTED DOMINATING SET
on the same class of graphs.

The results we obtain in this paper contribute to the rapidly growing collection of problems for which
polynomial kernels do not exist under reasonable complexity-theoretic assumptions. Given that many of
our results pertain to very special graph classes, we hope these hardness results — which make these
special problems available as starting points for further reductions — will be useful in settling the kernel-
ization complexity of many other problems. In fact, we demonstrate the utility of the NP-completeness of
COLORFUL MOTIF on graphs of diameter two, by showing that CONNECTED DOMINATING SET on graphs
of diameter two is NP-complete. The classical complexity of CONNECTED DOMINATING SET on graphs
of diameter two was hitherto unknown, although it was known to be NP-complete on graphs of diameter
three, and trivial on graphs of diameter one. Also, since COLORFUL MOTIF is both well-motivated and
well-studied, we believe that these results are of independent interest.

! Given f : N — N, we define O*(f(n)) to be O(f(n) - p(n)), where p(-) is some polynomial function. That is,
the O* notation suppresses polynomial factors in the expression.

2 Does there exist a colorful subtree that contains a specific vertex?

3 Does there exist a colorful subtree that contains a specific subset of vertices?
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2 Preliminaries

A parameterized problem is denoted by a pair (@, k) C X* x N. The first component @ is a classical
language, and the number k is called the parameter. Such a problem is fized—parameter tractable (FPT)
if there exists an algorithm that decides it in time O(f(k)n®M)) on instances of size n. A many-to-
one kernelization algorithm (or, simply, a kernelization algorithm) for a parameterized problem takes an
instance (z,k) of the problem as input, and in time polynomial in |z| and %k, produces an equivalent
instance (2, k") such that |2'| is a function purely of k. The output z’ is called a kernel for the problem
instance, and |z’| is called the size of the kernel. A kernel is said to be a polynomial kernel if its size
polynomial in the parameter k. We refer the reader to [7,16] for more details on the notion of fixed-
parameter tractability.

The notion of Turing kernelization was introduced to formalize the idea of a “cheat kernel”, wherein,
given an instance of a parameterized problem, an algorithm outputs polynomially many polynomial
kernels rather than a single kernel [15]. Formally, a t-oracle for a parameterized problem I7 is an oracle
that takes as input (I, k) with |I| <t,|k| <t and decides whether (I, k) € II in constant time. IT is said
to have a g(k)-sized Turing kernel if there is an algorithm which, given input (I, k) and a g(k)-oracle for
IT, decides whether (I,k) € IT in time polynomial in |I + k|. The Turing kernel is polynomial if ¢() is a
polynomial function.

To prove our lower bounds on polynomial kernels, we need a few notions and results from the recently
developed theory of kernel lower bounds [1,2,6,11]. We use a notion of reductions, similar in spirit to
those used in classical complexity to show NP-hardness results, to show this kernelization lower bound.
We begin by associating a classical decision problem with a parameterized problem in a natural way as
follows:

Definition 1. [Derived Classical Problem] [2] Let I C X* x N be a parameterized problem, and let
1 ¢ X be a new symbol. We define the derived classical problem associated with II to be {z1*| (z,k) € II}.

The notion of a composition algorithm plays a key role in the lower bound argument.

Definition 2. [Composition Algorithm, Compositional Problem] [1] A composition algorithm
for a parameterized problem I C X* x N is an algorithm that

— takes as input a sequence ((x1,k), (2, k), ..., (2, k)) where each (z;,k) € X* x N,
— runs in time polynomial in ZZZI |z;| + k,
— and outputs an instance (y,k') € X* x N with

1. (y,k') e L <= (z;,k) € L for some 1 <i<t, and

2. k' is polynomial in k.

We say that a parameterized problem is compositional if it has a composition algorithm.

Theorem 1. [1, Lemmas 1 and 2] Let L be a compositional parameterized problem whose derived classical
problem is NP-complete. If L has a polynomial kernel, then NP C coN P/Poly.

Now we define the class of reductions which lead to the kernel lower bound.

Definition 3. [2] Let P and @Q be parameterized problems. We say that P is polynomial time and
parameter reducible to Q, written P <py, Q, if there exists a polynomial time computable function
f:2*xN—= X*xN, and a polynomial p : N = N, and for allx € Z* and k € N, if f ((x,k)) = («', F'),
then (z,k) € P if and only if (2', k') € Q, and k' < p (k). We call f a polynomial parameter transforma-
tion (or a PPT) from P to Q.

This notion of a reduction is useful in showing kernel lower bounds because of the following theorem:

Theorem 2. [2, Theorem 3] Let P and @Q be parameterized problems whose derived classical problems
are P¢,Q°, respectively. Let P¢ be NP-complete, and Q° € NP. Suppose there exists a PPT from P to Q.
Then, if Q has a polynomial kernel, then P also has a polynomial kernel.

We use [n] to denote {1,2,...,n} C N. The operation of subdividing an edge (u,v) involves replacing
the edge (u, v) with two new edges (u, ) and (zyy, v), where x,, is a new vertex (the subdivided vertex).
For any two vertices u and v, the distance between u and v, denoted d(u,v), is the length of a shortest
path between u and v. The k-neighborhood of a vertex u in a graph G is the set of all vertices in G that
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are at a distance of at most k from u. A rooted tree is a pair (T,r) where T is a tree and r € V(T'). A
leaf node in a rooted tree (T, 7) is said to be a lowest leaf if it is a leaf at the maximum distance from
the root 7. The diameter of a graph G is defined to be maw, ,ev(c)d(u,v). In other words, diameter of
a graph is the length of a “longest shortest” path in the graph. A superstar graph is a tree with diameter
at most 4. Note that in any superstar G, there exists a vertex v such that G rooted at v has height at
most two.

