FPT Algorithms for Connected Feedback Vertex
Set

Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh*, and
Somnath Sikdar

The Institute of Mathematical Sciences, India.
{neeldhara|gphilip|vraman|saket|somnath}@imsc.res.in

Abstract. We study the recently introduced CONNECTED FEEDBACK
VERTEX SET (CFVS) problem from the view-point of parameterized
algorithms. CFVS is the connected variant of the classical FEEDBACK
VERTEX SET problem and is defined as follows: given a graph G = (V, E)
and an integer k, decide whether there exists F' C V, |F| < k, such that
G|V \ F] is a forest and G[F] is connected. We show that CONNECTED
FEEDBACK VERTEX SET can be solved in time O(2°®n°®)) on gen-
eral graphs and in time 0(2(3(\/Elog k)no(l)) on graphs excluding a fixed
graph H as a minor. Our result on general undirected graphs uses, as
a subroutine, a parameterized algorithm for GROUP STEINER TREE, a
well studied variant of STEINER TREE. We find the algorithm for GROUP
STEINER TREE of independent interest and believe that it could be useful
for obtaining parameterized algorithms for other connectivity problems.

1 Introduction

FEEDBACK VERTEX SET (FVS) is a classical NP-complete problem and has
been extensively studied in all subfields of algorithms and complexity. In this
problem we are given an undirected graph G = (V, E) and a positive integer k
as input, and the goal is to check whether there exists a subset F' C V of size at
most k such that G[V'\ F] is a forest. This problem originated in combinatorial
circuit design and found its way into diverse applications such as deadlock pre-
vention in operating systems, constraint satisfaction and Bayesian inference in
artificial intelligence. We refer to the survey by Festa, Pardalos and Resende [12]
for further details on the algorithmic study of feedback set problems in a vari-
ety of areas like approximation algorithms, linear programming and polyhedral
combinatorics.

In this paper we focus on the recently introduced connected variant of FEED-
BACK VERTEX SET, namely, CONNECTED FEEDBACK VERTEX SET (CFVS).
Here, given a graph G = (V, E) and a positive integer k, the objective is to check
whether there exists a vertex-subset F' of size at most k such that G[V \ F] is
a forest and G[F] is connected. Sitters and Grigoriev [21] recently introduced
this problem and obtained a polynomial time approximation scheme (PTAS) for

* This work was done while the author was at the University of Bergen, Norway.

2 Misra, Philip, Raman, Saurabh, and Sikdar

CFVS on planar graphs. We find it a bit surprising that the connected version
of FVS has not been studied in the literature until now. This is in complete
contrast to the fact that the connected variants of other problems, like VERTEX
COVER—CONNECTED VERTEX COVER, and DOMINATING SET—CONNECTED
DOMINATING SET are extremely well-studied in the literature (See, e.g, [17],
[14], respectively.). In this paper, we initiate the algorithmic study of CFVS
from the view-point of parameterized algorithms.

Parameterized complexity is a two-dimensional generalization of “P vs. NP”
where, in addition to the overall input size n, one studies how a secondary mea-
surement (called the parameter), that captures additional relevant information,
affects the computational complexity of the problem in question. Parameterized
decision problems are defined by specifying the input, the parameter, and the
question to be answered. The two-dimensional analogue of the class P is de-
cidability within a time bound of f(k)n¢, where n is the total input size, k is
the parameter, f is some computable function and c is a constant that does
not depend on k or n. A parameterized problem that can be decided in such a
time-bound is termed fized-parameter tractable (FPT). For general background
on the theory of fixed-parameter tractability, see, e.g, the textbook by Flum and
Grohe [13].

FVS has been extensively studied in the context of parameterized algorithms.
The earliest known FPT algorithms for FVS go back to the early 90’s (e.g, [2]).
After several rounds of improvements, the current best FPT algorithm for FVS
runs in time O(5¥kn?) [5].

