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Anchor Models for
Emotion Recognition from Speech

Yazid Attabi and Pierre Dumouchel, Member, IEEE

Abstract—In this paper, we study the effectiveness of anchor models applied to the multiclass problem of emotion recognition from
speech. In the anchor models system, an emotion class is characterized by its measure of similarity relative to other emotion classes.
Generative models such as Gaussian Mixture Models (GMMs) are often used as front-end systems to generate feature vectors used to
train complex back-end systems such as support vector machines (SVMs) or a multilayer perceptron (MLP) to improve the
classification performance. We show that in the context of highly unbalanced data classes, these back-end systems can improve the
performance achieved by GMMs provided that an appropriate sampling or importance weighting technique is applied. Furthermore, we
show that anchor models based on the euclidean or cosine distances present a better alternative to enhance performances because
none of these techniques are needed to overcome the problem of skewed data. The experiments conducted on FAU AIBO Emotion
Corpus, a database of spontaneous children’s speech, show that anchor models improve significantly the performance of GMMs by
6.2 percent relative. We also show that the introduction of within-class covariance normalization (WCCN) improves the performance of
the anchor models for both distances, but to a higher extent for euclidean distance for which the results become competitive with

cosine distance.

Index Terms—Anchor models, children’s speech, emotion recognition, GMM model, skewed distribution, WCCN

1 INTRODUCTION

AUTOMATIC emotion recognition (AER) from speech has
garnered increasing interest in recent years given the
broad field of applications that can benefit from this
technology. For example, a speaker emotional state recogni-
tion system can be used to develop a more natural and
effective human-machine interaction system that incorpo-
rates an interface exhibiting greater sensitivity toward user
behavior. Used in a distance learning context, a tutoring
system could detect bored users and allow for a change of
style and level of the supplied material, or provide an
emotional encouragement [1]. AER may also be used to

1. support the driving experience and incite better
driving practices, given that driver emotion
and driving performance are often intrinsically
linked [2];

2. detect the presence of extreme emotions, especially
fear, in the context of public place surveillance [3];

3. automatically prioritize messages accumulated in
the mailbox with different criteria such as emotional
urgency, mood valence (happy versus sad), and
arousal (calm versus excited) [4];
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4. wuse the special features carried by emotions to
develop more robust and accurate speaker verifica-
tion systems [5];

5. assess the urgency of a call to assist in decision
taking in the context of a call center offering medical
advice to patients [6];

6. or to improve customer service in the context of
commercial call centers [7].

Several approaches were investigated to enhance emo-
tion recognition performance particularly the discrimina-
tive and generative ones [8]. Potentially promising methods
that are yet to be deeply explored are those based on the
similarity approach. The similarity-based methodology is,
however, a natural way to approach the problem of emotion
recognition from speech, where the concept of closeness or
distance between classes is clearly present and illustrated in
the mapping of categorical emotions onto the dimensional
space. Thus, in the dimensional emotion theory, similarity
of each emotion class can be easily measured to other
classes with respect to some criterion (axis) such as valence
or arousal.

The simplest and most common similarity-based method
is the nearest neighbor algorithm which is widely tested. A
more sophisticated emotion profile (EP)-based representation
method was developed by Mower et al. [9]. In this method,
emotions are expressed in terms of the presence or absence
of a set of component emotions such as anger, happiness,
neutrality, and sadness. The EPs are constructed using SVM
with Radial Basis Function (RBF). Emotion-specific SVMs
are trained for each class as self versus other classifiers.
Each EP contains n-components, one for the output of each
emotion-specific SVM. The profiles are created by weight-
ing each of the n-outputs (£1) by the distance between the
individual point and the hyperplane boundary. The final
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emotion is selected by classifying the generated profile in a
speaker-dependent fashion using Naive Bayes. In [10], [11],
a precursor method based on the similarity concept, named
WOC-NN, has been proposed. In this new framework, each
emotion is represented by a neighborhood pattern com-
posed of a set of emotion classes ranked according to their
closeness or distance to each other. Classification is carried
out by computing distances between the test data neighbor-
hood pattern and the specific patterns of each emotion class
issued from training.

In this paper, we will investigate in more depth a similar
but different method, commonly referred to as anchor
models in the speech community, which we have presented
in [12].

