
THE A* SPEECH RECOGNITION SYSTEM ON PARALLEL ARCHITECTURES

Patrick Cardinal1,2, Gilles Boulianne1 and Pierre Dumouchel1,2

1Centre de Recherche Informatique de Montréal (CRIM),Montréal, Canada
2École de Technologie Supérieure, Montréal, Canada

Email: {patrick.cardinal,pierre.dumouchel,gilles.boulianne}@crim.ca

ABSTRACT

The speed of modern processors has remained constant
over the last few years but the integration capacity con-
tinues to follow Moore’s law and thus, to be scalable, ap-
plications must be parallelized. In addition to the main
CPU, almost every computer is equipped with a Graphics
Processors Unit (GPU) which is in essence a specialized
parallel processor. This paper explore how performance
of speech recognition systems can be enhanced by using
the A* algorithm which allows better parallelization over
the Viterbi algorithm and a GPU for the acoustic compu-
tations in large vocabulary applications. First experiments
with a ”unigram approximation” heuristic resulted in ap-
proximatively 8.7 times less states being explored com-
pared to our classical Viterbi decoder. The multi-thread
implementation of the A* decoder combined with GPU
for acoustic computation led to a speed-up factor of 5.2
over its sequential counterpart and an improvement of 5%
absolute of the accuracy over the sequential Viterbi search
at real-time.

1. INTRODUCTION

Large vocabulary automatic speech-recognition is a com-
putationally intensive task. Most speech recognizers run
under a sequential implementation that cannot take advan-
tage of modern processors with multi-core technology. In
order to exploit this power, a parallel speech recognition
system must be implemented.

Other architectures specialized in parallel computa-
tions can be used as a coprocessor to outperform the speeds
offered by a modern CPU alone. In fact, almost every
modern-day computer contains such a device: modern graphic
cards incorporate a specialized processor called Graphics
Processing Unit (GPU). A GPU is mainly a Single Instruc-
tion, Multiple Data (SIMD) parallel processor that is com-
putationally powerful, while being quite affordable. Over
the years, the GPU has evolved into a flexible processor.

A noteworthy technological advance was achieved in
2007, when NVidia and ATI introduced the unified archi-
tecture. This greatly enhanced the flexibility and usability
of the GPU, to the extent that it is becoming a mainstream
alternative for general purpose calculations.

The two major time consuming components in speech
recognition are the acoustic likelihood computation and
the optimal path search. The first component takes 30%-

70% of total time. This calculation involves mostly arith-
metic operations than can be computed by a dot product.
This allows an efficient implemention in a SIMD (Sin-
gle Instruction Multiple Data) parallel architecture such
as SSE registers or a graphic processor (GPU) [1].

The search component consumes most of the remain-
ing time. The classic way to perform the decoding uses the
Viterbi algorithm. This algorithm is simple and straight-
forward to implement. It is nonetheless difficult to achieve
an efficient parallelized version of the Viterbi algorithm on
a classical multi-core computer. The main reason is that
only 1% of the states are active at each frame and these
are scattered in memory. This situation adds to the well
established difficulty of having to search a sparse graph
on a parallel architecture of the Intel processor type [2].

A parallel implementation of a speech recognition sys-
tem is presented by Phillips et al. [3]. Their system builds
the transducer on the fly during the decoding process. They
have obtained a performance of 0.8x real-time on a 16
CPU computer for the North American Business News
(NAB) database. This is a speed-up of 4.87 compared to
3.8x real-time on a single CPU.

Parihar et al. implement the parallelization of the search
component of a lexical-tree based speech recognizer [4].
In this work, lexical-tree copies are dynamically distributed
among the cores to ensure a good load balancing. This re-
sults in a speed-up of 2.09 over a serialized version on a
Core i7 quad (4 cores) processor. The speed-up is limited
by the memory architecture.

In [5], Ishikawa et al. implemented a parallel speech
recognition system in a cellphone using a 3-core proces-
sor. The system was divided in 3 steps, one for each core.
They reported a speed-up factor of 2.6 but their approach
is not scalable since involved steps are not easily paral-
lelizable.