In this paper, we show that CFVS can be solved in time O(2°®)n°1)) on
general graphs and in time 0(20(\%10,«; K)nOM) on graphs excluding a fixed graph
H as a minor. Most of the known FPT algorithms for connectivity problems
enumerate all minimal solutions and then try to connect each solution using an
algorithm for the STEINER TREE problem. For instance, this is the case with the
existing FPT algorithms for CONNECTED VERTEX COVER(e.g, [17]). The crucial
observation which the algorithms for CONNECTED VERTEX COVER rely on is
that there are at most 2¥ minimal vertex covers of size at most k. However, this
approach fails for CFVS as the number of minimal feedback vertex sets of size at
most k is £2(n*) (consider a graph that is a collection of k vertex-disjoint cycles
each of length approximately n/k). To circumvent this problem, we make use
of “compact representations” of feedback vertex sets. A compact representation
is simply a collection of families of mutually disjoint sets, where each family
represents a number of different feedback vertex sets. This notion was defined
by Guo et al. [16] who showed that the set of all minimal feedback vertex sets of
size at most k can be represented by a collection of set-families of size O(2°0)).

We use compact representations to obtain an FPT algorithm for CFVS in
Section 3. In order to do this we need an FPT algorithm for a general version
of STEINER TREE, namely GROUP STEINER TREE (GST), which is defined as
follows: Given a graph G = (V, E);|V| = n,|E| = m, subsets T; CV, 1 <i </,
and an integer p, does there exist a subgraph of G on p vertices that is a tree T’
and includes at least one vertex from each T;?7 Observe that when the T;’s are

FPT Algorithms for CFVS 3

each of size one, then GST is the STEINER TREE problem. Our FPT algorithm for
GST runs in polynomial space and uses a Turing-reduction to a directed version
of STEINER TREE, called DIRECTED STEINER OUT-TREE, which we show to
be fixed-parameter tractable. We note that GST is known to be of interest to
database theorists, and that it has been studied in [10], where an algorithm with
running time O(3' - n + 2! - (n +m)) (that uses exponential space) is discussed.

We also show that CFVS does not admit a polynomial kernel (See Section 2)
on general graphs but has a quadratic kernel on the class of graphs that exclude
a fixed graph H as minor. Finally, in Section 4 we design a subexponential-time
algorithm for CFVS on graphs excluding some fixed graph H as a minor using the
theory of bidimensionality. This algorithm is obtained using an O* (w®))-time
algorithm that computes an optimal connected feedback vertex set in graphs of
treewidth at most w.

2 Preliminaries

In this section we state some basic definitions related to parameterized complex-
ity and graph theory, and give an overview of the notation used in this paper. To
describe running times of algorithms we sometimes use the O* notation. Given
f N = N, we define O*(f(n)) to be O(f(n) - p(n)), where p(-) is some poly-
nomial function. That is, the O* notation suppresses polynomial factors in the
running-time expression.

A parameterized problem I7 is a subset of I'™* x N, where I is a finite alpha-
bet. An instance of a parameterized problem is a tuple (z, k), where k is called
the parameter. A central notion in parameterized complexity is fized-parameter
tractability (FPT) which means, for a given instance (x, k), decidability in time
f(k) - p(|x|), where f is an arbitrary function of k£ and p is a polynomial in the
input size. The notion of kernelization is formally defined as follows.

Definition 1. [Kernelization] [13, 20/

A kernelization algorithm for a parameterized problem II C I'* x N is an
algorithm that, given (z,k) € I'* x N, outputs, in time polynomial in x|+ k, a
pair (2, k") € T'* x N such that (a) (z,k) € IT if and only if (', k") € II and
(b) |2'|, k' < g(k), where g is some computable function. The output instance x’
1s called the kernel, and the function g is referred to as the size of the kernel. If
g(k) = kW) (resp. g(k) = O(k)) then we say that IT admits a polynomial (resp.
linear) kernel.

