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The Missing Boarding Pass

A counting problem that explores certain worries
of the last passenger on an airplane.

1. Introduction

In this article, we deal with the problem of having a
forgetful passenger on an airplane. The precise scenario
is as follows:

On a plane that can accommodate one hundred passen-
gers!, the first passenger has lost his boarding pass. He
chooses to sit at random. Every passenger thereafter
seats himself in his own seat if he finds it, else he seats
himself at random as well. What are the chances that
the hundredth passenger is sitting on his own seat?

To tackle the problem, we first make some normalizing
assumptions:

1. The passengers enter the plane in a fixed order,
which is arbitrary except for the fact that the first
man is the man who has lost his boarding pass.
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The important thing is that we will not allow two
passengers to enter the plane at the same time.
This means that when the ith person enters the
plane, he should find i — 1 seats occupied.

2. If a passenger finds that his seat is occupied, he
will not fight or quarrel or make any fuss what-
soever about not getting his own seat, but will
proceed to choose an empty seat at random like it
is the most natural thing to do. (This is to ensure
that our problem is solved with minimum delay.)

3. Once a passenger has seated himself, he cannot
change his choice at any later stage, even if there
are empty seats right in front of him or otherwise.

4. If a passenger’s seat is empty when he enters the
plane, it is absolutely certain that he will find it.

2. An Intuitive Approach

Appealing to intuition may not be the best way to ap-
proach the problem, particularly in the beginning, when
any first attempt may look like an intimidating chaos of
combinations (perhaps some of them even invalid; like
trying to seat the first passenger in the third passenger’s
seat and the second passenger in the first passenger’s).
However, we will take a plunge anyway, before we mess
around with the actual calculation.

Note that the 100th passenger does not really have a
choice. He enters the plane, looks for the empty seat, sits
down, period. He may just check, out of curiosity (or
for the sake of our problem), if the seat is his designated
or not.

It is perhaps natural to wonder whose seat this could
be. We only want to consider the possibilities at the
moment. If, for some especially absentminded group of

Appealing to
intuition may not
be the best way to
approach the
problem.
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We claim that the
100th passenger
can be occupying
only one of two
possible seats —
either his own, or
that of the first
passenger.

passengers, everyone was forced to sit at random, then
this ‘leftover’ seat could belong to any of the hundred
people. We will return to this scenario later, let us tackle
the present problem first.

We claim that the 100th passenger can be occupying
only one of two possible seats — either his own, or that
of the first passenger. To prove this claim, let us as-
sume it is wrong to make such a claim. Then the 100th
passenger may actually be seated on the seat of the ith
passenger, where i is any number between 2 and 99.
However, for the last man to occupy such a seat, it must
be empty when he entered. This means that the seat in
question must have been empty when its real owner had
appeared earlier, due to axiom 3. But axiom 4 makes
this situation a contradiction. Recall that whenever a
passenger finds his seat empty, he is duty bound to oc-
cupy it. Therefore, it follows that the last passenger is
either using his seat, or the first man’s seat.

For an intuitive approach, that should be sufficiently
interesting. Although this is a far cry from the answer
we are looking for, it will aid in formulating the solution.

3. And the Chances Are...
3.1 Working it Out

We begin by introducing some more notation. We shall
refer to passenger i by p;. Let any 100-letter word
formed using the alphabet p;, i € I (where I is an index
set of size 100) denote a possible seating arrangement.
No letter may be repeated for obvious reasons. If the
letter p; is the jth letter of the word, then it is to be un-
derstood that p; is occupying the jth passenger’s seat.

Now, let U denote the set of all words which represent
valid combinations, i.e., combinations that can be ob-
tained without breaking any of the conditions outlined
in Section 1. Now, let T denote the set of all words in
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U whose concluding alphabet is pigo. In other words,
we are collecting all combinations in which the last man
does find his seat and calling the collection T'. Also, let
the complement of T" with respect to U be denoted by
F.