The problem at the heart of this work is the following;:

COLORFUL MOTIF

Input: A graph G = (V, E), k € N, and a coloring function ¢: V — [k].
Parameter: k
Question: Does G contain a subtree T" on k vertices such that ¢ restricted to T is bijective?

3 Hardness On Superstar Graphs

We begin by observing that the COLORFUL MOTIF problem is NP-complete even on simple classes of
graphs. It is already known that the problem is NP-complete on comb graphs [5]. In this section, we show
that the problem is NP-complete on superstars — or equivalently, on rooted trees of height at most two.
To begin with, consider COLORFUL MOTIF on paths. A solution corresponds to a colorful subpath, which,
if it exists, we can find in polynomial time by guessing its end points. It is easy to see that this approach
can be extended to a polynomial time algorithm for COLORFUL MOTIF on caterpillars, in which case we
are looking for a colorful “subcaterpillar”: We may guess the end points of the spine of the subcaterpillar,
and for any given guess, if the subpath on the spine does not span the entire set of colors, we check if
they can be found on the leaves. The details are omitted as the argument is straightforward.

Recall that a lobster is a tree where the removal of all leaf vertices results in a caterpillar. Lobsters
are a natural generalization of caterpillars, and we show that the COLORFUL MOTIF problem is NP-
hard on lobsters. In fact, we show that the problem is NP-hard on lobsters whose spine has just one
vertex. Observe that every such graph is a superstar graph; thus we show that the problem is NP-hard
on superstars. To show these hardness results, we reduce from the following variant of the well-known
SET COVER problem:

COLORFUL SET COVER

Input: A finite universe U, a finite family F = {F}, Fs, ..., F,,} of subsets of U that
is such that there is no 4, j for which F; U F; = U, and a function C : F — U
such that C(F;) € F;.

Question: Does there exist R C F such that (Jgcr S = U and C is injective on R ?

We will need the fact that SET COVER is NP-complete even when no two sets in the family span the
universe. Formally, if the input to SET COVER is restricted to families that have the property that no
two subsets in the family are such that their union is the universe, it remains NP-complete:

AT-LEAST-THREE SET COVER

Input: A finite universe U, a finite family 7 = {F}, Fs, ..., F,,} of subsets of U, such
that there is no i, j for which F; U F; = U.
Question: Does there exist R C F such Usen S=U?

Proposition 1. AT-LEAST-THREE SET COVER is NP-complete.

Proof. The statement follows by an easy reduction from the well-known SET COVER problem which is
among Karp’s original list of 21 NP-complete problems [13]:

SET COVER

Input: A finite universe U, a finite family F = {F}, Fy, ..., F,,} of subsets of U, and a
positive integer k.

Question: Does there exist R C F, with |R| < k, such that U S=U07

SeR



If kK = 1, check if there exists ¢ such that F; = U. If this is the case, return a trivial YES-instance
of AT-LEAST-THREE SET COVER. If £ > 1, then in time (Z), examine if that there exists ¢, j for which
F; U F; = U: if there is, return again a trivial YES-instance of AT-LEAST-THREE SET COVER, and if
not, return the original instance. The correctness of this reduction is immediate. O

Lemma 1. COLORFUL SET COVER is NP-hard.

Proof. We establish this by a reduction from AT-LEAST-THREE SET COVER. Let (U, F = {F1,..., F,}, k)
be an instance of AT-LEAST-THREE SET COVER. We construct an instance (U’, 7', C) of COLORFUL
SET COVER as follows (see Figure 3 for an example). Let X = {z1,x2,..., 2} be a set disjoint from U.
For 1 <i<mn,1<j<klet F;; =F,U{x;}. For 1 <i<n,1<j <k, we define C(Fj;) = ;. We set
U'=UUX and F' ={F;; | 1<i<n,1<j <k} Notethat, as required, U’ = U U X, and there are
no indices 1, j, p, ¢ for which F;; U Fp,q = U.

Reduction from At-Least-Three Set Cover
to Colorful Set Cover
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Fig. 1. An Illustration of the Reduction

Now, suppose the given AT-LEAST-THREE SET COVER instance is a YES instance, and R =
{Fi,, Fiy,..., F;,} be a set cover of size at most k in the AT-LEAST-THREE SET COVER instance. In
the reduced instance, consider the set R’ = {F; U {1}, Fi, U{z2},..., F;, U{z¢}}. For 1 < j <k, let
Fi = {F;; |1 <i<mn}. If t <k, then arbitrarily pick an element from each Fj,t < j < k and add it
to R'. Call this new set R”. We claim that R” is a solution for the instance COLORFUL SET COVER of
(U, F',C). Consider d € X. Since we have picked at least one element from each F} into our solution,
d is covered by R”. Suppose d € U. Let d € F;, € R (note that such an Fj, exists since R is a solution
for the SET COVER instance). Then, F;, U{z;} € R’ C R”, implying that d is covered by R" and hence,
the reduced instance is a YES instance of COLORFUL SET COVER.

Conversely, suppose the reduced instance is a YES instance of COLORFUL SET COVER, and let
R" be a colorful set cover. It is easy to see that R" contains exactly one element from each F7. Let
R" = {F/',Fy,...,F]'}. Define R = {F{'"\X,F/\X,...,F;/\X}. Note that any d € U covered by some
F/" € R"” will be covered by F//\X € R. Since |R| < k, it is indeed a solution for the AT-LEAST-THREE
SET COVER instance. g

Theorem 3. COLORFUL MOTIF on superstar graphs is NP-hard.

