
Imbalance is Fixed Parameter Tractable

Daniel Lokshtanov1, Neeldhara Misra2, Saket Saurabh2

1 Department of Informatics, University of Bergen, Norway.
daniello@ii.uib.no

2 Institute of Mathematical Sciences, Chennai, India.
{neeldhara|saket}@imsc.res.in

Abstract. In the Imbalance Minimization problem we are given a
graph G = (V, E) and an integer b and asked whether there is an ordering
v1 . . . vn of V such that the sum of the imbalance of all the vertices is
at most b. The imbalance of a vertex vi is the absolute value of the
difference between the number of neighbors to the left and right of vi. The
problem is also known as the Balanced Vertex Ordering problem
and it finds many applications in graph drawing. We show that this
problem is fixed parameter tractable and provide an algorithm that runs
in time 2O(b log b) · nO(1). This resolves an open problem of Kára et al.
[COCOON 2005].

1 Introduction

Graph layout problems are combinatorial optimization problems where
the objective is to to find a permutation of the vertex set that optimizes
some function of interest. In this paper we focus on the problem of de-
termining the imbalance of a given graph. Given a permutation v1 . . . vn
on the vertex set we define the left and right neighborhood of vi to be
NL(vi) = N(vi)∩{v1 . . . vi−1} and NR(vi) = N(vi)∩{vi+1 . . . vn} respec-
tively. The imbalance of vi is ||NL(vi)|−|NR(vi)|| and the imbalance of the
graph G given the ordering v1 . . . vn is simply the sum of the imbalances
of the individual vertices. The imbalance of G is the minimum imbalance
of G over all orderings of V , and an ordering yielding this imbalance is
called an optimal ordering.

The Imbalance Minimization problem was first defined by Biedl et
al. [2]. Here, we are given a graph G = (V,E) on n vertices and m edges
and an integer b and asked whether the imbalance of G is at most b. The
problem finds a variety of applications in graph drawing [9, 10, 16, 19, 20].
The computational aspects of graph imbalance were studied by Biedl et
al. [2], who show that computing the imbalance of G is NP-hard. Later
Kára et al. [11, 12] proved that in fact the problem remains NP-hard for
planar graphs with maximum degree six and for 5-regular graphs. In the

2 Lokshtanov, Misra, Saurabh

same paper Kára et al. [11, 12] showed that for every fixed value of b
the problem can be solved in time O(nb(n+m)). They ask whether it is
possible to give an algorithm for Imbalance Minimization such that
the exponent of n is independent of b. More specifically, they ask for the
existence of a fixed parameter tractable algorithm which is an algorithm
with running time f(b) · nO(1) for some function f depending only on b.
Parameterized Complexity provides a framework for the study of such
algorithms. We refer to [6, 7, 15] for an introduction to parameterized
algorithms. Subsequently the problem was studied by Gaspers et al. [8]
who prove that Imbalance Minimization in fact is equivalent to Graph
Cleaning. Gaspers et al. [8] use this equivalence to obtain an algorithm
to check whether the input graph G has imbalance at most b running in
time O(nbb/2c(n+m)).

In this paper we provide an algorithm running in time bO(b) · nO(1),
thereby improving the previous best algorithm by Gaspers et al. [8] run-
ning in time O(nbb/2c(n+m)) and resolving the question posed by Kára et
al [11, 12]. Whereas the previous algorithms are purely combinatorial, we
exploit a connection between the imbalance, cutwidth and treewidth of
the input graph and combine this with a dynamic programming approach.
On the way we prove that given a graph G with treewidth at most t and
maximum degree ∆ an optimal ordering of G can be computed in time
t! · ∆O(t) · nO(1). This shows that the Imbalance Minimization prob-
lem is fixed parameter tractable when parameterized by the treewidth
and maximum degree of the input graph. This is in stark contrast to the
seemingly similar Cutwidth Minimization problem for which only an
O(nt

2∆) time algorithm is known [18].