We define a mapping I' : T" — F as follows: for every
word t € T, let I'(t) be the word obtained by inter-
changing the positions of the first and hunderedth let-
ter. The word thus obtained is clearly an element of
F, and further, every element of F' may be defined as
['(t) for some t € T. Indeed, suppose this were not the
case. Then there would exist at least one f € F' which
is not I'(¢) for any ¢ € T. However, consider the word
obtained when the first and hunderedth letters of f are
interchanged. This has to be an element in T since T is
the collection of all valid words for which the 100th let-
ter is p1go. (Recall that all elements of F' are words that
begin with pygg, consistent with our reasoning that the
last passenger either occupies the last seat or the first.)
Thus we have found an element ¢ in 7" so that I'(¢) is f,
contradicting our assumption that this was not possible.
This implies that I" describes a one-one correspondence
between T and F', and it follows that both sets must
have the same cardinality.

At this point, the reader may wonder if it is valid to
assume that the function I', when applied to a word in
T, always returns a ’'valid’ combination, in the sense of
corresponding to a seating arrangement that respects
axioms 1-4 described in Section 1. We make a couple of
observations in this context.

Observation 3.1. It is always true that when passenger
p, enters the plane, the seats belonging to passengers
P2, P3, ... ,pr_1 are occupied. This follows from the ar-
gument that if this were not the case, then some pas-
senger has clearly violated axiom 4.
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Lemma 3.1. Suppose w is in T, and p, s the first let-
ter in w. Then, p, is the last passenger to seat himself
at random in the arrangement that corresponds to u, in
other words, every passenger py, where k > r, is guar-
anteed to find his seat.

Proof. This follows from the observation that a passen-
ger pi, k > r, who finds his seat occupied upon entry,
will lead to the implication that there are k occupied
seats, and hence k people on the plane excluding him-
self, which fails to respect axiom 1. This is because the
first passengers’ seat is taken (p,), the kth passengers’
seat is taken (since he claims to have found his seat oc-
cupied), and all intermediate seats are also occupied (as
we observed in the previous remark) — giving us a total
tally of k passengers excluding the kth. Since the mys-
terious new passenger cannot be explained, we conclude
that everything that happens after the first passengers’
seat is occupied is deterministic.

On the other hand, suppose u was in F', then we let p,
be the last letter in w. In this case as well, we claim that
pr is still the last passenger to seat himself at random.
The argument is symmetric to the one provided for the
case when v is in 7. [l

That the function is axiom-preserving follows now, since
the two alphabets involved in our interchanging exercise
are special ones — one is the last passenger, and the other
is invariably the last person to seat himself at random.
Thus, it is easy to see that when we interchange their
positions, it cannot generate a combination that violates
the rules.

Note, however, that we do not really require p,. to satisfy
such a strong property for this mapping to be valid (the
reader is encouraged to find a simpler proof, or at least,
develop an intuition that does not rely on the observa-
tions above). We will soon see (in the more general case
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of this problem) that exchanges that do not necessarily
involve passengers who are the last to seat themselves
at random can also generate valid arrangements.

Having established the robustness of I', we proceed to
our calculation. Begin by noticing that for every word
w in U, we may associate with it a number P{u}, which
denotes the probability of the occurence of u. For a
given u, let R, denote the ordered set of all passengers
who seat themselves at random. Then the probability
P{u} is given by:

1
11 (100 —i + 1)

1E€ERy

For instance, if the first passenger did find his seat, then
the resulting word (where every passenger has occupied
his own seat) will occur with probability 1/100.

However, we are not interested in the specific values of
P{u}. Instead, consider an arbitrary but fixed word
t € T. We would now like to compare the probabilities
of t and I'(¢) — and the claim is that these probabilites
are exactly equal:

Lemma 2.2. P{t} = P{T(1)}

Recall that

1
Py =11 (100 — i + 1)

i€ Ry
and
1

Py = 11 (100 — i+ 1)

iGRr(t)

To see that these products are equal, we only need to
establish that R, = Rr(), that is, the set of people who
seat themselves at random is the same in ¢ and I'(¢).
Let the first letter in ¢ be pj. Since the word I'(¢) is
the same as t but for the first and last letters, it suffices
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to observe that p, is the last person to seat himself at
random in both configurations, ¢, and I'(¢). o

Recall that we split U into two mutually exclusive and
exhaustive subsets T' and F', and further established that
these sets have equal cardinality. This implies that U
itself has an even number of elements — let this number
be 2h. (Although the actual value of the number A is
both unkown and irrelevant, the interested reader might
refer to the appendix, where he will find a calculation
that explicitly computes the size of U.) Every word in
U represents an event, and the union of all events in U
denotes the certain event, since we defined U to be the
set of all valid words. Thus, the sum of probabilities of
all these events is one.

