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The present chapter reports an experimental study of the semantic basis of lexical selection
in speech. In a picture-word interference study, subjects named pictured objects while
ignoring semantically related or unrelated distracters. It was found that the related
distracters inhibited picture naming in comparison to the unrelated distracters. Indeed, the
extent to which a related distracter elicited inhibition was predicted by the semantic
similarity of distracter and target picture lexical concepts. Semantic inhibition is thought to
show the effect of distracter presentation on the competition for lexical selection between
candidate words in conceptually-driven speech. The results of the experiment suggest that
such competition is more intense for more similar words. Measures of semantic similarity
derived from lexical co-occurrence did not usefully predict observed semantic inhibition.
The rated similarity of stimulus pairs was, however found to be useful in predicting
inhibition. The results are discussed in relation to current models of lexical selection and of
semantic space.

1 Introduction

When we speak we must quickly make an implicit choice between different words
that variously match our intentions. The very large number of words available to a
speaker and the very short time in which, often, he or she must choose the words
make it likely that the choice is made in parallel. Such a claim is supported by
observation of semantic substitution errors and blends in speech [33]. In a number
of influential models of lexical retrieval in speech [10, 14 but see 29] it is assumed
that information about the word needed to express an idea is retrieved in sequence,
with first the word’s semantic/syntactic specifications then its phonological form
being accessed. It is assumed in these models that selection of the word takes place
at the lexico-semantic or lemma level.

The present chapter reports a picture-word interference study investigating the
nature of the semantic information that influences the choice we make every time
we must express a concept in speech. In the picture-word interference task, the
subject must name the picture while ignoring the interference stimulus, or
distracter. It has been found that when the distracter is a word semantically related
to the target name e.g. horse-cat, naming latencies are on average slower compared
to when the distracter word is unrelated to the target name e.g. horse-tree [9, 12,
19, 27]. This delay, a semantic inhibition effect, has also been taken to reflect the
parallel nature of lexical selection. It has been proposed that the distracter stimuli
perturb a selection process that operates in the manner of a competition for selection
between lexical candidates. Different candidates are activated in proportion to their
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match to the intentions of the speaker, the most activated candidate relative to all
salient competitors is selected. In the case of semantically related competitors the
level of competition is greater than it is for unrelated distracters because the related
distracter is more similar to the target and so longer is required to distinguish the
target word [27]. Opinion differs on whether the competition is implemented
through lateral inhibition [30] or by means of a choice ratio [25] but for the
purposes of the present study the essential point in our account is that semantic
inhibition arises because candidates for selection in speech are compared
simultaneously on the closeness of their fit to the intended meaning to be
communicated.

Eliciting the semantic inhibition effect has appeared to depend upon the
presentation of category co-ordinate distracters [27] but the effect, it has been
claimed, is not influenced by the relative semantic similarity of target and distracter
words[19]. Lupker [19] proposed that picture-word stimuli activate primarily
category-level information, shared by target and distracter representations. If
competition for selection depends only on category level information no effect of
the relative similarity of target-distracter pairs will be detected. In one of the most
influential current models of lexical selection [25], semantic interference arises as a
result of automatic activation spreading between related nodes (‘EXCLUDES’ nodes
between two mutually exclusive subordinates in a semantic category) in a network
representation of semantic knowledge derived from Collins and Loftus’ model [5].
The presentation of a related distracter primes activation of the target word but at
the same time presentation of the picture primes the distracter. The greater
activation of the distracter raises the level of competition, slowing the resolution of
the selection process. Distracters do not facilitate picture naming because the
priming of the distracter outweighs priming of the target. This is because, in the
model, the links from target to distracter are shorter than those from distracter to
target so that less activation is lost by the traversing of connections in the former
case. In simulations reported by Roelofs [25], the weights on connections are not
varied across items so that the model instantiates the implicit assumption that
different degrees of relatedness do not influence the semantic inhibition observed.
The related distracter slows naming more than the unrelated distracter because there
are no links between the unrelated distracter and the target word so that the
distracter does not benefit from target picture presentation. The model successfully
simulated the semantic inhibition data recorded in a comprehensive study by Glaser
and Dungelhoff [11].