In [6], Chong et al. implemented a WFST (weighted
finite state transducer) and LLM (linear lexical model)
speech recognizer in a GPU (240 arithmetic units). A
GPU offers a highly parallel architecture which is better
suited for sparse graph searches. They report speed in-
creases of up to 10.96 for the LLM and 13.72 for the FST
model.

This paper presents results of using the A* search al-
gorithm in which a GPU is used for the acoustic compu-
tations in a large vocabulary speech recognition parallel
system. The A* approach has previously been applied to
speech recognition by [7]. It divides the search opera-

The 11th International Conference on Information Sciences, Signal Processing and their Applications: Main Tracks

978-1-4673-0382-8/12/$31.00 ©2012 IEEE 108



tion into two steps. The first step is the computation of
a heuristic that yields an estimate of the cost for reach-
ing the final state from any given state in the graph. The
second step is a best-first search driven by the heuristic.
The advantage of this approach is that the heuristic can be
constructed to allow an efficient computation in parallel.
The search itself is still difficult to parallelize, but it can
be reduced by using a good heuristic since, in this case, a
smaller number of states will be explored.

2. A* DECODER

2.1. Background work

We had already parallelized the classical Viterbi algorithm
in this previous work [1]. The set of active states is di-
vided into n subsets, where n is the number of threads
dedicated to the state expansion process. However, some
transitions lead to states belonging to another thread. Up-
dating these states in parallel can lead to data incoherency.
To circumvent this problem, we keep duplicate destination
state information and merge them after all states have been
expanded. Although this solution implies an overhead, it
is much faster than the use of mutexes.

At the end of the expansion process, the best score is
found and state pruning is applied in parallel. Then, sur-
viving states of each subset are merged together to create
the set of active states for the next iteration. The merging
step is performed sequentially.

The results have revealed a speed-up factor of only 1.3
on a core2 quad processor over a single processor system.
This result is mainly due to the sparsity of the active states
in memory caused by the beam pruning which leads to a
misuse of the memory architecture. Since we cannot know
which states will be used in advance, it is very difficult to
overcome this problem.

If, at the outset, we disposed of a smaller graph, al-
lowing a exhaustive search, it would be much easier to
implement a parallel version of it. This is the idea behind
the use of the A* algorithm for which the heuristic is rep-
resented by a FST.

2.2. A* algorithm

Unlike the time synchronous Viterbi algorithm, the A* al-
gorithm is a best-first scheme, that implies a scoring pro-
cedure to explore the most promising states. The score of
a state is

Score(q) = g(q, t) + h(q0, t+ 1) + cost(q, q0)

where g(q, t) is the score for reaching state q from the
initial one at time t, h is the heuristic score that gives an
estimation of the cost for reaching a final state from the
adjacent state q0 at time t+1 and cost(q, q0) is the cost for
going to q

0 from q. A heuristic is said to be admissible if,
for every state, it underestimates the real cost for reaching
the final state. In that case, the A* algorithm is optimal. A
pseudocode of the A* algorithm is shown in Algorithm 1.

For simplicity, epsilon transition handling has not been
illustrated in this algorithm.

The input of the algorithm is the HCLG recognition
network composed of HMMs (H), triphone context de-
pendency (C), lexicon (L) and a trigram backoff language
model (G). This network is represented by a WFST =
(Q, i, F,⌃

i

,⌃
o

, E,�, ⇢) where Q is a set of states, i 2 Q

is the initial state, F ✓ Q is the set of final states, ⌃
i

is the input alphabet of the automaton (distributions), ⌃
o

is the output alphabet of the automaton (words), E ⇢
Q⇥⌃

i

⇥⌃
o

⇥R⇥Q is the set of transitions, � : i! R
is the initial weight function and ⇢ : F ! K is the final
weight function. The second input is the heuristic function
h : q, t ! R which gives the estimated cost for reaching
a final state from state q at time t.