We say that a graph G (undirected or directed) contains a graph H if H
is a subgraph of G. Given a directed graph (digraph) D = (V, A), we let V(D)
and A(D) denote the vertex and arc set of D, respectively. A vertex u € V(D)
is an in-neighbor (out-neighbor) of v € V(D) if wv € A (vu € A, respectively).
The in- and out-neighborhood of a vertex v are denoted by N~ (v) and NT(v),
respectively. The in-degree d~ (v) (resp. out-degree d™(v)) of a vertex v is [N~ (v)|
(resp. [N T (v)]). We say that a subdigraph T of D with vertex set Vpr C V(D) is
an out-tree if T is an oriented tree (see [1]) with only one vertex r of in-degree

4 Misra, Philip, Raman, Saurabh, and Sikdar

zero (called the root). The vertices of T of out-degree zero are called leaves and
every other vertex is called an internal vertez.

3 Connected Feedback Vertex in General Graphs

In this section we give an FPT algorithm for CFVS on general graphs. We start
by describing an FPT algorithm for the GROUP STEINER TREE problem which
is crucially used in our algorithm for CFVS.

3.1 Group Steiner Tree

The GROUP STEINER TREE (GST) problem is defined as follows:

Input: An undirected graph G = (V| E); vertex-disjoint subsets
S1,...,5, CV; and an integer p.

Parameter: The integer .

Question: Does G contain a tree on at most p vertices that includes at

least one vertex from each S;?

Our fixed-parameter algorithm for GST first reduces it to DIRECTED STEINER
OUT-TREE (defined below) which we then show to be fixed-parameter tractable.

Input: A directed graph D = (V, A); a distinguished vertex r € V; a
set of terminals S C V; and an integer p.

Parameter: ~ The integer [= |S].

Question: Does D contain an out-tree on at most p vertices that is rooted
at r and that contains all the vertices of S?

Lemma 1. The GST problem Turing-reduces to the DIRECTED STEINER OUT-
TREE problem.

Proof. Given an instance (G = (V, E), S1,...,51,p) of GST, construct an in-
stance of DIRECTED STEINER OUT-TREE as follows. Let S = {s1,52,...,8}
be a set of I new vertices, that is, s; ¢ V for 1 < i <. Let V/ = V U S and
A = {uv,vu : {u,v} € E} U Uézl{xsi :x € S;}. Finally, let D = (V/, A). Tt is
easy to see that GG contains a tree on at most p vertices that includes at least one
vertex from each S; if and only if there exists a vertex r € V/ and an out-tree in
D rooted at r on at most p + [vertices containing all vertices of S. O

Lemma 2. DIRECTED STEINER OUT-TREE can be solved in O(2'-n°M) time
using polynomial space.

Nederlof [19] uses the Inclusion-Exclusion Principle and a notion of branch-

ing walks to give an algorithm for the STEINER TREE problem that runs in

O(2' - n°M) time using polynomial space, where [is the number of terminals.

Essentially the same algorithm works for DIRECTED STEINER OUT-TREE, with

the same resource bounds; we omit the details due to space constraints.
Lemmas 1 and 2 together imply:

FPT Algorithms for CFVS 5

Lemma 3. The GROUP STEINER TREE problem can be solved in O(2!-n©1))
time using polynomial space.

3.2 An FPT Algorithm for CFVS

Our FPT algorithm for CFVS uses as a subroutine an algorithm (due to Guo et
al. [16]) for enumerating an efficient representation of minimal feedback vertex
sets of size at most k. Strictly speaking, the subroutine enumerates all compact
representations of minimal feedback sets. A compact representation for a set of
minimal feedback sets of a graph G = (V| E) is a set C of pairwise disjoint subsets
of V such that choosing exactly one vertex from every set in C results in a minimal
feedback set for G. Call a compact representation a k-compact representation if
the number of sets in the representation is at most k. Clearly, any connected
feedback set of size at most k must necessarily pick vertices from the sets of
some k-compact representation. Given a graph G = (V, E) and a k-compact
representation Si, ..., S,, where r < k, the problem of deciding whether there
exists a connected feedback vertex set that contains at least one vertex from
each set S; reduces to the GROUP STEINER TREE problem where the Steiner
groups are the sets of the compact representation.