ZP{U} + ZP{U} =1

However, note that every word v € F can be written
as ['(t) for some word ¢t € T, and since the mapping is
bijective, we have

> Pluy =) Pl
ueT ueF
and it follows that
> Pluy=1/2
u€eT
and this sum represents the union of all events in 7', i.e.,

the event that the last passenger finds his seat.

It follows, therefore, that the chances of the 100th pas-
senger finding his seat is exactly equal to the chances of
getting a head when a fair coin is tossed, i.e., the chances
are actually even!

3.2 A Couple of Quick Remarks

Two corollaries follow immediately from the result above.
First, that the probability of the last passenger finding
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his own seat is independent of the capacity of the plane.
The generalization of the argument in Section 3.1 to a
plane with n seats instead of hundred is fairly straight-
forward, and the reader who looked at the Appendix
should be able to see that the number of combinations
for which the last passenger finds his seat is 2”72 and
the remaining combinations also amount to 2”72, The
result, therefore, holds for planes built for a couple as
well as imaginary planes (of finite size) as big as the
universe.

The second corollary modifies assumption (1) of Section
1 a little. We consider the case where the passenger who
has lost his boarding pass doesn’t enter first. So we con-
sider the case where p; (k # 100 for obvious reasons) is
the passenger who has lost his pass, and therefore will
be the first person to seat himself at random. In this
situation, obviously, the first k& passengers will occupy
their own seats with probability 1. Therefore we may as
well be looking at a new, smaller plane that has n — k
seats whose first passenger has to seat himself at ran-
dom. Given that this situation is equivalent to having
the forgetful passenger being pj in the context of a plane
with n seats, the problem is now trivial — we are now
back to our original problem, except that we are dealing
with n — k seats instead of n. And since we have already
seen that this leaves our original result unchanged, we
now have the following:

Conclusion 3.1

The chances of the last passenger finding his own seat
remains one-half, irrespective of when the passenger who
has misplaced his boarding pass enters, i.e., the proba-
bility is independent of the timing of the first random
choice.

4. One Step Further — a Generalization

At this stage, it is perhaps natural to ask how the chances

The chances of the
last passenger

finding his own seat

remains one-half,

irrespective of when

the passenger who
has misplaced his
boarding pass
enters, i.e., the
probability is
independent of the
timing of the first
random choice.
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of our last passenger change, if the number of people who
have to seat themselves at random increases from one to
two or some other arbitrary number less than hundred,
or, for that matter, less than n (now that we know that
there is nothing particularly divine about the number
hundred, we will use a plane of capacity n henceforth).
Suppose that the first & passengers have misplaced their
tickets. (If this sounds too unreal, then assume k ar-
bitrary passengers have lost their tickets and then the
airline management asked them to go in first for their —
and our — convienence.) We will find that the solution
to this problem is only a natural generalization of the
solution to the problem concerning the single passenger
who lost his pass.

We use the same notation as we did earlier, namely, that
any n-letter word formed using the alphabet p;, i € I
(where I is an index set of size n) denotes a possible
seating arrangement. No letter may be repeated for ob-
vious reasons. If the letter p; is the jth letter of the
word, then it is to be understood that p; is occupying
the jth passenger’s seat.

Again, let U denote the set of all words which represent
valid combinations, i.e., combinations that can be ob-
tained without breaking any of the conditions outlined
in Section 1. Now, let T" denote the set of all words in U
whose concluding alphabet is p,. In other words, we are
collecting all combinations in which the last man does
find his seat and calling the collection T'. We also ob-
serve that when the last man is not occupying his own
seat, he is occupying one of the first k& seats. This has
intuitive appeal, since if this were not the case, we imme-
diately contradict axiom 4, just as we did in the simpler
version of the problem. This motivates the definiton of
k other subsets of U as follows: in the subset F;, collect
all words in U that have p,, for the ith alphabet.