The anchor model was first introduced for speaker
indexing in large audio databases [13] and then extended
for speaker identification [14], speaker verification [15], and
recently for speaker trait classification [16] problems. In this
method, speaker identity is characterized by its relative
position in an anchor space. This space is formed by a set of
reference speaker models. Different metrics are used to
compute the relative position of a given speaker with
respect to the set of reference speakers such as euclidean
[13], angular [14], [15] or correlation [17] metrics. Several
studies show that euclidean distance achieves worse results
compared to cosine distance [14], [15], [18]. In [15], a new
qualitative measurement based on the rank metric was
introduced. This new metric improves the performance
compared to the quantitative distances but remains below
the performance of the Gaussian Mixture Model-Universal
Background Model (GMM-UBM) method. Mami and
Charlet [14] have shown that anchor models perform better
than GMMs when there is little amount of training data. In
[19], the application of Linear Discriminant Analysis (LDA)
postprocessing on coordinate vectors of the anchor space
allows anchor models to outperform GMMs. Furthermore, a
system based on the combination of probabilistic and
deterministic anchor model approaches has been proposed
in [18] and achieves better results than the GMM-UBM-
based system. The probabilistic approach aims to model the
intraspeaker variability. Instead of representing the location
of a speaker’s utterances by only one point in the anchor
model space, they are modeled using a normal distribution.

For emotion recognition from speech, the anchor model
approach was tested in [20] as a combination method of
different classifiers to improve system performance. The
experimental framework used in [20] was adopted from
language recognition and was composed of two parts:
front- and back-end systems. The anchor model was used as
back end to fuse two subsystems, namely, prosodic GMM-
SVM (support vector machine) and prosodic statistics-SVM
systems. Finally, an SVM classifier was used to train the
back-end emotions in the anchor model space. The reported
results show that the anchor models fusion method
significantly improves recognition performance compared
to the sum rule fusion when tested on two of three corpora.

In this paper, we study the anchor model system acting
as a feature extractor rather than as a combination method
to recognize emotion from speech. We apply this system to
the specific task of recognizing emotional speech of children

interacting with a pet robot called Aibo [21]. The corre-
sponding spontaneous emotional speech FAU AIBO Emo-
tion Corpus, described in Section 2, was introduced and
made publicly available in Interspeech 2009 Emotion
Challenge to provide the community with a medium sized
database containing more spontaneous and less prototypi-
cal data to reflect more realistic scenarios. Cepstral features
are extracted to train GMM models that are used as front
end of an anchor model system described in Section 3. In
this study, we show that anchor models is an efficient
method to classify emotions in the context of highly
unbalanced classes as is the case for the FAU AIBO
Emotion Corpus. Contrary to speaker diarization and
verification problems, anchor models using simple distance
metrics such as the cosine metric without any preprocessing
step achieve better results than GMM models. We also show
that the application of within-class covariance normal-
ization (WCCN) on the log-likelihood scores in the anchor
space improves even more the performance as detailed
in Section 4. In addition, as shown in Section 6, anchor
models perform better than more complex and sophisti-
cated classifiers such as SVM-based back-end systems. In
Section 5, we investigate the effectiveness of representing at
prediction step each emotion class by a set of representative
vectors in contrast to a unique vector.

2 DATA AND FEATURES DESCRIPTION

2.1 Corpus

The proposed framework is tested using the FAU AIBO
Emotion Corpus [21]. The data set consists of spontaneous
recordings of German children (21 male and 30 female)
interacting with a pet robot. The corpus is composed of
9,959 chunks for training and 8,257 chunks for testing,
which were collected at two different schools. A chunk is an
intermediate unit of analysis between the word and the turn
manually defined based on syntactic-prosodic criteria. The
average length of the chunk is about 1.7 s. The chunks are
labeled into five emotion categories: Anger (A), Emphatic
(E), Neutral (N), Positive (P, composed of motherese and
joyful), and Rest (R, consisting of emotions not belonging to
the other categories such as bored, helpless, ..). The
distribution of the five classes is highly unbalanced. For
example, the percentage of training data of each class is
as follows: A (8.8 percent), E (21 percent), N (56.1 percent),
P (6.8 percent), and R (7.2 percent).

2.2 Feature Extraction

Mel-Frequency Cepstral Coefficients (MFCC) are used as
features to model the varying nature of speech with respect
to the type of emotion. The MFCC vector is formed of the
first 12 coefficients including CO (energy component)
calculated at a rate of 10 ms using a 25-ms Hamming
window. First and second derivatives are computed using a
five-frame window for each MFCC vector to compute the
temporal characteristics. Cepstral features are extracted
using the HTK toolkit [22]. Silences are removed from the
audio files before MFCC extraction.
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3 ANCHOR MODELS

In an anchor models system, an emotion class is character-
ized by its measure of similarity relative to other emotion
classes. The set of these reference models is called anchor
models and forms the anchor space. Three steps character-
ize the design of an anchor model system: building the
anchor space, mapping the acoustic features onto the
anchor space, and classifying test emotional speech.