2 Preliminaries

We use G = (V,E) to refer to a graph with vertex set V (with n :=
|V |), and T = (VT , F) to denote trees on the vertex set VT , with one
distinguished vertex r ∈ VT called the root of the tree. The vertices of
the tree T will be called nodes. For a tree node t ∈ VT , use the notation
Tt to mean the set of all vertices t′ ∈ T that are descendants of t.

A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V and E′ ⊆ E. The
subgraph G′ is called an induced subgraph of G if E′ = {uv ∈ E | u, v ∈
V ′}, in this case, G′ is also called the subgraph induced by V ′ and denoted
with G[V ′]. By N(u) we denote the (open) neighborhood of u, that is the
set of all vertices adjacent to u, and by N [u] = N(u) ∪ {u}. By degree of
a vertex u we mean |N(u)| and denote it by d(u).

Imbalance is Fixed Parameter Tractable 3

We use [n] to refer to the set {1, 2, . . . , n}. In the interest of simplicity,
we let V = [n] (we will continue to use u, v and so on to denote vertices).
Further, if π is a permutation of the vertex set, we define the left and
right neighborhoods of v, respectively, as:

Nl(v, π) := N(v) ∩ {u ∈ V | π(u) < π(v)}
Nr(v, π) := N(v) ∩ {u ∈ V | π(u) > π(v)}

Definition 1. (Imbalance of G with respect to π.) Given a graph G =
(V,E) and a permutation π : V → V , the imbalance of G with respect to
π, I(G, π), is given by

I(G, π) :=
∑
v∈V
||Nl(v, π)| − |Nr(v, π)||.

Definition 2. (Imbalance of G) Given a graph G = (V,E) the imbalance
of G, I(G), is given by

I(G) := minπ{I(G, π)}

The treewidth of a graph G is one of the most frequently used struc-
tural parameters used to examine the complexity of a problem. The def-
inition is motivated by the desire to identify small separating sets in
arbitrary graphs. We now describe the formal definition of the treewidth
of G.

Definition 3. (Treewidth) A tree decomposition of a graph G = (V,E)
is a pair (T, (Bt)t∈T), where T = (VT , F) is a tree and (Bt)t∈T is a family
of subsets of V such that:

1. ∪t∈VT
Bt = V

2. For every edge {v, w} ∈ E, there is a t ∈ VT such that v, w ∈ Bt.
3. For every v ∈ V , the set B−1(v) := {t ∈ VT |v ∈ Bt} is nonempty and

connected in T .

The width of the decomposition (T, (Bt)t∈T) is the number

max{|Bt| | t ∈ VT } − 1.

The treewidth tw(G) of G is the minimum of the widths of the tree de-
compositions of G.

4 Lokshtanov, Misra, Saurabh

If in the definitions of a tree decomposition and treewidth we restrict
T to be a path, then we have the definitions of path decomposition and
pathwidth. We use the notation tw(G) and pw(G) to denote the treewidth
and the pathwidth of a graph G.

For our results, we enhance the definition of a tree decomposition
(T, (Bt)t∈T), as follows: T is a tree rooted on some node r where Br = ∅,
each of its nodes have at most two children and could be one of the
following

1. Introduce node: a node t that has only one child t′ where Bt ⊃ Bt′
and |Bt| = |Bt′ |+ 1.

2. Forget node: a node t that has only one child t′ where Bt ⊂ Bt′ and
|Bt| = |Bt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Bt = Bt1 =
Bt2 .

4. Base node: a node t that is a leaf of T , is different than the root,
and Bt = ∅.

Notice that, according to the above definitions, the root r of T is
either a forget or a join node. It is known that any tree decomposition
can be transformed to one with the above requirements while maintaining
the same width (see e.g. [5, 3]). From now on, when we refer to a tree
decomposition (T, (Bt)t∈T) we presume the above requirements.

