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Towards high-cooperativity strong coupling of a quantum dot in a tunable microcavity
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We investigate the strong-coupling regime of a self-assembled quantum dot in a tunable microcavity with
dark-field laser spectroscopy. The high quality of the spectra allows the line shapes to be analyzed revealing subtle
quantum interferences. Agreement with a model calculation is achieved only by including exciton dephasing
which reduces the cooperativity from a bare value of 9.0 to the time-averaged value 5.5. In the pursuit of high
cooperativity, besides a high Q and low mode-volume cavity, we demonstrate that equal efforts need to be taken
towards lifetime-limited emitter linewidths.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) involves an ex-
change of energy quanta between a single emitter and a cavity
photon. The coupling rate �g = μ12Evac, depending on the
emitter’s dipole moment μ12 and the vacuum electric field at
the location of the emitter Evac, sets the relevant time scale
of the coupled dynamics. If g is considerably smaller than the
emitter relaxation rate γ or the cavity photon decay rate κ , on
resonance the cavity mode acts as an additional decay channel
to the emitter giving rise to an enhanced spontaneous emission
rate (the Purcell effect of the weak-coupling regime). If g is
much larger than the energy loss rates, a coherent exchange
of energy quanta takes place giving rise to new eigenstates,
“polaritons,” split in energy by 2�g (the strong-coupling
regime). The efficacy of the coherent coupling is commonly
denoted by the cooperativity parameter C = 2g2/(κγ ), the
figure of merit for this work. The coherent exchange was first
realized with single Cs atoms in a high-finesse cavity [1].

The strong-coupling regime is a potentially powerful tool
in quantum information processing [2], notably in quantum
networks [3], since it enables for instance atom-atom entangle-
ment [4] or the distribution of quantum states [5]. Furthermore,
strong coupling enables a nonlinear photon-photon interaction
and hence the observation of photon blockade [6,7], a
prerequisite for the creation of a single-photon transistor [8,9].

It is clearly desirable to implement cavity QED in the solid
state as the solid-state host acts as a natural trap for the emitter.
Furthermore, on-chip integration of multiple elements is fea-
sible. As emitter, self-assembled quantum dots have desirable
properties: high oscillator strength, narrow linewidths, and
weak phonon coupling [10]. As host, a semiconductor such
as GaAs is very versatile: heterostructures can be realized;
there is a wide array of postgrowth processing techniques.
Photoluminescence experiments on single InGaAs SAQD
coupled to a photonic crystal cavity or a micropillar cavity
revealed an anticrossing, the signature of the strong-coupling
regime [11–13]. For micropillars, recent experiments exhibit
cooperativity values of around C � 3 [14]. For photonic
crystal cavities, a much higher C is achieved [15] but C is
skewed by the fact that g � γ yet g � κ . The photon decay
rate κ at the emitter wavelength is relatively high in both
geometries, limiting the cooperativity. In addition, micropillars
and photonic crystals offer only limited spectral tuning to the
emitter transition, and spatial positioning of the emitter relative

to the cavity antinode is achieved either by good fortune or
by fabricating the cavity around a particular emitter [16,17].
These are challenging issues resulting in a low yield.

In this work we demonstrate a strong coupling of a
single self-assembled InGaAs quantum dot to a fully tunable,
miniaturized Fabry-Perot cavity [18,19]. The coupled emitter-
cavity system is investigated by dark-field laser spectroscopy,
yielding extremely high spectral resolution, high sensitivity, a
high contrast, and good mode matching. The strong-coupling
regime is accessed definitively: we reach a cooperativity
of C = 5.5, significantly larger than that achieved with
micropillars [14] or a fiber cavity [20]. The high quality of
the data allows for a quantitative line-shape analysis. We
demonstrate an interference in the polariton gap. However,
the interference is less pronounced than expected from the
“standard model,” the Jaynes-Cummings Hamiltonian. We
show that the missing interference arises as a consequence
of an additional emitter broadening. Including the emitter
broadening allows us to reproduce both the exact line shapes
and polariton eigenenergies with a single parameter set for all
cavity-emitter detunings. A key point emerges. Achieving a
high cooperativity requires more than a focus on the cavity
properties (small mode volume and high Q factor): this has to
be matched with an equal effort on improving the linewidth
of the emitter. Here, we show that suppressing the emitter
broadening would yield a cooperativity as high as C = 9.0
even with the present microcavity. Characterization of the
quantum dots shows that here the main emitter broadening
arises from a spectral fluctuation (rather than a true dephasing
process): the fluctuations can be circumvented in lower-
noise devices. Our system therefore represents an extremely
promising route to implementing cavity QED in the solid state.

II. SETUP

The emitter is a self-assembled InGaAs quantum dot grown
by MBE at UCSB California. The background doping is small
and p type. The details of the heterostructure are depicted in
Fig. 1(b): a 32.5 pair λ/4 AlGaAs/GaAs distributed Bragg
reflector (DBR) is terminated by a λ layer of GaAs which
incorporates the InGaAs quantum dots in the center. Further
details of the sample are given in Appendix A. The bottom
DBR with reflectivity Rbot = 99.99% forms the planar end
mirror of the cavity. The concave top mirror consists of a fused
silica substrate with a depression formed by CO2 laser ablation
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FIG. 1. (Color online) (a) Experimental setup to probe the
cavity–quantum dot system. The microscope head is at room
temperature and consists of two polarizing beam splitters (PBS),
a linear polarizer, and a λ/4 wave plate. (b) Microcavity setup with a
GaAs/AlGaAs bottom mirror and a curved top mirror with radius of
13 μm coated with Ta2O5/SiO2 DBR. The InGaAs quantum dots are
embedded in a semiconductor heterostructure, at distance λ/2 from
the surface and λ/2 from the bottom mirror.