We define k& mappings I'; : T — F; as follows: for every
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word t € T, let I';(¢t) be the word obtained by inter-
changing the positions of the ith letter with the last.
The word thus obtained is clearly an element of F;, and
further, every element of F; may be defined as I';(¢) for
some t € T'. To prove this, again, suppose this were not
the case. Then there would exist at least one f € F;
which is not I';(¢) for any ¢ € T. However, consider the
word obtained when the ith and nth letters of f are in-
terchanged. This has to be an element in T since T is
the collection of all valid words for which the nth let-
ter is p,. (Recall that all elements of f are words for
which the ith letter is p,, by definition.) Thus we have
found an element ¢ in 7" so that I';(¢) is f, contradicting
our assumption that this was not possible. This implies
that I'; describes a one-one correspondence between T
and Fj;, and it follows that both sets must have the same
cardinality. Since this is true for every i € {1,2,...k},
it implies that all the F;’s are also of equal size.

The question of whether any of the I';s will actually
produce a valid mapping also arises, and may be dealt
with as follows:

Note that the word I';(¢) is a valid seating arrangement if
we can be assured that the passenger who was at p;’s seat
in the word ¢t was someone who sat at random. If this is
true, then he could have chosen the nth passengers’ seat
instead of the ith passengers’, since that is guaranteed
to be empty (remember that ¢ is in 7', where the nth
passenger always finds his seat, and therefore his seat is
always empty when a passenger before him enters the
plane). Subsequently, everyone else seats themselves as
they would have done in ¢ (no one would be affected by
pi’s change of mind, since in ¢, no one would have taken
the nth seat anyway), and finally the nth passenger gets
pi’s seat which is necessarily the only one left. Note that
this is exactly the description of I';(¢).

So we only need to observe that the passenger who was
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at p;’s seat in the word ¢ was someone who sat at ran-
dom. But this is true because if this passenger is not p;
himself, then he’s out of his own seat, and is therefore
sitting at random. If the passenger is p;, although he is
someone who is occupying his designated seat, observe
that this is purely a happy accident — since ¢ is less than
k, p; doesn’t have a boarding pass and happens to be
(in this case) making a correct but random choice.

Again, for every word u in U, we may associate with
it a number P{u}, which denotes the probability of the
occurence of u. For a given u, let R, denote the ordered
set of all passengers who seat themselves at random.
Then the probability P{u} is given by:

H 1

i, (n—i+1)

However, again, we are not interested in the specific val-
ues of P{u}. Instead, consider an arbitrary but fixed
word t € T. Let us compare the probabilities of ¢ and
[';(t) for an arbitrary but fixed ¢. The claim here is anal-
ogous to Lemma 3.1, and we have, predictably:

Lemma 4.1 P{t} = P{L;(t)}

Proof. Again, we only need to show that the set of
people who seat themselves at random in ¢ and I';(¢),
for any fixed but arbitrary ¢, are the same. Equivalently,
we would like to be sure that people who haven’t lost
their boarding pass and have found their seats empty
in ¢, continue to find them in I';(¢). Note that the only
passengers involved in the exchange are the passengers
who happen to be occupying p;’s seat in ¢ (call him p,.),
and the hunderedth. The nth passenger walks in last,
so he cannot affect any choices before him. p, occupies
the nth passengers’ seat instead of p;’s, and we observe
that no choice for a word in T' can involve this seat. So
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the only person robbed of his seat is the last passenger,
who does not make a choice anyway. This concludes the
proof. [

Now, suppose the cardinality of U is (k + 1)h. (The car-
dinality is a multiple of (k+ 1) since, by defining subsets
T and F;,i = 1,2,... ,k, we effectively partitioned U
into (k + 1) disjoint subsets of equal sizes). Every word
in U represents an event, and the union of all events in
U denotes the certain event, since we defined U to be
the set of all valid words. Thus the sum of probabilities
of all these events is one.

doPfup+> > Plup =1

ueT Jj=1 uekF;

However, note that every word uw € F can be written
as I';(t) for any ¢ and some word ¢ € T'; and since the
mapping is bijective, we have

S Pluy =3 Pl

ueT ueF;

for any i — and it follows that:

> P{uy=1/(k+1)

ueT

and this sum represents the union of all events in 7', i.e.,
the event that the last passenger finds his seat.

Thus we have actually proved the following:

THEOREM 4.1 The probability that the last passenger
finds his seat when the first k passengers seat themselves
at random is 1/(k + 1).