3.1 Building the Anchor Space

In the case of a pattern recognition problem with unlimited
number of classes such as in the speaker verification task, we
need to find a set of speakers or virtual speakers (by
clustering speakers) which is the most representative of all
speakers. When the problem at hand involves a limited
number of classes, as for the emotion recognition task, we
have the opportunity to model the entire set of emotion
classes. Thus, in this type of multiclass problem, all classes
have the advantage of being well represented in the anchor
space. Therefore, we can point out two main differences
between the anchor models in speaker recognition and in
emotion recognition. First, for speaker recognition the
anchor space has a high dimension, composed of hundreds
of speaker models. For emotion recognition, the anchor
space dimension is very small because of the limited number
of emotion classes available. Second, in speaker recognition,
the speaker to characterize in the anchor space, during
training or test stage, does not usually belong to the set of
anchor models. On the other side in emotion recognition, the
emotion appertains to the set of anchor models, owing that
all emotion class models are used as anchor models.

If each of the C emotion classes is modeled by a GMM J;
using their MFCC speech features, the reference space
could be defined by the set T' = {A4, Ag, An, Ap, Ar}

GMM is a generative model widely used in the field of
speech processing. It is a probabilistic method that offers
the advantage of adequately representing speech signal
variability using a mixture of sufficient number of
Gaussians. Given a GMM modeling a D-dimensional
vector, the probability of observing a feature vector given
the model is computed as follows:

m

P(x | A)=> wy N(x; iy, ), (1)
k=1

where m, wy, p,, and X correspond to the number of
Gaussians, weight, mean vector, and diagonal covariance
matrix of the kth Gaussian, respectively. GMM parameters
are estimated using the maximume-likelihood (ML) ap-
proach based on the expectation maximization (EM)
algorithm [23].

Note that we opted for the use of GMM rather than
hidden Markov model (HMM) in light of previous results
achieved on the FAU AIBO Emotion Corpus in the
Interspeech 2009 Emotion Challenge 2009. For the set of
HMM baseline systems studied in [8], the single-state HMM
(namely a GMM) performs slightly better than its tristate
and slightly worse than its five-state representation. In [24],
with a higher number of Gaussian mixtures (rather than the
two used in [8]), the GMM model outperforms the HMM of
the baseline system.

3.2 Mapping onto the Anchor Space

Let X be an utterance of emotional speech represented by a
sequence of frames, X = {x1,Xs,...,xr}. X is mapped onto
the anchor space by computing the vector L(X), where each
element of the vector represents the mean log-likelihood
score of X against each model )\;. We refer to this new
representation as Emotion Characterization Vector (ECV) by
analogy to the terminology used in speaker recognition. It is

%log P(X | A1)
L(X) = : ; (2)

%log P(X | )\(})

where log P(X|)\;) is the log likelihood of the feature vectors
X given a GMM ); that belongs to the set of class models
{A,E,N, P,R} and L(X) represents the ECV of X. Assum-
ing the independence of the frames, log P(X|);) is com-
puted according to

log P(X | A)) = > log P(x, | Ai). 3)

Two types of ECV vectors are computed using (4)
depending on the values of X: 1) a class representative ECV
vector for each emotion class computed during training
stage and 2) a test utterance vector at prediction phase. A
class representative vector L’ for emotion class i is estimated
using all training utterances of class ¢ according to

;i

L :%ZL(XQ), (4)

where sz represents the gth utterance of class i and n; the
number of training utterances of class .

3.3 Emotional Speech Classification

To classify a test speech, the distance between the ECV of the
test data and those of each class representative is computed
using either euclidean or cosine distance metrics defined as

e  Euclidean metric:
d(Li, Ly) = /|Ly — Lo[*. (5)

o  Cosine metric:

<L17 L2>

(L, L) =1 — =2
)= T

(6)
where (Lj,Ls) is the dot product of the vectors Ly and L.

In this section, each emotion class of the C classes is
represented at test phase by a unique ECV vector. The
decision rule is formulated as follows:

emotion = argmin(d(Lr, L;)), (7)
where d represents the metric used to compute the distance

between L7, the ECV of the test data, and L;, the
representative ECV of the emotion class .
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Fig. 1. UA recall results achieved using ninefold cross validation on FAU
AIBO Emotion training data with respect to the number of Gaussians of
the GMM. Euclidean and cosine distance-based anchor models systems
are compared.

3.4 Experimental Setup

In this section, the performances of anchor models are
evaluated for both the euclidean and cosine metrics. The
model parameters such as the number of GMM Gaussian
components are tuned based on the training data using the
ninefold cross-validation protocol. Each of the nine parti-
tions contains a disjoint set of speakers. The results are
optimized via maximization of the unweighted average
(UA) recall measure and second the weighted average (WA)
recall (i.e., accuracy) given that FAU AIBO Emotion classes
are highly unbalanced. Note that a baseline classifier that
predicts all the test data as being in the same class as the
dominant class, namely Neutral, will achieve 65 percent of
accuracy but only 20 percent of UA recall. Note that this is
the same proposed measure for the Interspeech 2009
Emotion Challenge. Therefore, our results can be compared
with the state of the art.