Given a tree decomposition (T, (Bt)t∈T) and some node t of VT , we
define as Tt = (Vt, Et) the subtree of T rooted at t. Clearly, if r is the
root of T , it holds that Tr = T . We also define Gt = G[∪s∈VtBt].

The problem Tree-Width of deciding whether a graph has treewidth
k is NP-complete. It is well known that the natural parameterization of
the problem is fixed-parameter tractable.

Tree-Width
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide if tw(G) = k.

For the purposes of our computation, we use an approximation al-
gorithm that is based on a connection between tree decompositions and
separators, and use a well known procedure for computing small sepa-
rators of a graph. We will see that this is enough to derive our main
fixed-parameter tractability result.

Proposition 1 ([1]). There is an algorithm that, given a graph G =
(V,E), computes a tree decomposition of G of width at most 3k + 1 in

Imbalance is Fixed Parameter Tractable 5

time
O(4k · k3.5 · n2).

Here k denotes the optimal treewidth, tw(G), of G.

In what follows, we first show that the problem of imbalance param-
eterized by the treewidth and the maximum degree of the input graph
is fixed-parameter tractable. Combining this with a few structural obser-
vations, we obtain the fixed-parameter tractability of the problem when
parameterized by the imbalance.

3 Imbalance parameterized by the treewidth and the
maximum degree

Given a graph G = (V,E), recall that we are interested in checking
whether G has imbalance at most b. Let (T, (Bt)t∈T) denote a tree de-
composition of the graph G of width k. We consider this problem param-
eterized by the treewidth and the maximum degree of of the graph, that
is:

Imbalance
Instance: A graph G, a tree-decomposition (T, (Bt)t∈T) of width k,

and a non-negative integer b.
Parameter: ∆(G), k

Problem: Decide if there exists a permutation π : V → V such that
I(G, π) ≤ b.

A positive answer to the question can be inferred using any permu-
tation π such that I(G, π) is at most b. If there is no such permutation,
then we conclude that the answer is in the negative. Therefore, we regard
a permutation π for which I(G, π) is at most b as a solution to Imbal-
ance. Let t ∈ Vt, Gt be the induced subgraph corresponding to Tt and
At be Vt \ Bt. Given a permutation π of the vertices of Bt, we define a
partial solution for the subgraph Gt to be a permutation on the vertex
set Vt which respects the ordering on the vertices of Bt given by π and
that minimizes the sum of imbalance of vertices in At. When we arrive
at the root r of the tree, it suffices to check if (one of) the solution(s)
computed at this node is a permutation π such that I(Gr, π) ≤ b, since
Vr = V .

We now precisely describe what we compute at every tree node t ∈ VT .
Let X denote the set {0, . . . ,∆(G)} ∪ {∞}. Given a set U ⊆ V of size q,

6 Lokshtanov, Misra, Saurabh

let SU denote all the bijections from [q] → U and GU denote the family
of functions {g | g : U → X}. We will use g to remember the number of
left neighbors of a vertex in the current tree bag. Now consider

F(U) = GU × SU ,

a family of (∆(G) + 2)qq! functions. Each (g, π) can be thought of as a
vector of length q with entries from X paired with a bijection π (which es-
sentially gives a permutation of the vertex set U). At node t, we compute,
for every element in F(Bt), an element of N – the set of natural numbers,
the latter being the partial imbalance given the restrictions encoded in
(g, π). We denote this value by ft(g, π).

We now describe how ft(g, π) is computed at the node t ∈ VT is com-
puted.

Base Nodes. To determine ft(g, π), simply check that the neighborhood
conditions imposed by g are respected by the function/permutation π. For
example, let π(i) = v. So the permutation π should place g(v) neighbors of
v to its left, and its remaining neighbors to the right. If the neighborhood
constraint is indeed respected, we let ft(g, π) = 0, otherwise set ft(g, π) =
∞.