Now let us explore another possibility, that of getting
a computer do the work. Trying to get your computer
to output one specific valid seating arrangement is not
very difficult.

The probability that
the last passenger
finds his seat when
the first k
passengers seat
themselves at
random is 1/(k+1).
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2lnl={1,2,..,n}

3 This is done in the order that
the passengers arrive, so for the
purposes of the present discus-
sion we agree that passenger p;
arrives at time .

4Here we assume, without loss
of generality, that I1(x) gener-
ates a random number between
0 and x—1, instead of generating
one between 1 and x.

A particular seating arrangement may be viewed as a
permutation of the set [n] 2. The algorithm will attempt
to assign people to seats®, either at random or otherwise,
depending on whether the seat designated to the passen-
ger in question is empty or not. To begin with, no as-
signments are made, and the first assignment is made at
random with each seat having an equal chance of being
assigned to p;. At any given point of time, the algo-
rithm keeps track of all the seats which are filled. This
includes (recall from Observation 3.1) seats between 2
and 71— 1. It also either includes the seat belonging to p;,
or it does not — in case it is the latter, the algorithm sim-
ply associates p; with his rightful seat, and if not, then
a random assignment is made. Also note that if, at any
point of time, a random assignment involves passenger
p; being given pi’s seat, then the algorithm terminates
after giving all passengers p;, j > ¢ their own seats.

1. Let x,1i,7,r, k, A[n] be local variables.

2. Initialize z to 0 and all elements of A[i] to —1.
3. Get values of n, k from the user.

4. Repeat steps b — 8 while z < n.

5. If {x = 0}, then:

(a) Store II(n) in r. *
(b) Alr] ==

6. Else if {(A[z] = —1)(« > k}, then:
Alx|=x; (52, Pz)

7. Else:

(b) j=0
(c) for{i=0,i <n,i=1i+1}
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o if{(Ali] = -1)N(j <=1} j=i+1.
e else if{j = r}, then skip loop and go to

(d).
e clse return to loop (c).
(d) Ali] ==
8. x=x+1

9. Increment all array elements and array indices by
one, and print both sets of values.

In the algorithm above, the contents of the array A cor-
respond to various p;’s, i.e., the ith element of A corre-
sponds to the person occupying s;, the ith passenger’s
seat. Step 6 of the algorithm corresponds to the situ-
ation where p, walks in to find s, unoccupied. In the
first case under the loop 7(c¢), Ali] = —1 indicates an
empty seat, and since we are looking for the II(n —z) th
empty seat, we increment j only as long as both condi-
tions hold. In the second case, the rth empty seat has
been found, so we terminate the search there. The rest
of the algorithm is self-explanatory.

This algorithm is going to give us one among the possible
Ty combinations corresponding to (n,k). We make a
couple of remarks before we conclude the discussion of
simulating the problem on a computer:

Remark 4.1 The algorithm above can be modified so that
instead of generating random numbers using an in-built
library function, the user can enter a seat number of his
choice. We omit the details since the modification is
trivial. Do not forget to account for the user entering,
inadvertently or otherwise, a number that does not lie
in the valid range!

Remark 4.2 Running the algorithm repeatedly may not
give an accurate approximation of the ratio that was
proposed in the conjecture. These statistics should not
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be used for drawing conclusions because they depend on
how II(z) is designed, and may not always lead to the
proposed probability.

5. A Different Seat Game

We pose one last set of questions on the scenario of the
first k passengers losing their boarding passes:

1. What are the chances of the last k passengers find-
ing their own seats if k < [n/2]7

2. What are the chances of the last n — k passengers
finding their own seats if k > [n/2]?

The second question is much less exciting than it might
look. The k passengers can leave n — k empty seats in
(,") ways. Precisely one of these combinations, {k +
1,k+2,... ,n}, will give us the required situation, viz.,
the last (n — k) passengers occupying their own seats.
Thus the required probability is given by 1/(,,” ), which
amounts to:

0

T (n+)

i=k—1

The first question, however, is not so straightforward.
This is because when k < |[n/2], there will be a few
passengers who come after the first & and before the
last n — k. In the second question, the set of these
passengers is a null set, which simplifies matters a great
deal. Now, this non-empty set will create a chaos of new
combinations, all of which need to be accounted for to
get to the correct answer. One more time, the reader is
welcome to give the problem a try.