It is the claim of the present study, however, that previous observations of the
null effect of the relative similarity of target-distracter pairs have been flawed by
invalid manipulations of similarity, warranting a reassessment of the influence of
semantics on lexical selection. Lupker [19] varied the semantic similarity of target-
distracter pairs in his study by varying their normative association or their
typicality in addition to their co-ordinate status. He found that though distracters
were both co-ordinate and highly associated with target words they did not inhibit
naming any more than if they were simply co-ordinate. In an investigation reported
by La Heij, Dirkx & Kramer [13], distracters that were both co-ordinates and strong
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associates of the target names facilitated picture naming at —400ms stimulus onset
asynchrony (SOA) but inhibited naming at +75ms SOA'. La Heij et al. [13]
interpret their results in terms of two different effects that have different time
courses. The associated co-ordinate distracter facilitates naming at 400ms SOA
(where the association effect predominates), has a null effect at Oms (where co-
ordinacy and association effects cancel) and inhibits at +75ms SOA (where co-
ordinacy predominates). These findings undermine the view that variation in the
association of picture-word pairs simply varies semantic similarity and therefore
could (but do not) vary observed semantic inhibition. Association appears to be a
different quantity to semantic similarity [18].

Lupker [13] also observed that typical co-ordinate distracters inhibited the
naming of typical target names no more than did atypical co-ordinate distracters.
Evidence reported by Cree, McRae & McNorgan [7] suggests that category
typicality is not a useful measure of semantic similarity, certainly not to the extent
that the latter influences lexical processing. Cree et al. [7] investigated the effect on
lexical decision performance of prime words that were co-ordinates of the target
word e.g. squash and were either more similar/less typical e.g. pumpkin or less
similar/more typical e.g. corn. They found that mean decision latency was
significantly facilitated for targets preceded by more similar/less typical primes.
Less similar/more typical primes had no effect, however, in comparison to the
baseline condition in which primes were unrelated. We can build expectations about
speech performance on data from the primed lexical decision task if it is assumed
that both picture-word semantic interference and lexical decision semantic priming
stem from the same source, activation spreading across relatedness links at the
semantic level of representation. Granted this assumption, it is clear that the
manipulation of typicality in a semantic picture-word interference experiment is
unlikely to influence the amount of semantic inhibition observed in such an
experiment.

Further, evidence reported by McRae and colleagues [21,22] indicate that we
can expect to find that semantic inhibition is observed in proportion to the semantic
similarity of related target-distracter pairs. In a series of experiments, it was noted
that when subjects were asked to categorise semantically printed target words
categorisation performance was facilitated by semantically related prime words.
Critically, the degree to which primes facilitated categorisation was predicted by the
degree of semantic similarity obtaining between prime and target words. If again we
are granted the assumption that we can apply findings from lexical decision or
semantic categorisation tasks to form expectations about picture naming
performance then we can hypothesise that the amount of semantic inhibition elicited
by a related distracter will be predicted by its semantic similarity to the target
picture name, beyond the mere co-ordinacy of the words.

The question now follows, how can one measure the semantic similarity of
words? In the present study, target-distracter similarity was gauged by ratings of

U\ negative asynchrony signifies that distracter stimulus onset precedes target onset. A
positive asynchrony signifies that distracter onset follows target onset.
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similarity and also measures of similarity obtained from Semantic Space Models
(SSMs)® derived from the distributional analysis of lexical co-occurrence.
McDonald ([20] p.13) comments that: “Word meaning varies along many
dimensions; [Semantic Space Models] attempt to capture this variation in a
coherent way, by locating words in a geometric space...words that are similar in
meaning should be positioned closer together than words that are dissimilar...” The
methods used to construct SSMs involve passing a ‘window’ over a speech or text
corpus and counting how often a particular word occurs together with context words
both before and after it within the window. The context words are a subset of the
total number of word types in a corpus, usually limited to relatively frequent
words. The obtained frequency or likelihood of co-occurrence between each word
and every other context word are collated in a co-occurrence matrix after the analysis
‘window’ has been passed through the entire corpus. One can suppose that each
context word constitutes a dimension on which every other word can be located in
terms of their co-occurrence, thus defining a high-dimensional context space. For a
particular word, the co-occurrence values in relation to other context words are the
elements of a vector representing the word’s co-ordinates in high-dimensional
context space. We can evaluate the similarity of two words by calculating the
distance between the points defined by their vectors.