Our algorithm therefore cycles through all k-compact representations and for
each such representation uses the algorithm for GROUP STEINER TREE to check
if there is a tree on at most k vertices that includes one vertex from each set S; of
the compact representation. If the answer is NO for all k-compact representations,
the algorithm reports that the given instance is a NO-instance. If the answer is
YES for some compact representation, the algorithm returns the tree found. Since
one can enumerate all compact representations in time O(c* - m) [16], we have:

Theorem 1. Given a graph G = (V,E) and an integer k, one can decide
whether G has a connected feedback set of size at most k in time O(c* - n®M),
for some constant c.

Although CFVS is fixed-parameter tractable, it is unlikely to admit a poly-
nomial kernel as the following theorem shows. This is in contrast to FEEDBACK
VERTEX SET which admits a quadratic kernel [22].

Theorem 2. The CFVS problem does not admit a polynomial kernel unless the
Polynomial Hierarchy collapses to Xs.

Proof. The proof follows from a polynomial-time parameter-preserving reduction
from CONNECTED VERTEX COVER, which does not admit a polynomial kernel
unless the Polynomial Hierarchy collapses to the third level [11]. This would
prove that CFV'S too does not admit a polynomial kernel [4]. Given an instance
(G = (V,E), k) of the CONNECTED VERTEX COVER problem, construct a new
graph G’ as follows: V(G') = V(G) U{zu ¢ V(G) : {u,v} € E(GQ)}; if {u,v} €
E(G) then add the edges {u, v}, {v, Ty}, {Tuv, v} to E(G’). This completes the
construction of G’. It is easy to see that G has a connected vertex cover of size
at most k if and only if G’ has a connected feedback vertex set of size at most
k. This completes the proof of the theorem. a

6 Misra, Philip, Raman, Saurabh, and Sikdar

Interestingly, the results from [15] imply that CFVS has polynomial kernel
on a graph class C which excludes a fixed graph H as a minor(See Section 4.1).

We note in passing that the algorithm for enumerating compact representa-
tions can be improved using results from [6]. The authors of [6] describe a set of
reduction rules such that if a YES-instance of the FOREST BIPARTITION problem
(defined below) is reduced with respect to this set of rules then the instance has
size at most 5k + 1.

FOREST BIPARTITION

Input: An undirected graph G = (V, E), possibly with multiple edges
and loops and a set S C V such that |[S|=k+1and G\ S is
acyclic.

Parameter: The integer k.

Question: Does G have a feedback vertex set of size at most k contained
in V\S?

Thus in a YES-instance of FOREST BIPARTITION that is reduced with respect to
the rules in [6], we have |V'\ S| < 4k. Using this bound in the algorithm described
by Guo et al. [16], one obtains a O*(c¥)-time algorithm for enumerating compact
representations of minimal feedback vertex sets of size at most k, where ¢ = 52.
The constant ¢ in [16] is more than 160.

Theorem 3. [6,16] Given a graph G = (V, E) and an integer k, the compact
representations of all minimal feedback vertex sets of G of size at most k can be
enumerated in time O(52% - |E)).

4 A Subexponential FPT Algorithm for CFVS on
H-Minor-Free Graphs

In the last section, we obtained an O*(c*) algorithm for CFVS on general graphs.
In this section we show that CFVS on the class of H-minor-free graphs admits
a sub-exponential time algorithm with running time O(20(V¥logk),0(1)) Thig
section is divided into three parts. In the first part we give essential definitions
from topological graph theory, and in the second part we show that CFVS can
be solved in time O(w®™)n®M)) on graphs with treewidth bounded by w. In
the last part we present an algorithm with the stated running time for CFVS on
H-minor-free graphs, by bounding the treewidth of the input graph using the
known “grid theorems”.

4.1 Definitions and Terminology

We use terminology from [9]. Given an edge e in a graph G, the contraction of
e is the result of identifying its endpoints in G' and then removing all loops and
duplicate edges. A minor of a graph G is a graph H that can be obtained from
a subgraph of G by contracting edges. A graph class C is minor-closed if any

FPT Algorithms for CFVS 7

minor of any graph in C is also an element of C. A minor-closed graph class C is
H-minor-free or simply H-free if H ¢ C.