Proof. The proof is by reduction from COLORFUL SET COVER. Let (U, F = {Fi,...,F,},C) be an
instance of COLORFUL SET COVER. Without loss of generality, we assume that (Jg.»S = U. We
construct a graph T as follows. For each set F; € F and each element x € F;, add a vertex z[i] to V(T).
Note that the same element in U may appear any number of times as a vertex, once for each time it
appears in the sets F;,1 < i < n. For each set F;, add a new “set” vertex u; and make it adjacent to all
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the vertices x[i] that correspond to elements of F;. Finally, add a “root” vertex r and make r adjacent
to all the vertices u;. This completes the description of T'. More formally,

V(T)=A{xz[i] |z € F;,1 <i<n}U{uy,...,u,} U{r}
E(T) ={(z[i],w) |z € F;,1 <i<n}U{(u;,r) |1 <i<n}

Reduction from Colorful Set Cover
to Colorful Motifs on Superstars

Fl F2 F3 F4 F5
o o o o ]

Fig. 2. Reduction from COLORFUL SET COVER to COLORFUL MOTIF on superstar graphs. Note that the high-
lighted color in each F; corresponds to C'(F5)

For every x € U, we let ¢, be a color in the set of colors of the COLORFUL MOTIF instance. Also,
for simplicity, let f; denote C(F;). The coloring function ¢ labels each vertex x[i|,z € F; with the color
cz. The “set” vertex u; gets the color ¢, where Fj is the set that u; represents. The root vertex r gets a
new color, named c,.. Formally,

c(zli]) ={cs |z € F;,1 <i<n}
c(u;) ={cy, |1 <i<mn,and ¢(r) =c }.

Note that the color set used contains one color for each element in U, and the new color ¢,.. T is
clearly a superstar; the reduced instance is (T, |U| + 1,¢).

Now, suppose that the given COLORFUL SET COVER instance is a YES instance, and let R =
{F;,,Fi,,..., F;,} C F be a solution for this instance. Consider the subtree T" of T consisting of (1) the
subtrees rooted at u;, ..., u;,, (2) the vertex r, and (3) the edges (r,u;, ), ..., (r,u;, ). From the subtree
rooted at each u; in 7", remove those leaves that have the same color as ;. From the remaining leaves,
arbitrarily delete all but one leaf of each color. Call the resulting tree T". It is clear from the construction
of T that it does not contain two vertices of same color. Now, consider the color ¢, for any x € U U {r}.
We claim that T" contains a vertex of color ¢,. If ¢, = ¢,, then we are done since T" contains the vertex
r. Suppose ¢; # ¢,. Let F,, be an element of R which covers the element z € U in the solution to the
CoLORFUL SET COVER instance. Then, either C'(F,) = z, in which case we can immediately see that
T"contains u, which is colored with color ¢,, or C(F},) # =, in which case our construction of T ensures
that the subtree of T” rooted at u, has a leaf with color ¢,. Thus T"” is a colorful subtree of T with
|U| + 1 colors.

Conversely, suppose that the reduced instance is a YES instance of COLORFUL MOTIF and let T”
be a colorful subtree of T with |U|+ 1 colors. Let {u;,,uiy,...,u;, } = V(T")N{uy,...,un}. Let R =
{F;,,Fi,,...,F;,}. In the original instance of COLORFUL SET COVER, the elements of R get the colors
{c(uiy), e(usy), ..., c(us,)}, and these are all distinct. Consider d € U. Since T" is colorful with |U| + 1
colors, some vertex of 7" is colored cq, and ¢4 # ¢.. Hence, the vertex of T" colored ¢y is either some u;
or a leaf adjacent to some u;. Since we are picking the corresponding F; in R, we ensure that R covers d
and hence the given instance is a YES instance of COLORFUL SET COVER. O
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Proposition 2. Let (T,C) be an instance of COLORFUL MOTIF, where T is a superstar graph. Let
Uu1,...u, be the children of the root of T. Let V; denote the set of leaves adjacent to u;, and let U; denote
Vi U{u;}. For X CV(T), let ¢«(X) denote the set of colors used on X, that is:

o(X)={d| 3z € X,c(x) =d}.

The COLORFUL MOTIF problem is hard on superstar graphs even on instances where no two subtrees
are colored with the entire set of colors: that is, for any i # j,

(c(Us) UeU;)\ C # ¢.

Proof. Note that the claim follows from the reduction stated in the proof of theorem 3, because of the
fact that an instance of COLORFUL SET COVER is such that there is no 7, j for which F; U F; = U. This
rules out the possibility of the reduced instance obtained in the proof above having two subtrees that
are colored with the entire set of colors. O

4 Colorful Motifs on Graphs of Diameter Two and Three

In this section, we consider the COLORFUL MOTIF problem restricted to graphs of diameter two and
three. We show that the COLORFUL MOTIF problem on superstars reduces to COLORFUL MOTIF on
graphs of diameter two, thereby establishing that the problem is NP-complete. Also, we show that the
COLORFUL MOTIF problem on general graphs reduces to COLORFUL MOTIF on graphs of diameter three,
thereby establishing that the problem is NP-complete, and that polynomial kernels are infeasible. These
reductions are quite similar, with only subtle differences.

Lemma 2. The COLORFUL MOTIF problem on superstars with parameter k reduces to COLORFUL MO-
TIF with parameter k on graphs of diameter two.