In the present study, similarity data from two different models were used, the
Lund and Burgess model (LBM)’ [17] and McDonald’s model (MM) [20]. These
models share broadly the same methods of construction, as described above, but
differ on several points. Most importantly, perhaps, LBM is built on an analysis of
the co-occurrence of 70,000 words in an English language corpus of 320 million
words of usenet text. Usenet text was chosen because it is claimed to provide a
ready and plentiful supply of utterances. MM [20] is built on the analysis of the co-
occurrence of 446 words in a corpus of 10.3 million spoken words, part of the
British National Corpus [3]. In addition, LBM was constructed using a ten word
window in which to count co-occurrences but MM [20] used a window of six
words, three words before and three after the target word, and derived not co-
occurrence frequencies but rather statistics of the log-likelihood of co-occurrence.

The applicability of such models to questions about the semantics of lexical
selection in speech can be argued theoretically and on the basis of empirical
evidence. Firstly, we can see that across an entire corpus each word may be expected
to occur in contexts appropriate to its conventional meaning so that the co-
occurrence statistics abstracted from a corpus can be taken as an index of usage
which resembles or stands for an index of meaning. The similarity of the contexts
in which two words tend to appear indicates how well one can be substituted for the

2 SSMs have been constructed from speaker-generated features [22] as well as from the
analysis of lexical co-occurrence [17, 20] but the term Semantic Space Model will be
used here to refer to the latter type of model only.

3 The acronym LBM is preferred here to the term HAL that Lund and Burgess themselves
use because, as an anonymous reviewer points out, the term HAL has also been used in
reference to an earlier computer system.
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other in such contexts. If one word can easily be substituted for another it seems
likely that both will compete for selection in speech when one is required to express
a concept. Secondly, the SSM similarity of words has been found to significantly
predict experimental effects or data. Lund, Burgess & Atchley [18] observed that
the context similarity of related prime-target pairs was greater than that of unrelated
pairs, when the prime words had been used successfully to elicit priming in human
lexical decision performance. In addition, McDonald [20] compared rated similarity
with context similarity of word pairs. He found that there was a highly significant
correlation between the two measures of similarity. Despite these arguments it may
still be the case that SSM similarity does not capture the kind of semantic
similarity that influences lexical selection. It is a further hypothesis of the present
study, therefore, that Semantic Space Models adequately capture the semantic
similarity of target-distracter pairs eliciting semantic inhibition in a picture-word
interference task.

1.1 Hypotheses

e Semantic inhibition observed in a picture-word interference task is related
to the degree of semantic similarity between target and distracter.

e Semantic similarity is most adequately captured by the pair-wise
similarities yielded by analysis of lexical co-occurrence.

2 Methods

2.1  Participants

Forty students of the University of Newcastle-upon-Tyne volunteered to participate
in the experiment. All subjects had normal or corrected-to-normal vision. All were
native speakers of English. All were female with an average age of 21.6 years
(ranging from 18 to 49 years).

2.2 Materials

The target picture stimuli consisted of ninety-two line drawings of common
objects. Eighty items were taken from the Snodgrass & Vanderwart [28] set of
standardized pictures. The remaining items were taken from other sources ([8],
Corel Draw 8 Clipart images, 1988-1997, Corel Corporation) but were drawn or
were adapted so that their appearance was in the same style as the items from the
Snodgrass and Vanderwart set.

Construction of the stimulus set focused on the target-distracter pairings. The
manipulation of distracter type was within-items so that for the same target picture
both a related and an unrelated distracter word was chosen. Related pairs were
chosen first, as described below, then for each target the unrelated distracter was
chosen so as to match the related distracter on syllable length, log lemma frequency
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and imageability, where data were available’. The unrelated distracter was chosen to
be neither semantically nor phonologically related to the target picture name.