1 openList {((i,�, 0), heuristic(i, 0))}
2 closedList ;
3 while openList 6= ; do
4 // Extract state with lowest

score

5 (q, t, g) openList.Extract()
6 closedList closedList [ (q, t)
7 if q 2 F and t = numFrames then
8 // Best path found

9 ExitSearch()
10 end
11 foreach (q,�

i

,�

o

, w, q

0) 2 E[q] do
12 if (q0, t+ 1) 62 closedList then
13 g

0  g + obsCost(�
i

, t) + w

14 h heuristic(q0, t+ 1)
15 entry  (q0, t+ 1, g0)
16 score g

0 + h

17 openList 
openList [ {(entry, score)}

18 end
19 end
20 end

Algorithm 1: The A* algorithm

2.3. Unigram Langage Model Heuristic

In our implementation, the heuristic is also represented by
a WFST. The heuristic costs are computed by performing
backward Viterbi decoding. The heuristic FST must be
small enough to allow for an exhaustive search. In our
experiments, it is built with the same models as that of the
recognition network, with the exception that the trigram
language model is replaced by a unigram model derived
from the trigram. The resulting FST is small enough to be
exhaustively and efficiently decoded.

Note that application of the Viterbi algorithm on the
heuristic is simpler and faster than on the recognition net-
work because no backpointers need to be kept to retrace
the best state sequence. Moreover, since all states are ex-
plored at each frame, they reside in contiguous memory
locations for optimal cache usage.

109



2.4. Mapping Recognition FST States to Heuristic States

Recall that A* search uses the heuristic cost given by the
function h(q

r

, t), where q

r

is a recognition FST state. In
essence, this function performs a lookup in the Viterbi
treillis computed on the heuristic. Thus, we need to know
which state (q

h

, t) in the heuristic is equivalent to (q
r

, t).
A mapping between states of the heuristic and those of the
recognition FST must thus be discovered.

To establish this mapping, we can use the FST com-
position as described by Mohri [8]. The inverted (input
and output symbols swapped) heuristic FST is composed
with the recognition FST. A state in the composed FST is
a pair s

hr

= (q
h

, q

r

) where q

h

and q

r

are, respectively,
states of the heuristic and recognition FST. The existence
of a state (q

h

, q

r

) implies that at least one path from i

h

to
q

h

in the heuristic FST has the same distribution sequence
than a path from i

r

to q

r

in the recognition FST. Since
the composed FST is connected, there is also a path from
q

h

to a final state of the heuristic FST that has the same
distribution sequence than a path from q

r

to a final state
of the recognition FST. Consequently, both states are con-
sidered to be equivalent. Note that the FST resulting from
the composition is not used, only the list of state pairs is
useful. In addition, this mapping is computed offline.

2.5. Block Processing

Data structures required for implementing A* are more
complex than the simple array used in a Viterbi decoder.
The A* algorithm always explores the most promising
path first. For efficiency, paths are stored in a binary heap
for which the three main operations (insertion, extraction
and decrease key) are in O(log n). However, the algorithm
needs to know if a node is already in the heap before in-
serting it. Since searching a node in a heap is O(n), a hash
table is used to keep track of nodes in the open list. More-
over, since we don’t want to explore the same node more
than one time, we use a closed list of nodes already ex-
plored which is also implemented with a hash table. For
efficiency, there is an open list (hash table) and a closed
list per frame.

In addition to complex data structures, the number of
nodes to explore grows as the square of the number of
frames as is the case with the Viterbi algorithm. To cir-
cumvent both problems, a block approach has been imple-
mented as follows. The heuristic is first computed for �
frames. Then, the A* search is performed on the ⇤ < �
first frames. The search stops when a node at time ⇤ with
a cost (path cost + heuristic cost) larger than the best cost
added to a user value (beam) is extracted from the open
List.

The window is then advanced of ⇤ frames. The pro-
cess is applied until the end of audio is reached. In order to
save computation time, several consecutive searches can
be done with one heuristic computation as shown by Fig-
ure 1.

This approach is equivalent to the beam pruning in the
Viterbi algorithm. In order to limit the number of nodes in
the open list, nodes outside the beam are not inserted in it.