Proof. Let (T, k, c) be an instance of COLORFUL MOTIF on superstars. A superstar can be, by definition,
rooted at a vertex r such that the graph is a rooted tree of height two. Let r denote the root of T', and
assume that the neighbors of r are ordered in some arbitrary but fixed fashion. Let T'(i) denote the graph
induced on the i*"* neighbor of r, and the leaves of T that are adjacent to it, that is,

T(i) :=T[v; U (N[v,;] N\ 7’)]

We refer to the graph induced on T'(i) as the i* subtree. Note that, by Proposition 2, we may assume
that any colorful subtree of T intersects non-trivially with more than two subtrees. We now describe an
instance (@, k,¢q) that is equivalent to (T, k, c), and is such that @ has diameter two. The graph @ is
obtained from 7 in the following steps: First, we add (g) new vertices:

We use X to denote the set of newly introduced vertices, that is, {v[é,j] | ¢, € [k] and ¢ # j}. The
new vertices get the same color as r, that is, c,(u) = ¢(r) for all vertices v € V(Q) \ V(T). For all
“original” vertices u in V(T'), ¢q(u) = c(u). The edge set of @ retains all the original edges in T', Further,
for every pair of distinct subtrees T'(i) and T'(j), we make the vertex v[i, j] global to all the vertices in
T(i) UT(j). Finally, make every vl[i, j] global to the set of all vertices in the closed neighborhood of r,
and induce a clique on all vertices v[i, j]. Formally:

(a) u,v},u e T(i),v € T(j), for i,5 € [k] and i # j, (u,v) € E(Q) if, and only if, (u,v) € E(T)
(b) Vi,j € [k],i # k,and w € T()) UT(j), (v[i,jl,u) € E

¢) Yu € X and Yv € Nr], (u,v) € E

d) Yu,v e X, (u,v) € E.

(
(

NI NN

Notice that @ is a graph of diameter two. Indeed, any pair of vertices within the same subtree have
distance at most two (via their parent), and any pair of vertices in distinct subtrees T'(¢) and T'(j) are
reachable by a path of length at most two: if i # k+ 1 and j # k + 1, then v[¢, j] is a common neighbor
of any pair of vertices (u,v) such that u € T(i) and v € T(j), thus making them distance two apart.
Any v[i, j] is distance one from any vertex in T'(¢) or T'(j) and is distance two from a vertex in any other
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Fig. 3. A Slice of the graph @

subtree T'(1), because r is a common neighbor of a vertex in T'(I) and v, j] (recall that C(c(r)) induces
a clique, and v[l, '] is adjacent to every vertex in T'(1)).

We now claim that (T, k,c) is a YES-instance of COLORFUL MOTIF if, and only if, (Q,c4, k) is a
YES-instance of COLORFUL MOTIF. Notice that any colorful subtree 7" in T is a colorful subtree of Q.
In the converse, let R be a colorful subtree of ). Observe that none of the newly introduced vertices (or
edges) are used in R’: such vertices connect precisely two subtrees, and therefore R intersects at most
two subtrees of Q. Notice that R\ v[i,j] is a colorful subtree of T, which contradicts our assumption
that any colorful subtree of T intersects non-trivially with more than two subtrees. Thus, R functions as
a colorful subtree T” of T. It is easy to see that this is also a polynomial parameter transformation. This
completes the proof the lemma.

O

Lemma 3. The COLORFUL MOTIF problem with parameter k reduces to COLORFUL MOTIF with param-
eter (k+1) on graphs of diameter three. The reduction serves to show both NP-hardness and infeasibility
of polynomial kernelization (being a polynomial parameter transformation).

Proof. Let (T,c, k) be an instance of COLORFUL MOTIF with &k colors. Let T'(¢) denote the subset of
vertices in T' that have color 7, that is:

T(i)={veT]|cl)=i}

We refer to the set of vertices in T'(¢) as the color class i. We now describe an instance (R, ¢,k + 1)
that is equivalent to T', and is such that R has diameter three. To this end, we describe an intermediate
instance (@, cq, k + 1) based on (T, ¢, k). The graph @ is obtained from T in the following steps: First,
we add (g) new vertices:

V(Q) = V(T)U{v[i,j] | i,j € [k] and i # j}.

The new vertices form the color class (k + 1), that is, ¢,(u) = k + 1 for all vertices u € V(Q) \ V(T).
We abuse notation and use T'(¢) to refer to color class 7 in @, for i € [k + 1]. For all “original” vertices u
in V(T'), ¢q(u) = c(u). The edge set of () retains all the original edges in T, and further, we add edges
so that every color class induces a clique. Finally, for every pair of distinct color classes T'(:) and T'(j),
we make the vertex v[i, j] global to all the vertices in T'(4) U T'(j). Formally:

(a) For every i € [k + 1], V{u,v} € T(7), (u,v) € E(Q)
(b) Y{u,v},u € T(),v € T(j), fori,j € [k] and i # j, (u,v) € E(Q) if, and only if, (u,v) € E(T)
(c) Vi,j € [k],i #k, and u € T(i) UT(j), (v[i,j],u) € E

Notice that @ is a graph of diameter two. Indeed, any pair of vertices within the same color class T'(7)
have distance one, and any pair of vertices in distinct color classes T'(i) and T'(j) are reachable by a path
of length at most two: if i # k+1 and j # k+ 1, then v[i, j] is a common neighbor of any pair of vertices
(u,v) such that v € T'(¢) and v € T(j), thus making them distance two apart. Any v[i, j] is distance one
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Fig. 4. A Slice of the graph @

from any vertex in T'(i) or T'(j) and is distance two from a vertex in any other color class T'(I), because
v[l,l'], for any I’ # [, is a common neighbor of a vertex in T'(l) and v[i, j] (recall that T'(k + 1) induces a
clique, and v[l,!’] is adjacent to every vertex in T'(1)).

We are now ready to provide a description of (R,c,,k + 1). The graph R is obtained from @ by
replacing every v[i, j] € T'(k 4+ 1) with the following vertex set:

Vi, 3] = {vli, ]V, 0fi, 5]@, ... vl 5],

where d;; is the number of neighbors of v[i,j] in V(R) \ T'(k + 1). We assume that the vertices in
N (v[i, j]) are ordered in some arbitrary but fixed fashion. We then add the edges (v[i, j]"), u;), where u;
is the I*" neighbor of v[i, j]. We then add edges so that T'(k + 1) induces a clique. Again, for all original
vertices u in V(Q), ¢,(u) = cq(u). For all vertices uw € T'(k + 1), we let ¢,.(u) =k + 1.