The principal aim in selecting the related target-distracter pairs was to choose a
set consisting of category co-ordinates that spanned a wide range in the degree of
semantic similarity per pair. An initial set of around two hundred candidate pairs
was constructed. From this set, any pairs that were substantially associated were
removed. In addition, pairs were not used if they were linked by a script relation
e.g. restaurant-wine or by an instrument relation e.g. broom-floor [23]. Nor were
they used if target and distracter were category co-ordinates at different levels of
naming, say, superordinate (category name) and coordinate (basic level name) or
coordinate-subordinate (see {26], [11], [32]).

For each remaining candidate related pair a set of values were obtained for the
semantic similarity of target and distracter concepts. Measures of semantic
similarity from two different semantic space models, LBM [17] and MM [20] were
used. Pair-wise similarity calculated in terms of Euclidean and cityblock distance
was derived from LBM. Similarity in terms of vector cosine values were derived
from MM.

The cumulative distribution of the similarity of all candidates was calculated
and pairs falling below the twenty-fifth percentile of the distribution were excluded
from further use. Inspection of stimuli from a number of previous published
studies of semantic inhibition had suggested an approximate cut-off point at that
degree of similarity such that unrelated pairs tended to occur below it, related pairs
above it.

The distribution of the pair-wise similarities of the final set of ninety-two
related pairs was examined for each similarity measure. Both LBM distributions,
Euclidean and cityblock distances, were reasonably normal. The cosine distribution
was highly skewed toward low similarity values. The application of a number of
transformations (such as taking the natural log or the log base ten of values)
corrected this tendency but failed to render the cosine distribution normal by the .
light of statistical tests of skew [31]. In forthcoming correlation analyses, however,
corrective transformations did not alter the overall pattern of correlations and
therefore uncorrected cosine values continued to be used in all further analyses.

Ratings of pair-wise similarity were gathered following the final selection of
target-distracter pairs. The pairs were presented to subjects in booklets in pseudo-
random order such that no target or distracter was repeated in sequence. Subjects
were asked to rate each pair on a seven point scale. Ten subjects were asked to rate
the sensory similarity of target and distracter concepts. A different group of ten
subjects were asked to rate their nonsensory or functional similarity; they were
asked, “Do these objects do similar things? Are they found in similar situations?

4 CELEX [1]) frequency and syllable length data were available for all 92 related and
unrelated distracters, but imageability data [6] were available for only 73 related
distracters; unrelated distracters were matched to the average imageability of the related
distracters where data were absent.
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Or, are these objects used for similar things? Are they used in similar situations?”
None of the subjects asked to provide ratings participated in the naming study.

Effort was made to ensure that the number of related pairs consisting of man-
made or artefact objects approximately equalled the number of pairs consisting of
living things.

2.3 Apparatus

The target pictures were scanned from print originals and digitized as bitmaps.
Distracter stimuli were spoken by a native male speaker of English and recorded for
auditory presentation as .wav files in a sound-attenuated studio. Stimuli were
presented and responses were recorded by means of a Pentium III Windows 98
computer, using the DMASTR software developed at Monash University and at the
University of Arizona by K.I. Forster and J.C.Forster (DMDX version 1.2.02).
Subjects were seated in front of a computer screen at a distance of approximately
60cm so that on average a picture subtended 6.79 by 8.09 degrees of visual angle.
Responses were recorded and stored as .wav files. Response latencies were extracted
from these files ‘by hand’ using the Speech Station 2 speech analysis computer
application.

2.4 Design and Procedure

The experimental design included stimulus onset asynchrony as a between-subjects
and within-items factor with two levels (-100 and Oms). It included distracter type
as a within-subjects and within-items factor with three levels (silent no distracter,
related distracter, unrelated distracter). Different groups of subjects performed the
naming task at each SOA. All subjects were presented with all distracter types. All
target pictures were used in all distracter conditions.