Fig. 1. A* search by block

3. ACOUSTIC LIKELIHOOD COMPUTATION

GPU is a SIMD parallel processor that is specialized in
graphical rendering, which involves a high rate of lin-
ear algebra operations. Thus, using linear algebra-based
acoustic likelihood calculations should lead to a more ef-
ficient use of the GPU hardware. The acoustic likelihood
for a Gaussian mixture model is defined as :

b

j

(~o
t

) =

CjX

c=1

↵

jc

1p
(2⇡)d|⌃

jc

|
e

� 1
2 (~ot�~µjc)

0⌃�1
jc (~ot�~µjc)

where b

j

(~o
t

) is the probability that distribution j gen-
erates the d-dimensional observation vector ~o at time t, C

j

is the number of Gaussians in the distribution j, ↵
jc

is the
weight of Gaussian c in distribution j, µ

jc

and ⌃
jc

are the
mean vector and the covariance matrix of Gaussian c in
distribution j. This equation can be expressed as:

b

jc

(~o
t

) = (h
jc

+ u

jc

~o

t

+ v

0
jc

~o

2
t

)

where:

h

jc

= ln↵
jc

� 1

2
ln((2⇡)d|⌃

jc

|)� 1

2
~µ

0
jc

⌃�1
jc

~µ

jc

u

jc

= ~µ

0
jc

· ⌃�1
jc

v

jc

= Diag(�1

2
⌃�1

jc

)

This computation can be accomplished by a dot-product
of the following two vectors in which subscripts desig-
nating the distribution component have been omitted for
clarity:

~

obs = (1̄, o1, o2, · · · , on, o21, o22, · · · , o2n)
~

M = (h, µ1�
�1
11 , · · · , µn

�

nn

,�1

2
�

�1
11 , · · · ,�

1

2
�

�1
nn

)

where 1̄ is the identity element of multiplication. The
likelihood of a distribution is defined as :

ln b
j

(~o
t

) =

CjM

c=1

( ~

obs · ~

M

jc

)

where
L

is the logarithmic addition and is defined
as ln(ex + e

y). In this form, the computation of acoustic
probabilities is perfectly suitable for a GPU since each dis-
tribution can be independently computed in parallel, and
the results rest upon basic dot product operations.

110



3.0.1. CUDA development framework

We have implemented the acoustic computation module
in CUDA, a development framework for NVidia graphic
cards [9]. The CUDA framework shows the graphic card
as a parallel coprocessor for the CPU. The development
language is C with some extensions.

A program in the GPU is called a kernel and many of
them can be concurrently launched. A kernel is made up
of configurable amounts of blocks, each of which consists
in a configurable amount of threads.

At execution time, each block is assigned to a multi-
processor. More than one block can be assigned to a given
multiprocessor. Blocks are divided in groups of 32 threads
called warps. In a given multiprocessor, 16 threads (half-
warp) are executed at the same time. A time slicing-based
scheduler switches between warps to maximize the use of
available resources.

There are two kinds of memory. The first is the global
memory which is accessible by all multiprocessors. Since
this memory is not cached, it is important to ensure that
the read/write memory accesses by a half-warp are coa-
lesced in order to improve the performance. The texture
memory is a small part of the global memory which is
cached. The texture memory can be efficient when there
is locality in data.

The second kind of memory is the shared memory
which is internal to multiprocessors and is shared within a
block. This memory, which is a lot faster than the global
memory, can be seen as user-managed cache. This mem-
ory is divided into banks in such a way that successive
32-bit words are in successive banks. To be efficient, it is
important to avoid conflicting accesses between threads.
Conflicts are resolved by serializing accesses; this incurs
a performance drop proportional to the number of serial-
ized accesses.

3.0.2. Kernel for acoustic calculation

As described above, the likelihood of a given mixture is
the logarithmic addition of dot-products for each compo-
nent of the mixture. This operation can be implemented
as a reduction algorithm[10] which uses the addition as
reduction operator, except for the last C

j

number of oper-
ations, for which the logarithmic addition is used to com-
plete the reduction.