T(1) T(2) T(i) T() T(r)

( W L

vli, ]

Fig. 5. A Slice of the Graph R

Observe that R is a graph of diameter three. Again, every pair of vertices within the same color class
T(i) have distance one. Any pair of vertices in distinct color classes T'(¢) and T(j), if i # k + 1 and
j # k + 1 are reachable by a path of length at most three. Let u € T(i) be the I} neighbor of v[i, j]
in Q, and let v € T(j) be the I* neighbor of v[i, j]. Then (u,v[i,j]'*) € E, (v[i,j]',v[i, j]**) € E, and
(v[i, 7], v) € E, establishing a path of length three between u and v. Further, it is easy to see that any
v[i, j]" is distance two from any vertex in T'(i) or T'(j) or any other color class T'(I), for similar reasons.

We now claim that (T, ¢, k) is a YES-instance of COLORFUL MOTIF if, and only if, (R, ¢,k + 1) is a
YES-instance of COLORFUL MOTIF. Notice that any colorful subtree 7" in T' can be trivially extended to
a colorful subtree R’ in R - indeed, we may let R’ to be T"U{(u,v)}, where u € T" and v € T'(k+1) such
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that (u,v) € FE (note that such a v always exists). Conversely, let R’ be a colorful subtree of R. Let u be
the vertex in R’ from T'(k + 1). Notice that u is necessarily a leaf of R’, since no vertex v € T'(k + 1) has
degree more than one outside T'(k 4 1). Notice that the subtree R’ \ {u} gives us a colorful subtree 7" of
T, as required. It is easy to see that this is also a polynomial parameter transformation. This completes
the proof the lemma.

O

5 Colorful Motifs on Comb Graphs

In [5], Cygan et al. show that COLORFUL MOTIF is NP-complete on comb graphs, defined as follows:

Definition 4. A graph G = (V, E) is called a comb graph if (i) it is a tree, (ii) all vertices are of degree
at most 3, (iit) all the vertices of degree 3 lie on a single simple path. The mazimal path, which starts
and ends in degree 3 vertices is called the spine of a comb graph. One of the two endpoint vertices of the
spine is arbitrarily chosen as the first vertex, and the other as the last. A path from a degree 3 vertex to
a leaf which contains exactly one degree 3 vertex, is called a tooth.

T
- |
|

Fig. 6. A Comb Graph

In this section, we present a composition algorithm for COLORFUL MOTIF on comb graphs. Note
that in [5], it is observed that COLORFUL MOTIF is unlikely to admit polynomial kernels on forests. This
simple composition obtained using disjoint union does not work “as is” when we restrict our attention
to comb graphs, since the graph resulting from the disjoint union of comb graphs is not a comb graph,
as it is not connected.

5.1 A Composition Algorithm

We begin by introducing some notation that will be useful presently. Let (T, k,¢) be an instance of
COLORFUL MOTIF restricted to comb graphs, that is, let 7" denote a comb graph, and let ¢: V(T') — []
be a coloring function.

Let T, and T; be two comb graphs, and let I, € V(T},) be the last vertex on the spine of T},, and let
fq € V(T,) be the first vertex on the spine of T;. We define T}, ® T;, as follows:

(i) V(T, 0T,) = V(T,) W V(T,) U {vp,v4}, where {v,,v,} are “new” vertices, and
(ii) E(T, ©Tq) = E(Tp) W E(Tq) U {(lp, vp), (vp, vg), (vg, fo) }

We are now ready to describe the composition algorithm:

Lemma 4. The COLORFUL MOTIF problem does not admit a polynomial kernel on comb graphs unless
NP C coNP/Poly.

Proof. Let (Ty,c1,k), (Ta,ca, k), ... (Tt i, k) be the instances that are input to the composition algo-
rithm. Let 7 denote the graph:

T=TN0OoLo 0T.
10



Fig. 7. An illustration of the T, ® T, operation

Let N denote the set of all new vertices introduced by the ® operations. Notice that any vertex of
T that does not belong to N is a vertex from one of the instances T;. We will refer to such vertices in T
as being from T (T;).

We refer to the pair of vertices in N adjacent to the endpoints of the spine of a T; as the guards of T;
(notice that any T; has at most two guard vertices). We define the coloring function ¢ on T as follows.
For every vertex u € T;, ¢(u) = ¢;(u). For every vertex u that is a guard of T;, ¢(u) = c¢(v), where v is
the vertex of T; adjacent to u. We now claim that (7, k) is the composed instance.

We first show that if 3i,¢ € [t], such that T; is a YES-instance of COLORFUL MOTIF, then T is a
YES instance of COLORFUL MOTIF. Notice that the colorful connected subtree of T; also exists in T,
and hence we are done.

Conversely, let 7 be a YES-instance of COLORFUL MOTIF. Let R be a colorful connected subtree of
T . Notice that by construction, if V(R) intersects with 7(7;) and 7 (Tj) for i # j, then it contains two
vertices of the same color — indeed, this follows from the observation that V(R) would have to contain
the guard vertices of T; and Tj to be connected, and this would lead to multiple occurrences of the colors
that occur at the endpoints of the spines of T; and T}.

Thus, V(R) intersects with 7(7;) for exactly one value of i, 1 < ¢ < t. Clearly, R is a colorful
connected subtree of T;. Thus, by Theorem 1, COLORFUL MOTIF admits no polynomial kernel on comb
graphs unless NP C coN P/Poly. O

Corollary 1. The COLORFUL MOTIF problem on lobsters does not admit a polynomial kernel unless
NP C coNP/Poly.