Each subject was individually tested in a dimly lit room. The experiment
consisted of three parts. In the first, the familiarization phase, critical and practice
pictures were presented to subjects together with their target names. In the second
part of the experiment, the practice phase, subjects were given a block of eight trials
in which to name pictures that were not used in the critical part of the test. The
practice pictures matched the critical picture set on name length and frequency. In
four practice trials, target pictures were accompanied by a distracter. In the other
four trials, the pictures were presented alone. In the final part, subjects faced the
critical picture naming trials. Subjects were instructed to name the pictures,
ignoring the auditory distracter. There were 276 critical trials consisting of 92
pictures for naming each presented three times, each time with a different distracter

type.
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3 Results

Responses were classified as errors if: (1.) The name given did not match the target
name. (2.) The response had been interrupted by a non-speech sound, or had been
restarted or repaired. (3.) No response had been produced within the allotted
response interval. (4.) A response had not been recorded due to mechanical failure.
Under these error criteria, seven items were found to elicit incorrect responses at a
rate greater than 10% of the responses made by all subjects to each item (coat, desk,
nail, envelope, pigeon, scoop, spider); data pertaining to these items were excluded
from all further analyses. This left a total of 10,200 data points, of which 218 or
2.18% were errors. No analysis of the errors is reported since the proportion of
errors is so low.

3.1 Description of reaction time data

Table 1 shows the mean reaction times recorded in each condition. There is an effect
of distracter type on naming performance. Response latencies were fastest under the
‘silence’ condition. The presentation of lexical distracters slowed latencies by
approximately 100ms. Most critically, latencies in the related distracter condition
were 14-20ms slower than latencies observed in the unrelated condition. This
suggests that there was an effect, though it was relatively small, of the semantic
relatedness of target-distracter pairings. It can be seen also that there was an effect of
SOA. Reaction times were slightly faster when distracter stimulus onsets preceded
picture onsets by 100ms. This SOA effect does not appear to influence the distracter
effect, however.

Multiple regression analyses of the mean reaction times for each item are
reported in the following section.

Table 1. Table showing the mean reaction times (ms) in each condition
Stimulus onset asynchrony

Oms -100ms
Distracter Reaction time Standard Reaction time Standard
condition (ms) deviation (ms) deviation
silence 646 59 630 83
unrelated 746 85 736 109
related 760 79 755 106

Note that figures indicate the mean in each condition of the average latency of each
subject in each condition.

3.2 Multiple regression analyses

The dependent variable in the analyses was the mean latencies per item recorded in
the related distracter condition. The independent variables were the mean unrelated
latencies per item, plus the various measures of the semantic similarity of each
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related target-distracter pairs: LBM Euclidean or cityblock similarity; MM cosine
similarity; rated sensory similarity; rated nonsensory similarity. Separate analyses
were conducted on the data gathered in each SOA condition, allowing an indication
of the validity of the regression solution across two different experimental settings.
The regression analysis was conducted in an hierarchical fashion. Related latencies
were regressed firstly on unrelated latencies, then on measures of semantic
similarity. (In an analysis of the data gathered in a particular SOA condition, the
related latencies in that condition was regressed on the corresponding unrelated
latencies observed in that condition.) This method first accounts for all variation in
the related latencies that can be ascribed to the effect of having an unrelated
distracter. If there is a reliable effect of semantic relatedness it is represented
together with error by the remaining variation left unaccounted. If that variation is
adequately described by a measure of semantic similarity than that measure will be
found to be a useful predictor of the variation in related latencies. All variables were
converted to standard scores prior to analysis.

Related latencies correlated significantly with unrelated latencies (at ~100ms
SOA, r = .53, p < .001; at Oms SOA, r = .47, p < .001). Related latencies
correlated signiﬁcantly, also, with rated nonsensory similarity (at —100ms SOA, r =
.23, p=.03; at Oms SOA, r = .3, p = .005) but with no other measure of pair-wise
semantic similarity at the .05 significance level; the correlations between related
latencies and rated sensory similarity merely approached significance (at —-100ms
SOA, r= 2, p=.07; at Oms SOA, r =.18, p = .1). The LBM cityblock similarity
of related pairs correlated significantly with the LBM Euclidean (r = .83, p < .001),
MM cosine (r = -.24, p = .04) and rated sensory measures of similarity (r = .22, p
=.05). LBM Euclidean similarity also correlated significantly with MM cosine (r =
-.35, p = .002). The rated sensory and nonsensory similarity measures correlated
significantly (r = .63, p < .001). The existence of substantial correlations between
the different measures of semantic similarity warrants the adoption of the
hierarchical rather than a simultaneous method of entering predictor variables in the
regression analysis [2].