A tree decomposition of a graph G = (V| E) is a pair (T = (Vr,Er), X =
{Xi}tevy) where T is a tree and the X are subsets of V' such that:

1. UuEVT Xt = V,
2. for each edge e = {u,v} € E there exists t € Vi such that u,v € X;; and
3. for each vertex v € V, the subgraph T[{t | v € X;}| is connected.

The width of a tree decomposition is maxicv, | X¢| — 1 and the treewidth of
G = (V, E), denoted tw(G), is the minimum width over all tree decompositions
of G.

A tree decomposition is called a nice tree decomposition [3] if the following
conditions are satisfied:

— Every node of the tree T has at most two children. A node that has no
children is called a leaf node. The non-leaf nodes are of three kinds:
e If a node ¢t has two children ¢; and to, then X; = X3, = Xy, and ¢ is
called a join node.
e if a node t has one child ¢, then either | X;| = |X;,| +1 and X;, C X,
(t is called an introduce node), or |X;| = |X¢| — 1 and Xy C Xy, (¢ is
called a forget node).

It is possible to transform a given tree decomposition into a nice tree decompo-
sition in time O(|V| + |E]) [3].

4.2 Connected FVS and Treewidth

In this section we show that the CONNECTED FEEDBACK VERTEX SET problem
is FPT with the treewidth of the input graph as the parameter. That is, we show
that the following problem is FPT:

Input: An undirected graph G = (V, E); an integer k; and a nice tree
decomposition of G of width w.

Parameter: The treewidth w of the graph G.

Question: Does there exist S C V such that G \ S is acyclic, G[5] is
connected, and |S| < k7

We design a dynamic programming algorithm on the nice tree decomposition
with running time O(w®™) - n®®M)) for this problem. See, e.g, Moser [18] for
a detailed exposition of this paradigm; in particular, our algorithm is similar
in spirit to the algorithm given in [18] for the CONNECTED VERTEX COVER
problem.

Let (T = (I, F),{X;|i € I}) be a nice tree decomposition of the input graph
G of width w and rooted at r € I. We let T; denote the subtree of T rooted at
i €I, and G; = (V;, E;) denote the subgraph of G induced on all the vertices of
G in the subtree T, that is, G; = G[U;cy (1,) Xj1-

8 Misra, Philip, Raman, Saurabh, and Sikdar

For each node i € I we compute a table A;, the rows of which are 4-tuples
[S, P, Y, val]. Table A; contains one row for each combination of the first three
components which denote the following:

— S is a subset of Xj.
— P is a partition of S into at most | S| labelled pieces.
— Y is a partition of X; \ S into at most |X; \ S| labelled pieces.

We use P(v) (resp. Y (v)) to denote the piece of the partition P (resp. Y) that
contains the vertex v. We let |P| (resp. |Y|) denote the number of pieces in the
partition P (resp. Y). The last component val, also denoted as A; [S, P,Y], is
the size of a smallest feedback vertex set F; C V (G;) of G; which satisfies the
following properties:

— If S =0, then Fj is connected in G;.
— If S # 0, then

e F,NX,=S.

e All vertices of S that are in any one piece of P are in a single con-
nected component of G;[F;]. Moreover G;[F;] has exactly |P| connected
components.

o All vertices of X; \ S that are in the same piece of Y are in a single
connected component (a tree) of G;[V; \ F;]. Moreover G;[V; \ F;] has at
least |Y| connected components.

If there is no such set Fj;, then the last component of the row is set to oo.

We fix an arbitrary ordering of the vertices of X;, and compute the table A;
for each node i € I of the tree decomposition. Since there are at most w + 1
vertices in each bag X;, there are no more than

w+1 w41 .)
i=0 !

rows in any table A;. We compute the tables A; starting from the leaf nodes of

the tree decomposition and going up to the root.