Fig. 1 shows the results obtained for each system
evaluated using ninefold cross validation on the training
data. We observe that the euclidean distance-based anchor
model achieves very poor performances compared to the
cosine distance-based system.

The results suggest that speech emotion utterances
mapped onto the anchor models space are more discernible
through their directions rather than their Cartesian coordi-
nates. This implies that noise adversely affects features in
their magnitude and therefore degrades the likelihood score
of data against each emotion model by the same multi-
plicative constant.

To illustrate this mismatch on the length of the vector L,
the mean and variance of the Cartesian values of each
variable of the ECV vectors are plotted in Fig. 2. The
training data are used to compute the statistics of each
emotion class separately in each plot. In the optimal case,
the mean log-likelihood score of an emotion class data will
get the maximum value for the component corresponding
to its own model. For the other components of the ECV
vector, more a model of another emotion class is close to its
own model more the log-likelihood score is higher and vice
versa. The amount of score reflects the degree of similitude
of a given class relatively to other classes.
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Fig. 2. Each graphic plots the mean and variance parameters
representing the data distribution of one emotion class with respect to
each emotion model (variables of ECV vectors). In this figure, the plotted
values represent the statistics of the Cartesian coordinates of the ECV
vectors (see (2)).

In Fig. 3, we have plotted the mean and variance
parameters of the angular value of each Cartesian coordi-
nate variable of the ECV vectors mapped in Fig. 2. The ith
variable of the angular vector represents the angle between
the ECV vector and the ith axis of the euclidean space.
Formally, the angular vector of an ECV vector L is
computed as follows: Let L = (11,12,...,ZC)T be an ECV
vector and (e, esq,...,ec) be the standard basis, where
e = (1,0,...,0)T,..., and ec = (0,0,...,1)T. The angular
value between L and the ith standard axis is equal to

<L, e;>
angle(L, e;) = arccos <7) 8
(Lo Ll led)’ )
after simplification we get
L.
angle(L, e;) = arccos (HTLH> . 9)
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Fig. 3. Each graphic plots the mean and variance parameters
representing the data distribution of one emotion class with respect to
each emotion model (variables of ECV vectors). In this figure, the plotted
values represent the statistics of the angular values of the ECV vectors
with respect to the standard basis (see (9)).
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We have also

l;
1Ll

cos(angle(L, e;)) = (10)

Fig. 2 reveals that the variables (which represent the
output of the density function of the GMM models of the
emotion classes) are not discriminative by their Cartesian
values due particularly to the large scale of their variance.
Furthermore, the variance-scaling problem is less pro-
nounced with the angular values of the variables as
depicted in Fig. 3.

It is interesting to note that (10) resembles the length
normalization formula that has recently been used in [25]
and [26] as a preprocessing step to enhance recognition
performance. In fact normalizing the length means using
the cosine of the angles of the variables that are more
discriminative as depicted in Figs. 2 and 3.

In the next section, we propose to deal with the variance
scale problem by applying within-class covariance normal-
ization to further enhance the discrimination between
different class models.

4 WCCN NORMALIZATION

WCCN 1is a technique introduced in [27] to train a
generalized linear kernel of an SVM-based system to
minimize the expectation of false-positive and false-
negative errors. The generalized linear kernel k(L;, L) is
expressed as

k(Ly, Ly) = L{RLy, (11)

where L; and L; are two given instances and R is a positive
semidefinite matrix. The closed-form solution is reached by
setting R = W™, where W is the expected within-class
covariance matrix of the data defined as

c
W=> p(i)-S,, (12)
=1
where p(i) and S; represent the prior probability and within
covariance matrix of class i, respectively. If we define A as
the Cholesky factorization of W', namely AA” = W1, the
new metric of cosine distance for instance, when WCCN is
applied on ECV vectors, is expressed as

(A7L,)" (A7Ly)

d(Ly, L) =1— .
|ATL ||| AT Ly

(13)
WCCN has also been successfully applied on i-vector
feature space [25]. An i-vector is a low-dimensional
representation of a high-dimensional supervector, which
is in turn obtained by the concatenation of all GMM mean
vectors. WCCN was also applied in [28] to improve the
performance of SVM using likelihood scores as features.
Finally, an intraspeaker normalization method for
anchor model-based speaker verification, called vectorial
Z-normalization, was introduced in [29]. VZ-norm is an
extension of Z-norm to the multivariate case that aims
to normalize the score against the intraspeaker variability.
VZ-norm is similar to WCCN in that the normalization in
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Fig. 4. Effect of WCCN normalization on UA recall performance of
anchor models with respect to the number of Gaussians of the GMM.
The results are obtained using ninefold cross validation on FAU AIBO
Emotion training data. The performances of systems before and after
WCCN normalization are also compared.

both methods is based on the use of the within-class
covariance matrix. On the other side, the two methods differ
in that no mean normalization is required for WCCN.