Introduce Nodes. Let t be the index of the bag in which the vertex u is
introduced. Our goal is to compute ft(g, π) for all (g, π) ∈ F(Bt). Suppose
π : [|Bt| = q]→ Bt is a permutation of Bt. Let j denote π−1(u). Consider
π′ obtained from π as follows:

π′(i) =

{
π(i) if i < j,

π(i+ 1) if j ≤ i ≤ q − 1

Let the index of the child node of t be t′. Now consider g′ : Bt′ → X
obtained from g as follows:

g′(v) =

{
g(v) if v /∈ N(u) or π′−1(v) < j,

g(v)− 1 if otherwise ,

We set ft(g, π) = ft′(g′, π′).

Forget Nodes. Let t be the node where a vertex u is forgotten and let the
index of the child node of t be t′. Furthermore let |Bt| = q. To obtain

Imbalance is Fixed Parameter Tractable 7

ft(g, π) for all (g, π) ∈ F(Bt) we do the following. Consider π(j) : [q+1]→
Bt′ , j ∈ [q + 1], obtained from π as follows:

π(j)(i) =


π(i) if i < j,

u if i = j,

π(i− 1) if i > j.

Now consider g(s) : Bt′ → X, s ∈ [d(u)], obtained from g as follows:

g(s)(v) =

{
g(v) if v 6= u,

s if v = u,

We are now ready to determine ft(g, π). We set:

ft(g, π) = min
{
ft′(gs, πj) + |d(u)− gs(u)| | j ∈ [q + 1], s ∈ [d(u)]

}
.

Join Nodes Let the index of the join node be t, and the indices of its
children be t1 and t2. To determine ft(g, π), we do the following. Let
g1 : Bt1 → X and g1 : Bt2 → X. We let Q denote the collection of all pairs
(g1, g2) such that g1 ∈ GBt1

, g2 ∈ GBt2
and g1(v) + g2(v) = g(v), for all

v ∈ Bt. Note that Bt = Bt1 = Bt2 . Then set:

ft(g, π) = min
{
ft1(g1, π) + ft2(g2, π) | (g1, g2) ∈ X

}
.

This completes the description of how the entries T(t) are computed for
t ∈ VT . The correctness of the algorithm follows from the description and
the discussions preceding it. We check the unique entry corresponding to
T(r) and check if the entry corresponding to the imbalance is at most b.
If it is not so then there is indeed no permutation π such that I(G, π)
is bounded by b. If the answer is yes then one can construct in polyno-
mial time a permutation π of V such that I(G, π) ≤ b using standard
backtracking procedure.

Note that the time taken by the algorithm is proportional to the size
of the table stored at each node, time taken to fill the table entries and the
total number of nodes in the tree decomposition. The number of nodes in
T is known to be linear in the number of vertices of the input Each table is
of size at most (∆(G)+2)k+1(k+1)!. Each entry in the table can be filled
in (∆(G)2k+O(1)) (the join node could take this much amount of time).
Thus the time taken by the algorithm is, therefore, O(∆(G)O(k)k! · n).
This leads us to the following assertion:

8 Lokshtanov, Misra, Saurabh

Lemma 1. Given a graph G = (V,E) along with a tree decomposition
(T , (Bt)t∈T) of G with width at most k, we can, in time O(∆(G)O(k)k! ·
nO(1)) check if there exists a permutation π such that I(G, π) ≤ b.

4 Some Structural Observations

In this section, we establish that if the imbalance of a graph G is b, then
the treewidth of the graph is at most b/2. More, in fact, is true: we will
show that the imbalance of a graph is at least twice its pathwidth.

For our structural result we need an equivalent definition of pathwidth
in terms of vertex separators with respect to a linear ordering of the
vertices. Let G be a graph and let σ = v1v2 . . . vn be an ordering of V .
For j ∈ [n] put Vj = {vi : i ∈ [j]} and denote by ∂Vj all vertices of
Vj that have neighbors in V \ Vj . Furthermore define the set E(Vj) to be
the set of edges with one endpoint in Vj and the other in V \ Vj . Setting
vs(G, σ) = maxi∈[n] |∂Vi|, we define the vertex separation of G as

vs(G) = min{vs(G, σ) : σ is an ordering of V (G)}.