Leaf Nodes. Let i be a leaf node of the tree decomposition. We compute the
table A; as follows. For each triple (S, P,Y) where S is a subset of X;, P a
partition of S, and Y a partition of X; \ S:

— Set A; [S, P,Y] = oo if at least one of the following holds:
e G;\ S contains a cycle (i.e., S is not an FVS of G;).
e At least one piece of P is not connected in G;[S] or if G;[S] has less
than |S| connected components.
o At least one piece of Y is not connected in G;[V; \] or if G;[V; \ S]
has less than |Y| connected components.
— In all other cases, set A; [S, P, Y] =S|
It is easy to see that this computation correctly determines the last compo-
nent of each row of A; for a leaf node 7 of the tree decomposition.

FPT Algorithms for CFVS 9

Introduce Nodes. Let ¢ be an introduce node and j its unique child. Let x €
X, \ X; be the introduced vertex. For each triple (S, P,Y), we compute the
entry A;[S, P,Y] as follows.

Case 1. 2 € S. Check whether N(z) NS C P(z); if not, set A;[S, P,Y] = cc.
— Subcase 1. P(z) = {z}. Set A4;[S, P, Y] = A;[S\ {z}, P\ P(x), Y]+ 1.
— Subcase 2: |P(z)| > 2 and N(z) N P(x) = 0. Set A;[S, P,Y] = oo, as no

extension of S to an fvs for G; can make P(z) connected.
— Subcase 3: |P(z)| > 2 and N(z) N P(z) # (. Let A be the set of all rows
[S’, P',Y] of the table A; that satisfy the following conditions:
o S' =S5\ {z}.
e P'=(P\ P(x))UQ, where @Q is a partition of P(z) \ {«} such that
each piece of () contains an element of N(z) N P(x).
Set Ai[S, P, Y] = min[srypzﬁy]eA{Aj [S/, P, Y]} + 1.

Case 2. ¢ ¢ S. Check whether N(z)N(X;\S) C Y (x); if not, set A;[S, P,Y] =
0.

— Subcase 1: Y (z) = {z}. Set A;[S,P,Y] = A;[S,P,Y \Y(x)].

— Subcase 2: |Y(z)| > 2 and N(z) NY (z) = 0. Set 4;[S, P,Y] = oo, as no
extension of S to an fvs F; for G; can make Y (z) a connected component
in G;[V; \ F3].

— Subcase 3: |Y(z)| > 2 and N(z)NY (z) # 0. Let A be the set of all rows
[S, P, Y] of the table A; where Y’ = (Y \ Y (2))UQ, and Q is a partition
of Y(z) \ {z} such that each piece of @) contains exactly one element of
N((E) n Y(l‘) Set Ai[S, P, Y] = min[s7p7y/]€A{Aj [S, P, YI]}

Forget Nodes. Let i be a forget node and j its unique child node. Let x €
X; \ X; be the forgotten vertex. For each triple (S, P,Y’) in the table A;, let
A be the set of all rows [S", P/, Y] of the table A; that satisfy the following
conditions:

- S =SU{z}, and

— P'(z) = P(y) U {x} for some y € S.

Let B be the set of all rows [S, P,Y’] of the table A; such that Y'(x) =
Y (z) U {x} for some z € S. Set

A;[S,P,Y] = min{ min A;[S,PY], min A;[S, P, Y’]} .
[S',PY]eA [S,P,Y'|eB
Join Nodes. Let ¢ be a join node and j and [its children. For each triple
(S, P,Y) we compute A;[S, P,Y] as follows.

— Case 1. S = 0. If both A;[0,P,Y] and A;[0,P,Y] are posi-
tive finite, then set A;[}, P,Y] = oo. Otherwise, set A;[0,P,Y] =
max{A4;[0, P,Y], A0, P, Y]}.