4.1 Results and Discussion

Fig. 4 shows the classification results for anchor models,
based on euclidean and cosine distance metrics, and
evaluated before and after WCCN normalization on the
training data using ninefold cross validation. First, we
observe that WCCN enhances performances for both
metrics with a marked improvement for euclidean distance,
the mean gains being 3.3 and 40 percent for cosine and
euclidean, respectively. It is also interesting to note that
after applying normalization, euclidean and cosine metrics
show similar performances. We also note that the best
performance is obtained for both metrics with a GMM
model of 32 Gaussian components used as a front-end
system. Accordingly, a 32 Gaussian GMM mixture is
selected for the test experiment.

To visualize the effect of WCCN normalization on the
data (log-likelihood scores), we have plotted the distribu-
tion of anger class utterances over the emotion models
before and after normalization in Fig. 5. In the top of Fig. 5,
we observe that the data of emotion class A exhibit almost
the same behavior with respect to its own model (A) as
toward any other model. This behavior makes it difficult to
take advantage of the anchor model and get any discrimi-
native information from learning the relative behavior of an
utterance over different models.

As depicted in the bottom plot of Fig. 5, WCCN
normalization has the effect of maximizing the discrimina-
tive capability between models in the anchor space, as
evidenced by a greater distribution of the models over the
entire range of possible anchor space scores.

Table 1 gives the performance results of anchor models
on the test data. The models used in the test stage are
trained with all the training data. The matrix A of WCCN
is also estimated using log-likelihood scores of training
data using ninefold cross validation. We note that the
observations pertaining to the training data extend equally
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Fig. 5. Box plot of the distribution of the Anger (A) emotional speech over
the five emotion models before (top) and after (bottom) WCCN
normalization. On each box, the central mark is the median, the edges
are the 25th and 75th percentiles, the whiskers denote the most extreme
data, and outliers are plotted individually.

well to the test data. WCCN improves performance
significantly (using the McNemar statistical test) for both
metrics. We also note that euclidean and cosine distances
achieve comparable performances after normalization.
Interestingly, we observe that the results obtained for the
test data are actually better than those of the training data.
This is explained by the fact that the GMM models used in
the test are more robust than those used in the cross-
validation protocol. For test models we have used nine
partitions instead of the eight used in the ninefold cross
validation, namely a difference of three additional speak-
ers’ data. To verify this assertion, we evaluated the test
data using the same models used for training data
evaluation. The performance achieved for the anchor
model system using euclidean distance, for example, drops
from 44.19 to 42.18 percent, giving results worse than
training data. This result confirms our assertion and
emphasizes the importance of having more data and
speakers for developing more robust systems.

5 CLASS REPRESENTATIVE VECTORS

One key difference between the anchor models system
presented in this work and the k-nearest neighbor method
is the identity of training data points that are used to
compare the test data at classification step. In the k-NN
method, the classification is approximated locally and is
based on the k closest examples. A major inconvenience of
this method stems from its sensibility toward the outliers
contained in the training data. The anchor model offers the
advantage of comparing the test data to a more reliable
fixed vector used as class representative that is determined
during the training stage.

5.1 Unifold versus Multifold Representatives

In the design of the anchor models presented in the
previous sections, each emotion class was represented by
a unique ECV vector that is computed using all the training
data associated with that class. Another alternative is to
represent each emotion class by a set of representative
vectors. A model with multiple class representatives could

TABLE 1
Results of Different Anchor Models
Systems Tested on Test Data

Recall [%]
Anchor models systems UA WA
Cosine 42.25 33.57
Euclidean 26.59 23.00
Cosine + WCCN 43.91 46.01
Euclidean + WCCN 44.19 47.44

be particularly useful when the data have a multimodal
distribution. In this section, we investigate the impact of
duplicating the number of representative vectors on the
anchor models performance. In the rest of the paper, we
dub multifold the system based on more than one
representative vectors as opposed to the unifold system
based on a unique representative ECV.

If we assume that {Li,L},... L'} represents the set of
representative vectors of an emotion class E;, the decision
rule (7) becomes

emotion = arg min <Z d(Lr, Lf)) ,

=10\ =T

(14)

where L/ represents the jth representative vector of the ith
emotion class.

Different methods can be used to select the class
representatives of a multifold system. Two methods will
be studied and compared to the performance of a unifold
system:

1. Random selection. From each emotion class, r utter-
ances are randomly selected from its training data.

2. Clustering method. The training data of each emotion
class are clustered into r(r > 2) clusters based on the
distance between their ECV values.

We also investigate a weighted cluster version of anchor
models. The aim is to reduce the effect of clusters composed
of outlier instances. The contribution of each cluster in the
computation of the distance will be proportional to the
number of instances in the cluster. The new decision rule is
formulated as follows:

r J .
emotion = arg min (Zm X d(LT, Lf)) ) (15)
=1

i=1,...,.C i

where n; and nz’ represent the size of the training data of

class 7 and the jth cluster of class i, respectively.