The following assertion is well-known. It follows directly from the
results of Kirousis and Papadimitriou [14] on interval width of a graph,
see also [13].

Proposition 2 ([13, 14]). For any graph G, vs(G) = pw(G).

We need one more graph parameter to establish our claims in this
section. To this end, we have the following definition. Given a graph
G = (V,E) and an ordering σ = v1 . . . vn of the vertices of G, we let
cw(G, σ) = maxi∈[n] |E(Vi)|. We define the cutwidth of the graph G as

cw(G) = min{cw(G, σ) : σ is an ordering of V (G)}.

From the definitions of vertex separation and cutwidth of the graph
G together with Proposition 2 we have the following observation.

Observation 1 For a graph G, pw(G) ≤ cw(G).

The main result of this section is following.

Lemma 2. Let G = (V,E) be a graph then

tw(G) ≤ pw(G) ≤ cw(G) ≤ I(G)
2

.

Furthermore ∆(G) ≤ I(G) where ∆(G) is the maximum degree of G and
I(G) is the value of minimum imbalance of G.

Imbalance is Fixed Parameter Tractable 9

Proof. Let σ = v1 . . . vn be an imbalance minimizing ordering of V . Define
the rank of a vertex v, r(v), to be |Nr(v, σ)|−|Nl(v, σ)|. Then it is easy to
observe that |E(Vj+1)| = |E(Vj)|+ r(vj+1). Expanding this one can show
that for any j ∈ [n− 1], |E(Vj+1)| =

∑
i r(vj+1).

Let π be the permutation that minimizes the imbalance of G. Now,
note that:

I(G) =
∑
v∈V
||Nl(v, π)| − |Nr(v, π)||.

Let j be the index at which the quantity |E(Vj)| is the maximum (with
respect to π). If there are multiple indices that witness this maximum,
then let j be the smallest among them. We may rewrite the sum above
as:

I(G) =
j∑
i=1

||Nl(π(i))− |Nr(π(i))||+
n∑

i=j+1

||Nl(π(i))| − |Nr(π(i))||.

Now we show that each of the summands above is at least the cutwidth
of the graph. Observe that:

j∑
i=1

||Nl(π(i))| − |Nr(π(i))|| ≥
j∑
i=1

rj = cw(G, π) ≥ cw(G).

Let π′ denote the permutation obtained by reversing π, that is, π′(i) =
π(n− i+ 1). Then we have,

n∑
i=j+1

||Nl(π(i))| − |Nr(π(i))|| =
n−j∑
i=1

||Nl(π′(i))| − |Nr(π′(i))||

≥
n−j∑
i=1

rj = cw(G, π′) ≥ cw(G).

This implies that tw(G) ≤ pw(G) ≤ cw(G) ≤ I(G)/2.
Now we show the upper bound on the maximum degree of the graph.

Note that it suffices to show that the maximum degree of the graph does
not exceed 2cw(G). Suppose not. Then there exists a vertex v such that
d(v) > 2cw(G). Consider the cutwidth minimizing permutation, and note
that the vertex v must have more than cw(G) neighbors to either it’s
right or left (possibly both, but this is the case at least in one direction).
The cut just after or before v, depending on whether v has more than
cw(G) neighbors to its left or right, is more than cw(G), and this is a
contradiction. This completes the proof of the lemma. ut

10 Lokshtanov, Misra, Saurabh

5 Imbalance as a parameter

We now consider the following problem:

Imbalance
Instance: A graph G and a non-negative integer b ∈ N.

Parameter: b.
Problem: Decide if there exists a permutation π : V → V such that

I(G, π) ≤ b.