Proof. Clearly, the problem is NP-complete due to Theorem 3. Further, observe that the composition
described in the proof of 4 can be imitated with minor changes to obtain a similar result on lobsters.
Indeed, we only need to observe that it suffices to subdivide only edges along the spine of the lobster
(which is the spine of the caterpillar obtained by removing all the leaves of the lobster). If a solution does
not intersect the spine, it is contained in one of the “dangling superstars”, and this is easily detected
before applying the composition. The details are routine and therefore omitted. a

5.2 Many Polynomial Kernels

Although a parameterized problem may not necessarily admit a polynomial kernel, it may admit many
of them, with the property that the instance is in the language if and only if at least one of the kernels
corresponds to an instance that is in the language. We now show that the COLORFUL MOTIF problem
admits n kernels of size O(k?) each on comb graphs. This is established by showing that a closely related
variant, the ROOTED COLORFUL MOTIF problem, admits a polynomial kernel. The ROOTED COLORFUL
MoTIF problem is the following:

ROOTED COLORFUL MOTIF

Input: A graph G = (V, E), k € N, a coloring function ¢: V — [k], and r € V.
Parameter: k
Question: Does G contain a subtree T' on k vertices, containing r, such that ¢ restricted

to T is bijective?

Lemma 5. The COLORFUL MOTIF problem admits many polynomial kernels on comb graphs.
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Proof. Let T = (V, E) be a comb graph, and let (T}, k, ¢, u) be an instance of ROOTED COLORFUL MOTIF.
We first show that T can be reduced to an equivalent instance T, on at most O(k?) vertices. Notice that
we may obtain an equivalent instance T, from T by deleting all vertices in T that lie outside the k-
neighborhood of u. This is because any colorful subtree of T rooted at uw will not involve vertices outside
the k-neighborhood of wu.

We now observe that T, has at most O(k?) vertices. Note that in the k-neighborhood of u in T,
there are at most 2k vertices that belong to the spine and from each of these vertices, there is a tooth of
length at most k. Also, if u lies on a tooth, there are at most 2k more vertices on the same tooth, and if
u lies on the spine then there are at most & more vertices on the tooth rooted at w, if at all one exists.
Hence, in T, there are at most 2k vertices of degree 3 each having a tooth of length at most k& and at
most one other tooth, which is of length at most 2k. So, the total number of vertices in T, is at most
2k + 2k * k + 2k = O(k?). Notice that there are n choices for u from T, and repeating the procedure
above by “guessing the root” gives us n polynomial kernels for the problem, as desired. O

6 Colorful Motifs on Trees

In this section, we demonstrate the infeasibility of some strategies for showing many polynomial kernels for
COLORFUL MOTIF restricted to trees. Observe that the COLORFUL MOTIF problem is unlikely to admit
a polynomial kernel on trees, since a polynomial kernel on trees would imply a polynomial kernelization
procedure for comb graphs, which is infeasible (see Lemma 4).

6.1 Hardness with a Fixed Root

In the case of comb graphs, we were able to establish that the problem of finding a colorful subtree with
a fixed root admits a O(k?) kernel. Unfortunately, this approach does not extend to trees, as we establish
that ROOTED COLORFUL MOTIF is compositional on trees.

Proposition 3. The ROOTED COLORFUL MOTIF problem restricted to trees is NP-hard.

Proof. By reduction from COLORFUL MOTIF restricted to trees, which is NP-hard on trees (in fact, on
the even more restricted class of comb graphs) as shown by Cygan et al [5].

Let (T, k, c) be an instance of COLORFUL MOTIF where T is a tree. Let {v1,va,...,vs} be the vertices
in T that have color 1 in T'. Make ¢ copies T1,T5, ..., Ty of T. Add a new vertex v, and for 1 < ¢ < ¢, make
v adjacent to the copy of v; in Tj; let this graph be T”. Let ¢’ be the coloring function that gives all copies
of a vertex in T the same color as it has in T, and the color k + 1 to the new vertex v. (T, k+ 1, ,v)
is the reduced instance of ROOTED COLORFUL MOTIF. T” is clearly a tree, and it is easy to see that
(T, k,c) is a yes instance of COLORFUL MOTIF if and only if (T, k+1,¢’,v) is a yes instance of ROOTED
COLORFUL MOTIF. O

Proposition 4. The ROOTED COLORFUL MOTIF problem when restricted to trees does mot admit a
polynomial kernel unless NP C coN P/Poly.

Proof. From Proposition 3, the ROOTED COLORFUL MOTIF problem is NP-complete when restricted to
trees. We now describe a composition algorithm for ROOTED COLORFUL MOTIF on trees.

Let (Ty,v1,c1, k), (Te,v2,¢2,k), ... (T, v, ¢y k) be the input instances, where T; = (V;, E;). Consider
the tree T = (V, E) described as follows:

LV ={u}U{ui,ug,...,up}Uici Vi
2. (u,u;) € E, for all i € [r], and (u;,v;) € E, for all i € [r]
3. E; C Eforallielt].

Consider the coloring function ¢ : V' — [k + 2] defined as follows: for all v € V;, ¢(v) = ¢;(v). Further,
c(u;) = k+ 1 for all u;, and c(u) = k + 2.

We now claim that (7, k42, ¢, v) is the composed instance. Indeed, if T; has a colorful subtree rooted
at v; then we have a colorful subtree (on k+2 colors) rooted at v, which extends the tree rooted at v; using
the edges (v;, u;) and (u;,w). In the reverse direction, suppose T has a colorful subtree T” rooted at w.
Then, observe that T” contains vertices from ezactly one of the T;s. This is because if T” contains vertices
from T; and Tj then T’ contains vertices u,; and u; both of which have the same color , a contradiction
to the assumption that T” was colorful. This completes the proof. a
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Fig. 8. An illustration of the composition

Hardness on Trees of Bounded Degree Since the problem of COLORFUL MOTIF is fixed-parameter
tractable on trees with running time O*(2¥), we may assume, without loss of generality?, that the number
of instances input to the composition algorithm is at most O*(2¥). Consider the COLORFUL MOTIF
problem restricted to rooted binary trees. We establish in this section that this problem is compositional
as well:

Lemma 6. The COLORFUL MOTIF problem is compositional on rooted binary trees, and does not admyit
a polynomial kernel unless NP C coN P/Poly.