In a regression analysis of by-items data (data averaged across subjects for each
item) the following variables were entered as predictors, in succession: first,
unrelated latencies; second, LBM cityblock; third, LBM Euclidean; fourth, MM
cosine; fifth, rated sensory similarity; sixth, rated nonsensory similarity. Table / -
presents statistics of R? change for the analysis.

Statistics of R’ change allow us to see how useful a predictor variable is when
it is used to predict the dependent variable alongside other predictors already
included in the regression equation. It can be seen that the SSM measures of related
pair-wise similarity add nothing significant to the capa01ty of the regression to
predict the variation in related latencies. In contrast, R? is substantially increased by
the entry to the model of rated sensory similarity. The high correlation between
rated sensory and nonsensory similarity accounts for the fact that nonsensory
similarity does not appear to make an independent contribution to the regression
solution. (When nonsensory similarity is entered before sensory sifilarity it
contributes significantly to the regression but sensory similarity does not.)
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Principal Components Analysis (PCA) was used to extract the underlying factor
that explains the correlation between sensory and nonsensory similarity. PCA
indicated that 81.4% of the variance of each measure of rated similarity can be
explained by a single common factor. In all further analyses the common factor is
employed as the measure of rated similarity.

Table 3. Table showing the changing capacity of the regression to account for
variation in the dependent variable with the addition of each predictor.

minus 100ms SOA
model _predictor variables included 4|_R2 agus_ted R2 _ R2change F change dft de F change significance
1 unrelated latencies at -100ms 0.20 0.19 0.20 1898 1 < 001
2 unrelated RT', cityblock 0.21 0.18 0.00 0.09 1 73 0.77
3 unrelated RTs, cityblock, Euclidean 0.21 0.17 0.00 0.01 1 72 0.94
4 unrelated RTs, cityblock, Euclidean, cosine | 0.21 0.16 0.00 0.07 1 71 0.79
5 unrelated RTs, cityblock, Euclideen, cosine, | 0.30 0.25 0.10 9.46 1 70 0.003
rated sensory
6 unrelated RTs, cityblock, Euclidean, cosine, | 0.30 0.24 0.00 0.01 1 69 0.93
rated sensory, nonsensory
Oms SOA
model predictor variables included R2  adjusted R2  R2change Fchange dfl df2 F change significance
T unrelated latencies at Oms 020 0.19 0.20 1808 1 74 < 001
2 unrelated RTs, cityblock 0.20 0.17 0.00 0.01 1 73 093
3 unrelated RTs, cityblock, Euclidean 0.21 0.17 0.01 0.98 1 72 0.33
4 unrelated RTs, cityblock, Euclidean, cosine | 0.21 0.16 0.00 0.16 1 71 0.69
5 unrelated RTs, cityblock, Euclidean, cosine, | 0.26 0.21 0.05 4,75 1 70 0.03
rated sensory
6 unrelated RTs, cityblock, Euclidean, cosine, | 0.28 0.21 0.02 1.66 1 69 0,20

rated sensory, nonsensory

In analyses of by-items data, related latencies (recorded in each SOA) were
regressed as the dependent variable on the two predictors shown to be useful in the
foregoing: unrelated latencies plus an extracted factor of rated similarity. It was
found that regression solutions including both unrelated latencies and rated
similarity mgmﬁcantl;r predicted the variation in related latencies at both SOAs (at
—-100ms SOA, adj. R" = .331, F(2,82) = 21.8, P < .001; at Oms SOA, adj. R* =
.26, F(2,82) = 15.58, p < .001). Both predictors making unique contributions. For
unrelated latencies: at —100ms, § = .54, p < .001; at Oms, B = .45, p < .001. For
rated similarity: p = .26, p = .005; at Oms, § = .23, p = .02).