5.2 Experiment Results

To select the number of representative vectors that
optimize the performance of the multifold systems, we
first carry out experiments on the training data according
to different number of representative vectors used per
class. For the multifold system based on random selection,
50 runs are executed. At each run, a new subset of class
representative vectors is randomly selected and the UA
recall performance is evaluated. The means of these runs
are computed and plotted in Fig. 6. We observe that the
overall performance increases sharply as the number of
class representatives increases up to a value of 150 vectors
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Fig. 6. UA recall mean results of 50 runs of the anchor models systems
with respect to the number of ECV vectors per class selected as class
representative vectors. At each iteration, a new subset of training data is
randomly selected as class representative vectors. Performances are
evaluated on the training set using ninefold cross validation.

for which the best results are obtained for the anchor
models systems without WCCN normalization. For the
normalized system versions, performances improve con-
tinually and slowly until 450 vectors.

The performance of the clustering-based multifold
system is depicted in Fig. 7. The best performance is reached
with only two clusters and the performance can drop
drastically for a higher number of clusters. Furthermore,
when the clusters are weighted proportionally to their size,
the performances are more stable as the number of clusters
changes, as depicted in Fig. 8. The performances then
become less sensitive to clusters composed of outliers
although the best results are not enhanced with the
weighting operation. The results achieved on test data are
reported in Table 2. As we can observe, increasing
the number of representative vectors, however they are
selected, does not improve performance. This result suggests
that the data can be treated as a unimodal distribution.
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Fig. 7. UA recall results of anchor models systems with respect to the
number of clusters per class. The centers of clusters are used as class
representative vectors. Performances are evaluated on the training set
using ninefold cross validation.
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Fig. 8. UA recall results of anchor models systems with respect to the
number of center clusters per class used as class representative
vectors. Clusters are weighted with a value proportional to the class
size. Performances are evaluated on the training set using ninefold
cross validation.

6 MoORE CoMPLEX BACK-END SYSTEM

The likelihood probability values computed using GMM
models could be used directly as final classification scores
using Bayes decision rule (first system architecture type). As
second system architecture type, the likelihood values
could also be viewed as high-level feature entries for
another but simple classifier without any learning stage. The
anchor models system was an example of a basic classifier
based on a similarity concept that makes use of likelihood
scores as features. In the third case of architecture, the
likelihood scores are used as input for a more complex
back-end system with a more sophisticated training
algorithm such as SVM or multilayer neural network
(MLP). Such a two-stage architecture has already been
successfully applied in the literature as is the case for
unconstrained handwritten numeral classification [30] and
offline signature verification [31] problems. In both studies,
an HMM is used for the first stage to calculate similarity
measures that populate feature vectors used to train
an SVM (or ensemble of SVMs). An improvement of
1.23 percent has been achieved over HMM for handwritten
numerals problem, while the reduction in individual error
rates could reach 10 percent for signature verification.

In [20], a GMM/SVM architecture was used as a means
of multisystem combination for emotion recognition but no
comparison results were reported against the GMM model
used as baseline. For the speaker recognition task, the

TABLE 2
Comparison between Multifold and Unifold Anchor Models
Systems Evaluated on Test Data of FAU AIBO Emotion Corpus

System UA WA
Random 42.55 % 45.40 %
Clustering 43.94 % 48.84 %
Weighted-Clustering 43.41 % 49.73 %
Unifold 44.19 % 47.44 %
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GMM-5VM approach is also investigated in [28] and [32]. In
[28], the GMM-SVM system achieved comparable perfor-
mance to the GMM-UBM system. In [32], where Gaussian
distributions in the UBM were used as a reference space,
GMM-SVM achieved better results than anchor models
using euclidean distance as decision metric for both speaker
verification and identification problems.

6.1 Processing Skewed Data

When a discriminative model such as SVM is used, we
particularly need to deal with the problem of unbalanced
data distribution. Without data sampling techniques,
performance will be boosted in favor of the most repre-
sented class at the expense of the other classes. Several
methods are proposed in the literature to mitigate the
impact of a skewed class distribution:

1. Downsampling by reducing the size of the majority
class to the size of the minority class [33];

2. oversampling by generating new samples of minor-
ity class using algorithms such as Synthetic Minority
Oversampling Technique (SMOTE) [34]; and

3. ensemble sampling [35] that consists in under-
sampling the majority class into an ensemble of
data subsets. Each subset is used in turn to train a
separate classifier.

In [36], these three sampling methods were tested and
compared using SVM as classifier. SVM was trained using
the baseline feature set of Interspeech 2009 Emotion
Challenge extracted from FAU AIBO Emotion Corpus. In
terms of UA recall performance, these techniques are
ranked as follows: SMOTE, downsampling followed by
ensemble sampling.