— Case 2. S # (. Let A denote the set of all pairs of triples
((S,P1,Y7), (S, P2,Y3)), where (S,P1,Y1) € A; and (S, P»,Ys) € A
with the following property: Starting with the partitions @, = P and
@y, = Y1 and repeatedly applying the following set of operations, we
reach stable partitions that are identical to P and Y. The first operation
that we apply is:

10

Misra, Philip, Raman, Saurabh, and Sikdar

If there exist vertices u,v € S such that they are in different
pieces of @, but are in the same piece of P, delete Q,(u) and
Qp(v) from Q, and add Q,(u) U Q,(v).
To describe the second set of operations, we need some notation. Let Z =
X; \ S and let the connected components of G;[Z] be C1,...,C,. First
contract each connected component C; to a vertex c;, the representative
of that component, and let C = {c1, ..., cq}. Note that foreach 1 < i < g,
the component C; is not split across pieces in either Y7 or Y5. Denote
by Y] and Y the partitions obtained from Y; and Yz, respectively, be
replacing each connected component C; by its representative vertex c;.
Let @, = Y/. Repeat until no longer possible:
If there exist c4,cp € C that are in different pieces of @, but in
the same piece of Y then delete Qy(cq), Qy(cp) from @, and add
Qy(cq) U Qy(cp) provided the following condition holds: for all
ce € C\{cq,cp} either Ya(ce.)NQy(ca) =0 or Ya(ce) NQy(cp) = 0.
If this latter condition does not hold, move on to the next pair of triples.
Finally expand each c; to the connected component it represents.
Set

Ai[SaPaY]: {Aj[Svplvyl]+AZ[S5P27Y2]7|S|}'

min
<(S,P1,Y1),(S,P2,Y2)>€A

The stated conditions ensure that u,v € S are in the same piece of P if
and only if for each ((S, P1,Y1), (S, P2, Ys2)) € A, they are in the same
piece of Py or of P, (or both). Similarly, the stated conditions ensure
that merging solutions at join nodes do not create new cycles. Given
this, it is easy to verify that the above computation correctly determines
A; [S,PY].

Root Node. We compute the size of a smallest CFVS of G from the table A,

for the root node r as follows. Find the minimum of A,[S, P,Y] over all
triples (S, P,Y), where S C X,., P a partition of S such that P consists of a
single (possibly empty) piece and Y is a partition of X,. \ S. This minimum
is the size of a smallest CFVS of G.

This concludes the description of the dynamic programming algorithm for

CFVS when the treewidth of the input graph is bounded by w. From the above

description and the size of tables being bounded by (2w + 2)

2w+2 we obtain the

following result.

Lemma 4. Given a graph G = (V, E), a tree-decomposition of G of width w,
one can compute the size of an optimum connected feedback vertex set of G (if
it exists) in time O((2w + 2)2v+2 . n0M)),

4.3 FPT Algorithms for H-Minor Free Graphs

We first bound the treewidth of the yes instance of input graphs by O(vk).

FPT Algorithms for CFVS 11

Lemma 5. If (G, k) is a yes-instance of CFVS where G excludes a fixed graph
H as a minor, then tw(G) < cH\/E, where cy s a constant that depends only
on the graph H.

Proof. By [7], for any fixed graph H, every H-minor-free graph G that does
not contain a (w x w)-grid as a minor has treewidth at most ¢j;w, where ¢y
is a constant that depends only on the graph H. Clearly a (w X w)-grid has
a feedback vertex set of size at least ciw?, where c¢; is a constant independent
of w. Therefore if G has a connected feedback vertex set of size at most k, it
cannot have a (w x w)-grid minor, where w > \/k/c1. Therefore tw(G) < cyw <

- (VE/er +1) < egVk, where cg = (¢ + 1)/ /e1. O

Theorem 4. CFVS can be solved in time O(20(Vk1ogk) 1 nOM)Y on H-minor-
free graphs.

Proof. Given an instance (G, k) of CFVS, we first find a tree-decomposition of G
using the polynomial-time constant-factor approximation algorithm of Demaine
et al. [8]. If tw(G) > ¢y vk, then the given instance is a no-instance; else, use

Lemma 4 to find an optimal CFVS for G. All this can be done in 0(20(‘@1"% k).
no(l)). To obtain the claimed running time bound we first apply the results
from [15] and obtain an O(k?) kernel for the problem in polynomial time and
then apply the algorithm described. O

5 Conclusion

We conclude with some open problems. The obvious question is to obtain an
O*(c*) algorithm for CFVS in general graphs with a smaller value of c. Also the
approximability of CEFVS in general graphs is unknown. Is there a constant-factor
approximation algorithm for CFVS? If not, what is the limit of approximation?
Is there an O*(¢%) algorithm for CFVS, for a constant ¢, for graphs of treewidth
at most w? Note that this question is open even in the context of finding a
(unconnected) feedback vertex set in graphs of treewidth at most w.