In our implementation, the computation of a mixture
likelihood is computed by one-block of threads. Conse-
quently, the number of launched blocks is the number of
distributions in the acoustic model. Each block contains
256 threads.

For efficiency, the observation vector ~

obs is copied C

j

times. As a result, it is the same length as a distribution
vector. There is thus a direct correspondence between its
elements and those of ~

M , thus avoiding index calcula-
tions.

Moreover, to ensure efficiency of the reduction pro-
cess and coalescing access to the global memory, the model
vector ~

M is reorganized at the distribution level. It’s or-
ganized such that the C

j

first elements are the constants,

h1 h2 u11 u12 u21 u22 v11 v12 v21 v22 0 0 0 0 0 0

1 1 o1 o2 o1 o2 o1
2 o2

2 o1
2 o2

2 0 0 0 0 0 0

*

h1 h2 o1*u11 o2
2*u12 o1*u21 o2*u22 o1

2*v11 o2
2*v12 o1

2*v21 o2
2*v22 0 0 0 0 0 0

Sum reduction

h1+o1
2*v21 h2+o2

2*v22 o1*u11 o2
2*u12 o1*u21 o2*u22 o1

2*v11 o2
2*v12

Sum reduction

h1+o1
2*v21 + o1*u21 h2+o2

2*v22 + o2*u22 o1*u11 + o1
2*v11 o2

2*u12 + o2
2*v12

Sum reduction

h1+o1
2*v21 + o1*u21 + o1*u11 + o1

2*v11 h2+o2
2*v22 + o2*u22 + o2

2*u12 + o2
2*v12

LogAdd reduction

(h1+o1
2*v21 + o1*u21 + o1*u11 + o1

2*v11) h2+o2
2*v22 + o2*u22 + o2

2*u12 + o2
2*v12)

Obst

Mjc

bj(ot)

Fig. 2. Reduction algorithm applied to the acoustic com-
putation.

followed by the µ1�
�1
11 value of each component and so

on. Figure 2 shows an example of the reduction algorithm
applied in this context. In this figure, u

xc

and v

xc

denote
the µ

x

�

�1
xx

and � 1
2�xx

values of component c.
Note that the observation vector has also been reorga-

nized in the same way to ensure consistency.
Since the global memory latency is high, it is efficient

to use data in shared memory as most as possible. In the
case of likelihood computation, it is achieved by comput-
ing many frames at the same time. Thus, instead of com-
puting likelihoods frame per frame, each block compute 7
frames for each distribution. The number 7 has been deter-
mined the most efficient after experimental results. This
number could be different in other GPU since it depend of
the amount of available shared memory.

4. EXPERIMENTS

4.1. Experimental Setup

The baseline system for comparison is a WFST-based speech
recognition system developed at CRIM and tuned for speaker-
independent transcription of broadcast news.

The acoustic model has been trained with 171 hours
coming from French television programs in Quebec. The
programs are a mix of weather, news, talk shows, etc. that
have been transcribed manually. The acoustic parameters
consist of 12 MFCCs plus the energy component, corre-
sponding first and second derivatives, for a total of 39 fea-
tures. The model contains 4600 distributions of 32 and
128 Gaussians with diagonal covariance matrices.

The language model has been trained with text from a
French local newspaper (La Presse, 93 million words) and
the acoustic training set’s textual transcripts (2.1 million
words). Both the unigram and trigram language models
use the same vocabulary of 59624 words.

The CPU used is a Intel Core i7 quad at 2.9 GHz with
8 GB of RAM. Acoustic computations use the SSE reg-
isters. On the baseline version, required acoustic likeli-
hoods are computed on-demand. This optimization is not
possible with the A* algorithm since all likelihoods are
used for computing the heuristic.

111



Computation # of
time explored

Algorithm (seconds) nodes Accuracy
Viterbi 2069 2 459 801 548 68.67 %

A* (1 Thread) 6134 283 041 383 70.01%
A* (4 Threads) 2497 283 041 383 70.01%

Table 1. Viterbi vs A* for real time settings.