In the same study, the author showed that importance
weighting presents a better alternative than sampling
methods for optimizing the unweighted average recall of
skewed data. This technique consists in applying an
importance value for each training data in the optimized
objective function at the training stage. The value of the
importance weight is inversely proportional to the class
size. The objective function of SVM trained with hinge-loss
is expressed as follows:

min V'V +¢) ¢, (16)
J
where ¢ is the slope of the hinge function, V is a vector
normal to the decision boundary, and ¢; is a slack variable.
After introducing the importance weighting, the objective
function is rewritten as follows:

min VT V + cZ’yjfj,
J

(17)

where ~; represents the importance weight of data point j
which is equal to c%f the inverse of the size of the class that
data point j belongs to.

6.2 Experiment Results

The goal of this section is to assess the relative efficiency of
the three aforementioned system architectures toward
recognition performance improvement of a multiclass emo-
tion problem using anchor model features in the context of

highly unbalanced classes. For this purpose, a GMM model is
evaluated using Bayes decision rule, with equal prior
probability classes, as first architecture. The test recording
is classified according to the emotion class label that
maximizes the log-likelihood value over all class models:

emotion = arg max (log P(X | \)). (18)
i=

L..C

Note that we have already tested the GMM-UBM system
in [24] and found that it achieves slightly worse results than
the GMM model. As second type of architectures, namely
systems using GMM scores as features without any further
training stage, we investigate the kNN method in addition
to the anchor models described in Section 6. Finally, for the
third type of system architectures that use a more
sophisticated front-end system, we experiment four classi-
fiers: SVM, MLP, logistic regression, and random forest.

As techniques used to overcome the problem of un-
balanced data, the best three methods reported in [36] are
investigated, namely, importance weighting, SMOTE, and
downsampling techniques. Two variants of downsampling
are tested. In the first, the neutral (majority) class is reduced
to the size of second most frequent class (Emphatic). In the
second, all majority classes are downsampled to the size of
the minority class (positive). The experiments are conducted
using WEKA software [37]. The importance weighting is
also performed using WEKA software that gives the option
to weight each data instance at the end of each data line in
the ARFF file.

The results of different systems evaluated on the test
data are reported in Table 3. Several observations can be
reported. First, we note that when original data are used
without any sampling or weighting techniques, complex
back-end systems give the worst results. This is particularly
true for SVM for which performances are comparable to the
chance baseline system, classifying all data as being of
majority class (N). Second, we observe that the introduction
of importance weighting and sampling techniques remedy,
in general, the problem of unbalanced data. Although the
best technique depends on the type of classifier used, the
technique of downsampling to the least frequent class
generally leads to better results. For SVM with polynomial
kernels of degree one or three and for MLP system,
downsampling to the least frequent class outperforms not
only other techniques but also represents the only technique
that can improve the performance achieved by GMM. For
SVM with Radial Basis Function kernel and random forest
classifiers, the best results are achieved with SMOTE
technique; however, the UA performances remain lower
than GMM. Regarding importance weighting, this techni-
que behaves differently depending on the classifier on
which it is used. On SVM and particularly on RBF kernel,
the effect observed on skewed data is reversed when the
weights are applied. Namely, all data of one of the minority
classes are correctly classified at the expense of other
classes. On the other hand, importance weighting comes at
the first position compared to the other techniques and
succeeds in alleviating the problem of unbalanced data
when tested with kNN and logistic regression methods. We
also observe that downsampling to the least frequent class
achieves good results as well, however slightly below those
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TABLE 3
Comparison of the Three Different Types of Systems
Evaluated on Test Data of FAU AIBO Emotion Corpus

