Creating fire-smart forests and landscapes

by Paulo M. FERNANDES

Introduction

Land use mosaics and the intensity of biomass use in the Mediterranean Basin have constrained fire incidence in the past. Forests have expanded in the last decades and in parallel their management has generally decreased, increasing stand-level fuel accumulation and landscape-scale fuel connectivity. Contemporary fire management policies rely heavily on fire suppression and do not sufficiently address the root of the problem, i.e. the socio-economical and land management issues behind the inception and spread of fires. The effectiveness of fire fighting operations is greatly reduced when unfavourable weather conditions coincide with fuel accumulation (Figure 1). In fact, because successful fire suppression implies fuel build up, it can contribute to larger and more severe fires in the future.

It is now recognized that short-term and reactive fire control policies should be replaced by "longer-term policies aimed at acting on the structural causes of fires and integrating fire and forest management strategies" (EFI 2010). In order to support integrated fire management, a stronger research effort is required in regards to landscape-scale fire spread, mitigation of immediate fire effects (fire severity) in forest stands, and the resilience of different forest types in relation to variation in the fire regime. Climate change projections make these topics even more relevant, because the expected increase in fire danger will raise burned area and CO2 emissions (THONICKE et al. 2010).
Mediterranean forests will adapt to climate change with difficulty and their protection from wildfire will be important, including large-scale fuel management through prescribed burning (PARRY et al. 2007). Proactive forest management towards higher resistance to fire spread and increased fire resilience, i.e. the achievement of fire-smart forests and landscapes (HIRSCH et al. 2004), comprehends two complementary approaches, respectively the treatment of fuels in fire prone vegetation types and vegetation type conversion. This paper overviews the state of the art on these subjects as it relates to Mediterranean Europe.

Assessing the effectiveness of fuel treatments

The relative role of fuel and weather in shaping the fire regime differs by vegetation type. If the role of fuel in controlling wildfire incidence is minor then the rationale for investing in fuel management programs is weak. Weather is generally viewed as the prevailing driver of the high-intensity fire regimes that characterize Mediterranean environments (e.g. KEELEY & ZEDLER 2009). Fire frequency analysis for Portugal (FERNANDES et al. 2010a) indicates a relatively short fire-free interval (12-16 years) but fire hazard, the probability of reburn, grows exponentially with time since fire, as the aging of fuels results in fuel accumulation and higher flammability. Furthermore it seems that this time-dependency of fire incidence is only marginally affected by extreme...
weather, increasing the likelihood of effective fuel treatment performance under unfavourable weather scenarios. Fire size and maximum fire size tend respectively to be more variable and higher in older fuels (Fig. 1). Hence, the control of fuels over landscape fire spread occurs on a relatively short-term scale but is effective, which lends support to a prominent role of fuel treatments in fire management. The more fragmented and human-influenced landscape might be involved in explaining the more pronounced role of fuel in burn probability in comparison with other shrub-dominated Mediterranean regions.

Linear fuel treatments are the most common option in Mediterranean Europe, but their performance in the face of fire is uncertain. In their analysis of the 2003 wildfires in southern France, PERCHAT & RIGOLOT (2005) found out that most fuel breaks were crossed or transposed by high-intensity fire. Still, they note that headfire growth was delayed and that lateral (flank) fire spread was generally restrained. The width, placement and maintenance of fuel breaks, together with the potential for spotting and the resources available for fire fighting are critical factors in the success of a fuel management strategy based on isolation.

Fire-smart silviculture modifies the fire environment in ways that can frustrate the treatment objective (GRAHAM et al. 2004). Removing or modifying the fuels resulting from pruning and thinning is mandatory, or the decrease in crown fire potential will be outweighed by the increase in surface fire intensity. Although research in this topic is surprisingly scarce, raising the tree canopy and decreasing its density creates a drier and windier environment. In NW Spain, RUIZ (2007) measured a 2.3% absolute decrease in dead fuel moisture content when comparing unthinned (36 m² ha⁻¹) and thinned (22 m² ha⁻¹) Pinus pinaster stands.

Fire modelling allows simulation of fire characteristics for different fuel and stand management scenarios (e.g. CRUZ et al. 2008), as well as landscape-level analysis of fire-spread potential in response to variation in fuels and other factors (e.g. LOUREIRO et al. 2006). Expert knowledge can be analyzed to relate fire hazard with stand and fuel structure (GONZALEZ et al. 2007). However, evidence of differences in fire behaviour and severity between alternative fuel treatments or in treated versus untreated stands can be obtained only by actually observing fires and their effects. Although valuable — e.g. McARTHUR (1962) reported a decrease by a factor of 3 in fire spread rate from unpruned Pinus radiata to pruned P. pinaster stands — the conclusions that can be drawn from wildfire data are usually limited in scope. Sound guidelines for treatments are more likely to be inferred from fire-resistant forest stands, i.e. where fire-induced tree mortality or fire severity is mitigated to some degree. Abundant documentation exists on the interaction between fire severity and stand structure in North-American continental and Mediterranean conifer forests (e.g. AGEE & SKINNER 2005), and similar patterns seem to occur in the Iberian Peninsula, where mature and uneven-aged Pinus nigra (FÜLE et al. 2008) and P. pinaster (VEGA 2000) stands persist under a regime of low to moderate fire severity. Fire-resilient P. pinaster patches in northern Portugal (Picture 1) are open, vertically discontinuous and coincide with frequent low-intensity fires (VEGA et al. 2010).