It has been argued [16] that if one conducts a regression analysis on by-items
data the outcome of such a test can be generalized across items but not across
subjects. One can take into account variability in the value of regression coefficients
across subjects by performing regression analyses of the data gathered for each
subject alone, extracting for each a set of coefficient values. The reliability of the
regression solution can then be tested in terms of subjects through testing the
hypothesis that the mean regression coefficients (averaged across subjects’ analyses)
are significantly different to zero. It was found that a regression solution including
as predictors unrelated latencies and rated similarity predicted variation in related
latencies for most subjects. t-tests on coefficient values for the unrelated latencies
predictor showed they were significantly different to zero (at —100ms, mean p =
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27, s.e. = .03, t = 8.81, 2-tailed p < .001; at Oms, mean B = .26, s.e. = .03, t =
8.98, 2-tailed p < .001). Likewise, t-tests on values for the rated similarity
predictor were significant (at —100ms, mean B =.15, s.e. =.02, t = 6.56, 2-tailed p
< .001; at Oms, mean P = .13, s.e. = .02, t = 6.49, 2-tailed p < .001). It is plain
that the regression solutions yielded in the by-items analyses are consistent in
predicting the related naming latencies for all subjects participating in the
experiment.

4 Discussion

The present study was designed to test two hypotheses. It was proposed that the
semantic inhibition observed in a picture-word interference task is related to the
degree of semantic similarity between target and distracter. In addition, it was
proposed that that semantic similarity would be adequately described by measures
yielded by two Semantic Space Models. The evidence gathered in the experiments
support the first but not the second hypothesis. In regression analyses, it was found
that naming latencies recorded in the related distracter condition were significantly
predicted by the semantic similarity of pairs, when variation due to the presentation
of unrelated distracters had also been accounted. The measure of similarity useful in
predicting related latencies was the rated similarity of stimulus pairs. There was no
evidence that SSM measures of similarity had any significant role.

The observation of a significant relationship between semantic inhibition and
the semantic similarity of target and distracter words is contrary to the claim made
by Lupker [19] that competition for selection is based only on shared category-level
information. The results of the present study make it plain that, to the extent
semantic inhibition reflects competition for lexical selection, words competing to
be used in speech compete more when they are more similar. The data do not allow
us to evaluate whether this means that competition for selection is between similar
words or between words that are category co-ordinates, such that the level of
competition between co-ordinates is greater if the words are more similar. At the
least, however, it now appears that present models of lexical selection, such as
Roelofs’ [25] model, must be adapted to account for the semantic similarity effect.

The finding that rated similarity but not SSM similarity helps to predict
semantic inhibition suggests that the SSMs do not adequately describe the semantic
similarity involved in lexical selection in speech. What does this say about the
adequacy of SSMs? One of the most impressive findings of recent years have been
the demonstrations that significant semantic information can be abstracted from
lexical co-occurrences. We are still however working out the applicability of this
approach to the explanation of human behaviour.

LBM and MM cannot be claimed to represent the class of SSMs derived from
lexical co-occurrence analyses, though LBM is amongst the most well known. As
has been described there are a variety of parameters which specify how such models
are constructed. It has been shown that differences in the size of the corpus used, in
window size, window type, the number and type of counted context words
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substantially influence the performance of SSMs [24, 15]. Further, Patel and
colleagues [24] observed that optimal values for parameters varied in relation to
which performance criteria were adopted. It may be the casetherefore that lexical co-
occurrence derived SSMs based on different sets aof parameter values could be
shown to yield similarity measures that predict semantic inhibition.

Knowinghat the performance of SSMs vary in relation to the variation of
parameter values how can we find out whether SSMs can be used to describe the
semantic information used in lexical selection in speech? A study that could
evaluate the applicability of SSMs in general to the particular problem of lexical
selection would have to ground null results, if any such were to be observed, on an
adequate sampling of the space of possible SSMs. The study might be manageable
if this space was limited in a principled fashion. One could do so by limiting the
space of possible SSMs in terms of human empirical data, using window sizes that
resemble the limits on working memory capacity [2], and using corpora similar in
size and kind to recorded or estimated human lexical experience (as Patel and
colleagues [24] suggest).

In conclusion, the present study has demonstrated that lexical competition for
selection is likely to be based on more than just the information shared by category
co-ordinates. The relationship between semantic similarity and semantic inhibition
shows that lexical competition depends upon semantic content detailed to the level
of individual concept similarities. This relationship was predicted by ratings of
pair-wise similarity but not by measures of similarity yielded by lexical co-
occurrence based SSMs. Further empirical work will clarify the adequacy of lexical
context derived models of semantic space.
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