References

1. J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Applications.
Springer, second edition, 2009.

2. H. L. Bodlaender. On disjoint cycles. In G. Schmidt and R. Berghammer, editors,
Proceedings on Graph—Theoretic Concepts in Computer Science (WG ’91), volume
570 of LNCS, pages 230-238. Springer, 1992.

3. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25(6):1305-1317, 1996.

4. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems
without polynomial kernels (extended abstract). In Proceedings of ICALP 2008,
LNCS, pages 563-574. Springer, 2008.

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Misra, Philip, Raman, Saurabh, and Sikdar

J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved algorithms for the
feedback vertex set problems. In F. K. H. A. Dehne, J.-R. Sack, and N. Zeh, editors,
Proceedings of WADS 2007, volume 4619 of LNCS, pages 422-433. Springer, 2007.
F. Dehne, M. Fellows, M. A. Langston, F. Rosamond, and K. Stevens. An
0(2°®p3) FPT-Algorithm for the Undirected Feedback Vertex Set problem. In
Proceedings of COCOON 2005, volume 3595 of LNCS. Springer, 2005.

E. D. Demaine and M. Hajiaghayi. Linearity of grid minors in treewidth with
applications through bidimensionality. Combinatorica, 28(1):19-36, 2008.

E. D. Demaine, M. Hajiaghayi, and K. ichi Kawarabayashi. Algorithmic graph mi-
nor theory: Decomposition, approximation, and coloring. In Proceedings of FOCS
2005, pages 637-646. IEEE Computer Society, 2005.

R. Diestel. Graph Theory. Springer-Verlag, Heidelberg, third edition, 2005.

. B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-cost

connected trees in databases. In ICDE, pages 836-845. IEEE, 2007.

M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through Colors and
IDs. In Proceedings of ICALP 2009, volume 5555 of LNCS, pages 378-389.
Springer, 2009.

P. Festa, P. M. Pardalos, and M. G. Resende. Feedback set problems. In Handbook
of Combinatorial Optimization, pages 209—258. Kluwer Academic Publishers, 1999.
J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

F. V. Fomin, F. Grandoni, and D. Kratsch. Solving connected dominating set
faster than 2". Algorithmica, 52(2):153-166, 2008.

F. V. Fomin, D. Lokshtanov, S. Saurabh, and D. M. Thilikos. Bidimensionality
and kernels. In Proceedings of SODA 2010, 2010. To appear.

J. Guo, J. Gramm, F. Hiiffner, R. Niedermeier, and S. Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization.
Journal of Computer and System Sciences, 72(8):1386-1396, 2006.

D. Molle, S. Richter, and P. Rossmanith. Enumerate and expand: Improved algo-
rithms for connected vertex cover and tree cover. Theory of Computing Systems,
43(2):234-253, 2008.

H. Moser. Exact algorithms for generalizations of vertex cover. Master’s thesis,
Institut fiir Informatik, Friedrich-Schiller-Universitat, 2005.

J. Nederlof. Fast polynomial-space algorithms using mobius inversion: Improving
on steiner tree and related problems. In Proceedings of ICALP 2009, pages 713—
725, 2009.

R. Niedermeier. Invitation to Fized-Parameter Algorithms, volume 31 of Ozford
Lecture Series in Mathematics and its Applications. Oxford University Press, Ox-
ford, 2006.

R. Sitters and A. Grigoriev. Connected feedback vertex set in planar graphs. In
Proceedings of the 35th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG2009), 20009.

S. Thomassé. A quadratic kernel for feedback vertex set. In Proceedings of SODA
2009, pages 115-119. Society for Industrial and Applied Mathematics, 2009.