Experimental studies of fire behaviour and effects in relation to fuel treatments have been extremely scarce worldwide. In SW Australia, GOULD et al. (2007) related fire behaviour in eucalypt forest with time since prescribed burning. In Portugal, a drastic change in fire behaviour — from crowning to relatively mild surface fire — was observed

Picture 1: Fire-resistant Pinus pinaster stand near Murça, NE Portugal. Tree density = 250 ha⁻¹; basal area = 11 m² ha⁻¹ and median fire return interval = 6 years. Photo P.F.
Assessing how different forest types burn and recover from fire

Forests that differ in their specific composition can represent distinct fire potentials, due to differences in the nature, quantity and arrangement of fuels, which provides the rationale for cover type conversion. Conventional wisdom assumes that some forest types, namely deciduous broadleaves, are effective at modifying fire behaviour and disrupting landscape fire spread. Fire modelling (Fernandes et al. 2009b) and fire selectivity (Moreira et al. 2009) studies support such hypothesis. In NE Spain, Diaz-Delgado et al. (2004) report less fire incidence from pine to evergreen broadleaved to deciduous broadleaved forests, and Gonzales et al. (2006) found that hardwoods (Quercus robur, Q. ilex) and short-needled mountain pines were less fire prone than the more flammable pine species. The fire behaviour gradient corresponding to the transition of one vegetation type to another, e.g. from shrubland to *Quercus rotundifolia* (Azevedo et al. 2009), can be modelled by taking into account the spatial variation in fuels and stand structure. Local weather (fuel moisture, wind speed) and the fuel-complex are both affected by stand structure. Consequently, stand characteristics can minimize or offset the cover type effect, as in the simulation study of Fernandes (2009b), where the range in fire hazard was similar between and within forest types.

The fire severity implications of changes in cover type are expected to correlate with fire incidence but have been poorly quantified. In northern Portugal, Fernandes et al. (2010b) compared fire severity between adjacent stands of *P. pinaster* and of other species (deciduous and evergreen broadleaves and short-needled conifers). Fire intensity was highest in *P. pinaster*, followed by deciduous broadleaved and short-needled conifer forest. In addition to cover type, fire severity was explained by stand characteristics (height, density, basal area), terrain aspect, fire spread pattern and distance to the edge between *P. pinaster* and the contiguous cover type. A faster decline in fire severity was observed in deciduous broadleaves (Picture 2), and fire severity tended to decrease with stand maturity and in moister aspects. Implicit in these results is the fact that different cover types will not be different just in their fuel complexes. Simultaneous measurements of micrometeorological variables and fuel moisture contents should highlight weather-related differences in the fire environment between forest types, provided that the stands are contiguous and do not differ in aspect and slope.

Fire resilience is determined by the interaction between fire severity and species traits related with post fire response. Consequently, research on post fire tree mortality patterns is an important supplement to fire severity studies. The description and prediction of fire-induced mortality to southern Europe tree species has recently gained momentum, covering the entire fire severity range and addressing both conifers (*P. pinaster*, *P. nigra*) and broadleaves (*Quercus* spp., *Castanea sativa*, *Eucalyptus globulus*) (Moreira et al. 2007, Fernandes et al. 2008, Picture 2: Fire self-extinction in a *Betula alba* stand, Medio, NW Portugal. Photo P.F.)
Catri et al. 2010, Vega et al. 2010). The most fire-resilient types are those that recover quickly from high-intensity fire — species able to sprout from the crown, i.e. Quercus suber (Picture 3) and Pinus canariensis — and those associated to low flammability environments (deciduous broadleaves and mountain conifers), provided that their fire-resistance traits (namely bark thickness) are sufficiently developed to assure tree survival.

Conclusion

Fire policies in Mediterranean countries are centred on fire suppression, which makes them unsustainable and often counterproductive. Fuel management, including the planned use of fire, deserves a more prominent role in fire management. Furthermore, and as the Mediterranean environment becomes more fire prone, the management of unplanned fires will have to be considered, especially in more remote areas, and both as a fuel treatment and an ecological process.

Fire-smart landscapes are obtained by area-wide fuel treatments and by fuel type conversion, rather than by fuel isolation. The spatial features of fuel management are critical, as random patterns can locally mitigate the effects of wildfire but have no impact on its growth. Proactive management should concentrate on expanding (i) less flammable forest types, and (ii) vegetation types that are resilient regardless of flammability, the later being the preferred option in a climate change context (Stephens et al. 2010). Both will require minimal treatment, in contrast to highly flammable forest plantations in fire-prone regions where costly fuel treatments are mandatory. However, it is important to note that climate change will likely reduce the prospects for type conversion into more mesic forests, and will favour open dry forests, where resistance and resilience to fire can be promoted through relatively undemanding fuel modifications.

References