Proof. We build the composed instance 7 by combining the input instances with a complete binary tree
on t leaves, where t is the number of instances input to the composition algorithm. Let (T3, r;, ¢;, k), for
i € [t] be the input instances to the composition algorithm, where T; is a rooted binary tree rooted at
r;. Let B be the complete binary tree on ¢ leaves. Note that the depth of B is logt, and since we have
assumed that ¢t < 2% the depth of B is at most k. Denote the root of this tree by 7, and let D(i) the
set of all vertices at a distance ¢ from r. Assume that the leaves are ordered in some arbitrary but fixed
fashion. We identify the vertices l; and 7;, where [; is the i*" leaf of B. We define the coloring function

c:V(T) — [2k],

as follows: c(u) = k+1i+1 for every u € D(i), and c(u) = ¢;(u) for any u € T;. We claim that (7, r, ¢, 2k)
is the composed instance. The correctness follows from reasons similar to those in the proof of Proposition
4, and the straightforward details are omitted. a

6.2 Hardness with a Fixed Subset of Vertices

Now, we have seen that “fixing” one vertex does not help the cause of kernelization for trees in general.
In fact, more is true: fixing any constant number of vertices does not help. The problem we study in this
section is the following:

SUBSET COLORFUL MOTIF

Input: A graph G = (V, E), a coloring function ¢ : V' — [k], and a set of vertices
UCV,|Ul=s=0(Q).

Parameter: k

Question: Does G contain a subtree T on k vertices, such that U C V(T), and c¢ restricted

to T' is bijective?

Proposition 5. The SUBSET COLORFUL MOTIF problem restricted to trees does not admit a polynomial
kernel unless NP C coNP/Poly.

Proof. To prove this proposition, it is sufficient to show that there exists a polynomial parameter trans-
formation from the ROOTED COLORFUL MOTIF problem restricted to trees to the SUBSET COLORFUL
MOTIF problem restricted to trees (Theorem 2 and Propositions 3 and 4). We now proceed to give such
a transformation.

4 If the number of instances is greater than f(k)n®, where f(k)n¢ is the time taken by a FPT algorithm to
solve the problem, then the composition algorithm can solve every problem and trivially return an appropriate
answer within the required time bounds.
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Let (T, v, ¢, k), where T = (V, E), be an input instance to ROOTED COLORFUL MOTIF. Let s’ = s—1.
Construct the tree 77 = (V', E’) as follows: (i) 7" = (V', E') where V' =V U {uy, ua,...,ul} (ii) E' =
EUu{(v,u1),...,(v,ul)}

Now, we define a coloring function ¢’ : V' — [k + s'] as follows:

(i) d(v) =c(v), VveV

(i) (u;) = k+J, Vj €]

(1", {v,u1,...,u}, k+s') is the reduced instance of SUBSET COLORFUL MOTIF. It is easy to see
that the reduction is a polynomial parameter transformation, and the proposition follows. a

7 Connected Dominating Set on Graphs of Diameter Two

In this section, we show that CONNECTED DOMINATING SET on graphs of diameter two is NP-complete.
The classical complexity of CONNECTED DOMINATING SET on graphs of diameter two was hitherto
unknown, although it was known to be NP-complete on graphs of diameter three, and trivial on graphs
of diameter one. We establish this by a non-trivial reduction from COLORFUL MOTIF on graphs of
diameter two, which is NP-complete by Lemma 2.

Theorem 4. The CONNECTED DOMINATING SET problem, when restricted to graphs of diameter two,
is NP-complete.

Proof. We establish this by demonstrating a reduction from COLORFUL MOTIF on graphs of diameter
two. Let (G, k,c) be an instance of COLORFUL MOTIF on graphs of diameter two. Let C(¢) denote the
subset of vertices in C' that have color 7. That is, C(i) = {v € G | ¢(v) = i}. We refer to set of vertices
in C(7) as the color class i. We now describe an equivalent instance (H, k) of CONNECTED DOMINATING
SET on graphs of diameter two.

We define the following simple operations before we begin:

1. inducing a cligue on S, where S C V: Add the edges (u,v) for all u,v € S, u # v.

2. inducing a complete bipartite graph on (S,T), where S, T CV, SNT = (: Add the edges (u,v) for
alue S, vel.

3. inducing a matching on (S,T), where S, T C V, SNT = (, |S| = |T| and there exists a natural
ordering of the vertices in S and T (that is, S = {s1,$2,...,8-} and T = {t1,t2,...,t,}): Add the
edges (s;,t;) for all i, 1 <7 <r.

4. making u global to S, given a vertex u and a set S C V: Add all edges (u,v) where v € S.

The graph H is obtained from G, in a series of several steps. We describe the graph H by the sequence
of modifications made to G to arrive at H.

(1) To begin with, let H = G.

(2) Induce a clique on C(2), for all ¢ € [k].

(3) For every color class C(i), add (k+ 1) new vertices v;(1),v;(2),...,v;(k + 1). We refer to this set as
H(7). Induce a complete bipartite graph on (C(i), H(7)).

(4) For every pair (i, 7) such that i # j, induce a matching on (H(¢), H(j)), where the ordering on the
vertices in H; and Hj is the natural one established by the labels. (That is, the jth vertex of H; is
v;(j).) Further, for every pair of vertices (v;(p),v;(q)), where p # ¢, add an edge and subdivide it.
We refer to the set of all such subdivided vertices as D(i, ). We let D = UpD(i, j), where P = ([g]).

(5) Induce a clique on D, the set of subdivided vertices.

(6) For every u € D(i,j), we make u global to C(l), for every I, where [ # ¢ and [ # j.

Claim. The graph H has diameter two.