The GPU used is the NVidia GeForce GTX295. This
card contains 2 GPU of 240 cores each. However, we
have not been able to efficiently use the second GPU. Con-
squently, only one GPU has been used in all experimenta-
tions.

For all experiments involving the A* algorithm, the
heuristic length � has been set to 500 frames. A* search
is performed on ⇤ = 20 frames with a lookahead of 100
frames. Thus, for each block of heuristic scores, 20 A*
searches are performed.

The test set is made up of 44 minutes (2625 seconds)
of audio with a duration between 32 and 50 seconds.

4.2. A* Speech Recognition on Multi-Core Processors

We firstly experimented how a A* based speech recogni-
tion system perform on multi-core processors compared
to the classical Viterbi approach.

4.2.1. Comparaison with the Classical Viterbi

Table 1 shows the performance of our A* decoder com-
pared to the classical Viterbi decoder. The experiment has
been done with 32 Gaussian component distributions.

The main advantage of the Viterbi decoder comes from
the fact that it computes only 29% of all likelihoods since
they are computed on-demand. This allows the Viterbi
decoder to perform very well in real time as shown by the
results.

In the case of the A* decoder, results show that the
sequential implementation is slower than the Viterbi de-
coder. This is mainly due to the acoustic likelihood com-
putation which accounts for 64% of the total time. Re-
call that all likelihoods must be computed since they are
needed for the heuristic. The heuristic computation itself
accounts for 27% of the total time.

However, the 4 thread version, with a speed-up of 2.46,
achieves real-time. This performance could be improved
if more threads were available.

Note that the number of explored nodes is about 8.7
times smaller in the A* decoder. This is the reason why
the search itself account for only 7% of the total compu-
tation time.

Figure 3 shows results of a second experiment ran with
a 128 Gaussian component acoustic model distribution. In
this scenario, the real-time accuracy of the Viterbi decoder
drops to around 65%, even if only 16% of acoustic like-
lihoods are computed, search time has to be limited by a
low beam value.

















       









     

Fig. 3. 128 Gaussian components A* decoder accuracy vs
execution time. Dashed lines are projections.

The A* decoder cannot achieve real time with only 4
threads even with a speed-up of 3 times over its sequential
counterpart. However, projection (represented by dashed
lines) to 8 threads show that real-time can be reached with
an accuracy of 71.62%. With 16 threads real-time accu-
racy would be 72.29%.

Note that for an accuracy of 72%, the A* decoder with
4 threads is 2.27 times faster than the Viterbi decoder. It
would be 3.7 and 5.34 times faster with 8 and 16 threads.

4.2.2. Parallelization of Heuristic Computation

As described earlier, the heuristic computation operates in
2 steps: computation of acoustic likelihoods and compu-
tation of heuristic costs. These steps take more than 91%
of the total search time. Table 2 shows how the computa-
tion time can be decreased by using multi-core architec-
tures. Experiments have been conducted with 128 Gaus-
sians acoustic models on the whole test set.

Computation time speed-up
Step 1 thread 4 threads factor

Acoustic likelihoods 10659 sec 2913 sec 3.7x
Heuristic costs 1512 sec 495 sec 3.1x

Table 2. Heuristic computation speed-up.

The first line of Table 2 shows that computation of
acoustic likelihoods parallelizes very well in a multi-core
processor with a speed-up approaching the theorical max-
imum of N, where N is the number of cores.

Note that this parallelization could also be applied in
the classical Viterbi decoder. However, the improvement
will not be as significant since likelihoods are computed
on-demand and only a subset of the distributions are used.

Note that epsilon transition expansions, which take ap-
proximatively 8.5% of the Viterbi computation time, are
not parallelized.

We believe that the theorical maximum is not being
reached on this part because of a misuse of the memory
architecture, and that an optimisation of the data structures
will enhance performances on multi-core processors.

112



4.3. GPU Performance

Table 3 shows how the acoustic computation time can be
decreased by using a GPU. Experiments have been con-
ducted with 128 Gaussians acoustic models on the whole
test set.