Recall (%)
Systems A E N P R

Without back-end system

Unweighted
Average

GMM-Bayes 46,97 49,27 41,83 46,95 2323 41.65
Similarity-based systems
kNN (k=5) 283 37 743 113 22 30.62
kNN-S (k=41) 493 45 385 493 18| 4002
kNN-DI (k=21) 308 63 567 239 22 3532
kNN-D2 (k=75) 535 451 485 521 106 41.96
kNN-W (k=211) 51.1 481 472 53.1 151 42.92
Anchor models 55.97 47.02 49.79 55.35 12.82 44.19
Complex back-end systems
SVM (linear) 0 48 989 0 0 20.74
SVM-S (linear) 408 529 53 329 167 39.26
SVM-DI (linear) 33 678 684 3.7 0 28.64
SVM-D2 (linear) 56.6 427 471 592 143 43.98
SVM-W (linear) 83.8 48.1 0 0 0 26.38
SVM (polynomial d=3) 82 156 95.8 0 0 23.92
SVM-S (d=3) 39.1 531 555 329 162 39.36
SVM-D1 (d=3) 173 658 67.6 11.7 0 32.48
SVM-D2 (d=3) 553 478 502 521 134 43.76
SVM-W (d=3) 100 0 0 0 0 20
SVM (RBF kernel) 0 0 100 0 0 20
SVM-S (RBF) 60.1 31 284 23 556 39.62
SVM-DI (RBF) 0 76.1 56.8 0 0 26.58
SVM-D2 (RBF) 709 34 14 0 75.1 30.16
SVM-W (RBF) 100 0 0 0 0 20
Logistic 21.1 318 874 94 0 29.94
Logistic-S 40.1 527 531 347 175 39.62
Logistic-D1 288 66.6 62.1 28.2 0 37.14
Logistic-D2 57.6 454 445 596 138 44.18
Logistic-W 58.6 473 41.8 592 15.1 44.4
MLP 182 225 91.1 103 0 28.42
MLP-S 386 40 65 357 11 38.06
MLP-D1 208 78.1 485 258 0 34.64
MLP-D2 55 607 325 629 07 42.36
MLP-W 0 802 0 0 52 26.44
Random forest 268 37.1 755 94 24 30.24
Random forest-S 383 443 51 282 136 35.08
Random forest-D1 337 572 477 235 5.8 33.58
Random forest-D2 486 392 339 324 141 33.64
Random forest-W 36.7 501 487 207 65 32.54

Systems Sys-X stands for system Sys using a technique X to overcome
the problem of skewed data. X can take the value: W for importance
weighting, S for SMOTE, D1 or D2 for downsampled to the second most
frequent or least frequent class size, respectively. Results that outper-
form baseline system (GMM) are highlighted in boldface.

of importance weighting. Both techniques when used with
NN and logistic regression outperform GMM models.

If we compare the two variants of downsampling
together, we find that undersampling to the least frequent
class size always gives better results for the tested classifiers
compared to undersampling to the second most frequent

TABLE 4
Comparison of Anchor Models Performances with
State-of-the-Art Tested on FAU AIBO Emotion Test Corpus

Systems Recall [%]
UA WA
Schuller et al. (IS2009 baseline 3820 3920
system) [8]
Lee et al. (Ba_yeman logistic 41.30 43.90
regression)[38]
Kockmann et al. (fusion of 2 joint 41.70 B
factor analysis systems)[39] )
Authors (WOC-NN)[11] 43.14 35.33
Schuller et al. (majority voting of 44.0 )
best IS2009 contributions) [40] )
Anchor models-Euclidean 44.19 47.44
Logistic-W 44.40 42.78

class size. We also observe that the best technique used to
overcome the problem of skewed data depends not only on
the type of classifier but also on the type of features. Indeed,
SVM trained with likelihood score data in this work
achieves better results with downsampling technique, while
importance weighting technique performs better when
SVM is trained with suprasegmental acoustic features
studied in [36].

Finally, it is interesting to note that anchor models based
on simple metrics such as euclidean is the only system
that is capable of improving performance over GMM
(6.2 percent relative) without use of any sampling or
importance weighting techniques. Furthermore, euclidean
metric outperforms all other complex systems even if these
different techniques are applied except for logistic regres-
sion when tested with importance weighting, which gives
slightly better results. This gives evidence that anchor
models used with distance metrics are less sensitive to the
skewed distribution owing to the use of a balanced number
of global and reliable representative vectors for each class.

In Table 4, we compare anchor models to the state of the
art using the same corpus and same experimental protocol.
We observe that the anchor models system with euclidean
distance outperforms the baseline [8], the best single [38],
and combined [39] systems of Interspeech 2009 Emotion
Challenge by 15.8, 7.1, and 6.1 percent relative, respectively.
Furthermore, anchor model offers better results than WOC-
NN (another similarity-based method) with a relative
improvement of 2.6 percent in UA recall and interestingly
also achieves a 33 percent relative gain in WA recall
(accuracy). Finally, anchor model slightly outperforms the
system obtained by the majority vote fusion of the best
contributions of Interspeech 2009 Emotion Challenge [40].

7 CONCLUSION

In this paper, we have presented anchor models, a
similarity-based method, to solve the multiclass emotion
recognition problem. We have shown that after WCCN
normalization, euclidean or cosine distances can be in-
differently used as decision metric to significantly improve
performance of the front-end system, namely the GMM
model. A relative gain of 6.2 percent is achieved using
euclidean distance. We also showed that some of the more
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complex and sophisticated classifiers used as back-end

systems can improve performance provided that an appro-

priate sampling or importance weighting technique is used.

The best technique, selected to overcome the problem of
skewed class distribution, is classifier and features depen-
dent. Thus, by virtue of its algorithmic simplicity that does
not require any parameter tuning, its low time execution
complexity, and finally its insensitivity toward unbalanced
data, the anchor models system based on distance metrics
represent an attractive solution to improve on the perfor-
mance of generative models such as GMM.
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