Also, what if the k& passengers who lost their boarding
passes refuse to line up, so that, instead of the first k
passengers, we are dealing with k arbitrary passengers
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having lost their passes? Would the last passenger’s
chances be affected? How would the algorithm change?

It is now finally time to say good bye to the friendly
neighborhood airport, and the notorious plane. The
problem of the misplaced boarding passes can be ex-
tended a great deal, as indicated above. We may also
wonder:

1. What is the probability that, five minutes after
takeoff, the last passenger discovers he’s boarded
the wrong plane?

2. What is the probability that the plane will run out
of fuel mid-air?

3. Where did all the boarding passes go?

We leave the answers to the reader’s imagination. May
you be blessed with many amnesiac co-passengers.
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Appendix

In this appendix, we get down to pen and paper mode to calculate the number
of possible seating arrangements in a 100-seater plane, i.e., the case of n = 100
and k = 1.

We begin by introducing some notation. Let s; refer to seat number i, and,
along the same lines, let p; refer to the jth passenger. Also, let N(s;,p;) denote
the number of possible arrangements allowed by the axioms for a fixed i-j pair,
of course, i € {1,2,3,...,100} and , j € {1,2,3,...,100}. This corresponds
to the number of ways in which the 'remaining non-j’ passengers can choose
seats for themselves given that p; has occupied s;. It is important to see that
evaluating this expression may not always be a straightforward exercise. For
instance, N (s1,p1) is clearly 1, but it is not so easy to determine N (sgg, p2)-

Our aim will be to make clever selections of pairs of numbers, (i,7) so that we
accomplish two things at the same time - first, we account for all possibilities,
and second, we ensure that the computation of the sequence of numbers N (s;, p;)
does not get too involved.

We have, trivially, N(s1,p1) = 1 and N(s2,p1) = 1. Also, the reader should be
able to verify that we exhaust all possible seating arrangements when we consider
nn

N(s1,p;),i € {1,2,...,100.}
and it follows that the total number of seating arrangements is given by:

100

ZN(sl,pi).

To evaluate N (sq,p3), we need to observe that psz will occupy sy, i.e., a seat
other than his own iff s3, his own seat, is occupied. Due to assumption (1) in
Section 1, we see that only two people can occupy s3, namely p; and py. Again,
p2 will occupy s3, a seat other than his own, iff sy is occupied, and this can
only correspond to (sg,p1). Thus, N(s1,p3) is Z?:l N (s1,pi) = 2. Similarly, for
evaluating N (s1,p4), we observe that p, will choose to occupy s; iff he finds his
seat occupied, and only three people could have been the required occupant. Thus
we will need to find the number of ways in which p3 can find his seat occupied,
and this will correspond to p3 occupying s4; the number of ways in which py can
find his seat occupied, and this will correspond to ps occupying s4; and finally, the
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number of ways in which p; can find his seat occupied, and this will correspond
to p1 occupying s4. The total number therefore amounts to 1 +1+2 = 4. In
general, as the reader may have deduced by now, we have:

k—1
N(Shpk) = ZN(SLM)-
i=1

This definition is recursive. In the following calculation, we repeatedly use the

result:
k
L+ ) 20 =27
=0
Observe that:
N(Shpl) = 1
N(Shpz) =1= 2¢
N (s1,p3) =1+20= 2"
N (s1,p4) =1+204+92 = 22
N (s1,ps) =1+4+204921 4922 = 23
N(s1,p) =1+ 302 = 2k=2

N(s1,pio0) =1+ 31007220 = 2100-2 — 9%
(1)

Now all that remains to be seen is which combinations correspond to (si, pigo)
and which correspond to (s190, P100), since we have already seen that every combi-
nation corresponds to one of these two situations. Observe that when (s1, pg) (for
k # 100), then (s;,p;) for i € {k+1,k+2,...,100}. Therefore, N(s1,p;) Vi €
{1,2,...,99} would give the total number of combinations such that (s199, p100)
and N (s1,p1oo) corresponds to the case of (s1,p109). Actual calculation tells us

that
99

ZN(ShPi):1+20+23+---+297:298 (1a)
=1

N (s1,p100) = 2% (1b)

Thus there are 2°% valid combinations!
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