Architecture Time (seconds) Speed-up
CPU 1 core 10659 –
CPU 4 cores 2913 3.7x

GPU 240 cores 964 11x

Table 3. GPU for acoustic likelihoods computation.

The two first lines recap the results shown in Table 2.
The results show that the use of a GPU leads to a speed-
up of 11x over a single CPU core using SSE registers.
Note that time for transferring observation from computer
memory to GPU global memory is included. Since acous-
tic model is transferred in the GPU memory only one time
at the beginning, this time is not included.

4.4. Combining GPU with the Multi-Core Processor

Our main experiment consists in combining computation
of acoustic likelihoods on the GPU and A* search on the
multi-core processor. Figure 4 shows the results of this ex-
periment with a 128 Gaussian component acoustic model.

















      









   

Fig. 4. A* with GPU decoder accuracy vs execution time.

In this scenario, the A* decoder now achieves real-
time when a 4 core CPU is used. Combined use of the
GPU led to a speed-up factor of 5.2 and improved the ac-
curacy at real-time by approximatively 5% absolute over
the classical Viterbi implementation.

5. CONCLUSION

This paper presented our current work on the paralleliza-
tion of speech recognition systems using the A* algorithm.
A WFST constructed from a unigram provides an admissi-
ble and efficient heuristic making the number of explored
states by the A* algorithm 8.7 times smaller compared
to the Viterbi algorithm in a real-time scenario. The A*
search itself is less than 7% of the total computation time.

Results also show that using 4 cores in a multi-threaded
implementation of the heuristic computation led to an over-
all speed-up factor of 3. The first and more time consum-
ing step is the computation of acoustic likelihoods which
parallelization reduced by a factor of 3.7. Computation of
heuristic costs was only reduced by a factor of 3, but better
reductions should be possible with better data structures.

Finally, using a GPU for acoustic computation in com-
bination with the multi-threaded A* decoder led to an over-
all speed-up of 5.2. This speed-up allowed an improve-
ment of the accuracy at real-time of 7% absolute.

6. REFERENCES

[1] P. Cardinal, P. Dumouchel, and G. Boulianne, “Par-
allel Architectures in Speech Recognition,” In pro-
ceedings of Interspeech, 2009.

[2] A.Lumsdaine, D. Gregor, B. Hendrickson, and J. W.
Berry, “Challenges in Parallel Graph Processing,”
Parallel Processing Letters, pp. 5–20, 2007.

[3] S. Phillips and A. Roggers, “Parallel speech recog-
nition,” International Journal of Parallel Program-
ming, 1999.

[4] N. Parihar, R. Schluter, D. Rybach, and E. A.
Hansen, “Parallel Lexical-tree Based LVCSR on
Multi-core Processors,” In proceedings of Inter-
speech, 2010.

[5] S. Ishikawa, K. Yamabana, R. Isotani, and A. Oku-
mura, “Parallel LVCSR Algorithm for Cellphone-
Oriented Multicore Processors,” in The IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing, 2006.

[6] J. Chong, E. Gonina, K. You, and K. Keutzer, “Ex-
ploring Recognition Network Representations for
Efficient Speech Inference on Highly Parallel Plat-
forms,” In proceedings of Interspeech, 2010.

[7] P. Kenny, R. Hollan, G. Boulianne, H. Garudadri,
M. Lennig, and D. O’Shaugnessy, “An A* Algo-
rithm for Very Large Locabulary Continuous Speech
Recognition,” in The IEEE International Conference
on Acoustics, Speech and Signal Processing, 1992,
vol. 1.

[8] M. Mohri, F.C.N. Pereira, and M. Riley, “Weighted
finite-state transducers in speech recognition,” in
Proceedings of the ISCA Tutorial and Research
Workshop, Automatic Speech Recognition: Chal-
lenges for the new Millenium (ASR2000), 2000.

[9] CUDA, “http://www.nvidia.com/object/cuda home.html,”
.

[10] T. Sumanaweera and D. Liu, “Medical Image Re-
construction with the FFT,” in GPU Gems 2. 2005,
Addison Wesley.

113