Proof. We show this by demonstrating a path of length at most two for every pair of vertices u and w.
This is done in a series of cases, summarized in table 1.
The detailed case analysis proceeds as follows:
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Reduction from Colorful Motifs on Graphs of Diameter Two
to Connected Dominating Set on Graphs of Diameter Two

Clique

Hi) (000000

C@( ooooo]K"“”“r1

Fig. 9. An Illustration of the Reduction in the proof of Theorem 4

C H D
C |G has diameter two| Complete bipartition D is a clique,
and matching edges |and a neighbor into D always exists

H |[A Symmetric Case]| Matching edges, or D is a clique,
a common neighbor in D|and a neighbor into D always exists

[D [[A Symmetric Case]] [A Symmetric Case] | Clique

Table 1. The Diameter Two Argument Summary

u € C(i) and w € C(i). In this case the distance between u and w is one, because C(7) is a clique.
u € C(i) and w € C(j), where j # i. In this case, there exists a path of length at most two because
the original graph has diameter two.

u € H(i) and w € H(i). In this case there exists a path of length two because for every vertex
x € C(i), by construction in step 3, (u,z) and (w,z) are both edges in the graph.

uw € H(i) and v € H(j), t # j. Let u = v;(p) and let w = v;(q). If p = ¢, the edge introduced by
the matching make v and v adjacent, otherwise, there exists a subdivided vertex that is a common
neighbor of both v and w, which implies a path of length two.

u € H(i) and w € C(i). By step 3 in the construction, (u,w) is an edge in the graph.

u € H(:) and w € C(j), where j # i. Let u = v;(p). Then (w,v;(p)) is a matching edge and
(v;j(p), w) is an edge (by step 3 in the construction). This establishes a path of length two.

u € D and w € D. In this case the distance between u and w is one, because D is a clique by step
5 of construction.

u € D(i,j) and w € C(l), where | # i and [ # j. In this case the distance between u and w is one,
because u is global to C(I) by step 6 of construction.

u € D(i,7) and w € C(i) (respectively, w € C(j)). u is adjacent to a vertex in H (i) (respectively,
in H(j)), which is in turn adjacent to w. This establishes a path of length two.
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(x) u € Dand w € H(j) for some j. Either u is adjacent to w, or is adjacent to a vertex that is adjacent
to w (recall that w is adjacent to at least one vertex in D and D induces a clique).

This case analysis establishes that H is indeed a graph of diameter two.

Now we prove that any colorful subtree of G is a connected dominating set of H. It is clearly connected.
Notice that all vertices in H (i) are dominated for all ¢ € [k]: any vertex in H(4) is adjacent to all vertices
in C(4) and a colorful tree contains one vertex from C(i). A similar argument shows that all vertices in
D are dominated.

Conversely, we argue the graph induced on any connected dominating set of size at most k induces
a colorful subtree in G. Notice that it suffices to prove that any connected dominating set intersects
non-trivially with every C(7), that is, if S is a connected dominating set of size at most k, then:

|SNC)] > 1.

Because |S| < k, this implies that |[S N C(i)] = 1. Because S is connected, the vertices of S induce a
colorful subtree. Therefore, we now only need to establish that | SNC'(¢)| > 1. For the sake of contradiction,
suppose not. In particular, let

[SNC(#)] =0
Notice that no vertex u ¢ C(i) dominates more than one vertex in H (). Indeed:

(a) If w € H(i), then because H (i) induces an independent set, u dominates no vertex other than itself.

(b) If u € D, u has at most one neighbor in H(7), and therefore dominates at most one vertex of H (4).

(¢c) If w € H(j), j # i, u has at most one neighbor in H (i) (indeed, the matching partner is the only
one), and therefore dominates at most one vertex of H(i).

(d) It is easy to see that all other vertices have no neighbors in H (7).

Therefore, any dominating set that does not intersect with C'(4) is forced to pick more than k vertices
to dominate all vertices in H (%), contradicting the assumption that S was a dominating set of size at
most k. This completes the proof.

O

8 Summary, Conclusions and Further Directions

We studied the problem of COLORFUL MOTIF on various graph classes. We proved that the problem
of COLORFUL MOTIF restricted to superstars is NP-complete. We also showed NP-completeness on
graphs of diameter two. We applied this result towards settling the classical complexity of CONNECTED
DOMINATING SET on graphs of diameter two — specifically, we show that it is NP-complete. Further, we
showed that on graphs of diameter two, the problem is NP-complete and is unlikely to admit a polynomial
kernel.

Next, we showed that obtaining polynomial kernels for COLORFUL MOTIF on comb graphs is infea-
sible, but we show the existence of n polynomial kernels. Further, we study the problem of COLORFUL
MOTIF on trees, where we observe that the natural strategies for many polynomial kernels are not suc-
cessful. For instance, we show that “guessing” a root vertex, which helped in the case of comb graphs,
fails as a strategy because the ROOTED COLORFUL MOTIF problem has no polynomial kernels on trees.
In fact, this lower bound holds even on rooted binary trees. We summarize our results about COLORFUL
MOTIF in special graph classes in the following theorem:

Theorem 5. 1. On the class of comb graphs, COLORFUL MOTIF is NP-complete and ROOTED COL-
ORFUL MOTIF has an O(k?) kernel. Equivalently, COLORFUL MOTIF has n kernels of size O(k?)
each.

2. ROOTED COLORFUL MOTIF does not admit a polynomial kernel on binary rooted trees, unless NP C
coNP/Poly.

3. SUBSET COLORFUL MOTIF does not admit a polynomial kernel on trees unless NP C coN P/Poly.

Finally, we leave the following problems open:

1. Does the COLORFUL MOTIF problem on superstars admit a polynomial kernel?
. Does COLORFUL MOTIF admit many polynomial kernels when restricted to trees?
3. What is the parameterized complexity of CONNECTED DOMINATING SET on graphs of diameter two?

[\
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