We use the approximation algorithm provided by Proposition 1 to
check if the treewidth of the given graph is at most 1.5b + 1. If the al-
gorithm outputs no, we conclude, due to Lemma 2 that the imbalance of
the graph is more than b. Otherwise, we obtain a tree-decomposition of
width at most 1.5b+ 1. Using Lemma 1, we can now check if the imbal-
ance of G is at most b. Now using the bounds obtained in Lemma 2 we
conclude that this will require time bO(b)nO(1), which can be simplified to
2O(b log b)nO(1).

Theorem 1. Given a graph G = (V,E) and a non-negative integer b, we
can, in time 2O(b log b)nO(1) check if there exists a permutation π such that
I(G, π) is not more than b.

6 Conclusion

We have described an algorithm that checks, given a graph G and a non-
negative integer b, if there exists a permutation of V for which I(G, π) is at
most b. Further, whenever the answer is positive, (one of) the correspond-
ing permutation(s) can be computed. This is achieved in 2O(b log b)nO(1)

time. Whether the running time can be improved to 2O(b)nO(1), remains
open.

It is well-known that every problem that is FPT admits a kernel
(see [15] for definition). While graph layout problems such as Treewidth,
Pathwidth and Cutwidth are FPT [3, 5, 17] one can easily show using
recently developed machinery [4] that they are unlikely to admit polyno-
mial kernels. Giving such a lower bound for Imbalance seems non-trivial,
while a polynomial kernel for the problem would be the first such kernel
for a graph layout problem. We think that whether Imbalance admits
a polynomial kernel is an interesting open problem.

Imbalance is Fixed Parameter Tractable 11

References

1. E. Amir. Efficient approximation for triangulation of minimum treewidth. In UAI,
pages 7–15, 2001.

2. T. C. Biedl, T. M. Chan, Y. Ganjali, M. T. Hajiaghayi, and D. R. Wood. Balanced
vertex-orderings of graphs. Discrete Applied Mathematics, 148(1):27–48, 2005.

3. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

4. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems
without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009.

5. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

6. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

7. J. Flum and M. Grohe. Parameterized complexity theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

8. S. Gaspers, M.-E. Messinger, R. J. Nowakowski, and P. Pralat. Clean the graph
before you draw it! Inf. Process. Lett., 109(10):463–467, 2009.

9. G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16(1):4–32, 1996.

10. G. Kant and X. He. Regular edge labeling of 4-connected plane graphs and its
applications in graph drawing problems. Theor. Comput. Sci., 172(1-2):175–193,
1997.

11. J. Kára, J. Kratochv́ıl, and D. R. Wood. On the complexity of the balanced
vertex ordering problem. In COCOON, volume 3595 of Lecture Notes in Computer
Science, pages 849–858, 2005.

12. J. Kára, J. Kratochv́ıl, and D. R. Wood. On the complexity of the balanced vertex
ordering problem. Discrete Mathematics & Theoretical Computer Science, 9(1),
2007.

13. N. G. Kinnersley. The vertex separation number of a graph equals its path-width.
Inf. Process. Lett., 42(6):345–350, 1992.

14. L. M. Kirousis and C. H. Papadimitriou. Interval graphs and searching. Discrete
Mathematics, 55(2):181–184, 1985.

15. R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31 of Oxford Lec-
ture Series in Mathematics and its Applications. Oxford University Press, Oxford,
2006.

16. A. Papakostas and I. G. Tollis. Algorithms for area-efficient orthogonal drawings.
Comput. Geom., 9(1-2):83–110, 1998.

17. D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cutwidth i: A linear time fixed
parameter algorithm. J. Algorithms, 56(1):1–24, 2005.

18. D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cutwidth ii: Algorithms for
partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005.

19. D. R. Wood. Optimal three-dimensional orthogonal graph drawing in the general
position model. Theor. Comput. Sci., 1-3(299):151–178, 2003.

20. D. R. Wood. Minimising the number of bends and volume in 3-dimensional orthog-
onal graph drawings with a diagonal vertex layout. Algorithmica, 39(3):235–253,
2004.