[21], and is coated with a Ta2O5/SiO2 DBR of reflectivity
Rtop = 99.95%. The radius of curvature is approximately
13 μm. The bottom semiconductor sample is mounted on
an xyz piezo stack that allows for sub-nm positioning with
respect to the top mirror enabling both spectral and spatial
tuning. The whole microcavity is then mounted on another xyz
piezo stack that allows the microcavity to be positioned with
respect to an aspherical coupling lens (NA = 0.55), facilitating
efficient mode matching with the excitation beam. A Si
photodiode mounted underneath the bottom mirror is used for
transmission measurements to characterize and optimize the
mode matching. By determining the longitudinal mode index
q0 = 2∂L/∂λ = 18, we estimate an effective cavity length
of L = q0λ/2 = 8.5 μm. From these parameters, a Gaussian
optics estimate results in a beam waist of w0 = 1.4 μm at
the sample. The cavity finesse is 4000; the quality factor is
Q = 6 × 104.

III. EXCITATION AND DETECTION

We measure the coupled cavity–quantum dot dynamics with
confocal cross-polarized dark-field laser spectroscopy [22],
sketched in Fig. 1(a). The polarizing beam splitters (PBS)
define two orthogonal linearly polarized arms (excitation and
detection) each coupled to the microcavity via the same
objective lens. A linear polarizer and a quarter-wave plate
mounted on piezo-driven rotational stages compensate for
small imperfections in the optics and enable a suppression of
the excitation laser of 10−7 to be reached, stable over several
days. The cavity exhibits nondegenerate linearly polarized
longitudinal modes with a splitting of about 200 μeV, con-
veniently larger than the bandwidth required to probe fully the
dynamics of the strong coupling. The cavity modes are aligned
with respect to the polarization axis of the microscope at an
angle φ ≈ π/4 allowing a good coupling of the cavity mode
to both detection and excitation channels. We measure the

wavelength of the tunable excitation laser with a wavemeter
and use this information to calibrate the cavity detuning on
applying a voltage to the microcavity z piezo. While the
polarization optics are all at room temperature, the microcavity
setup is inserted into a stainless steel tube containing He
exchange gas and cooled to 4 K in a He bath cryostat.

IV. EXPERIMENTAL RESULTS

Tuning the microcavity resonance with respect to the
emitter transition, and sweeping the excitation frequency
with respect to the microcavity resonance, reveals the exact
line shape of the coupled emitter-cavity system for various
detunings, as shown in Fig. 2(a). We observe a triplet
structure featuring the bare-cavity resonance ωC along with
two detuning-dependent resonances identified as the polariton
states of the strong-coupling regime. The bare-cavity con-
tribution can be determined accurately from the data in the
polariton gap at zero detuning. A subtraction of the bare-cavity
resonance from the raw data reveals the clear anticrossing of
the polariton modes, Fig. 2(b).

The anticrossing feature in Fig. 2 is visible only if the
sample is illuminated with an additional ultraweak non-
resonant excitation laser (λ = 830 nm). In free-space laser
spectroscopy experiments on a sample from the same MBE, an
“optical gating” by weak nonresonant excitation is described
[23]. However, it is only partially successful: observation of the
bare-cavity mode shows that the quantum dot detunes abruptly
(and out of resonance with the microcavity) in a telegraph
fashion. A bare-cavity contribution to resonance spectra has
been observed also on photonic crystal cavities [13] and was
attributed to charge noise in the vicinity of the quantum dot,
a mechanism which is active here. The experiment integrates
over a much longer time scale than is typical for this telegraph
noise, thus capturing photons from the scattering off the bare
cavity a significant fraction of time. We do not observe a

FIG. 2. (Color online) Dark-field resonant laser spectroscopy on
a coupled quantum dot–cavity system for varying cavity detuning.
(a) A triplet is observed at resonances ωR = ω±,ωC. We interpret the
spurious (bare) cavity resonance ωC as a consequence of an unstable
emitter state resulting in telegraph-like dynamics. (b) The data in (a)
after subtracting the bare-cavity resonance revealing the normal-mode
splitting characteristic of the strong-coupling regime.
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fine-structure splitting of the exciton at zero magnetic field.
A neutral exciton without fine structure is unlikely for these
quantum dots [24] so that we can safely assume that the studied
exciton coupling to the cavity in Fig. 2 is a charged exciton.

V. MODEL

We model the experiment with the Jaynes-Cummings
Hamiltonian modified for coherent excitation at frequency ωR:

H = �ωC a†a + �ωX b†b + [�g a†b + �ε a†e−iωRt + H.c.].
(1)

Here, a (b) is the bosonic (fermionic) annihilation operator of
the microcavity photon (exciton transition) with energy �ωC

(�ωX); g denotes the coherent coupling rate between photon
and exciton; and ε is the effective coupling rate from the
resonant excitation to the cavity field. Losses in the system
are described by the Lindblad formalism including the photon
energy loss rate κ and the exciton relaxation rate γ . The cavity
emission is modeled to be weakly coupled to a continuum
of detection modes with overall collection efficiency η: the
detected count rate is thus Ṅ = ηκ〈a†a〉.

With model M1 we investigate the system’s response as
a function of the resonant probe frequency ωR, treating ε as
a perturbative parameter. The linear coupling gives rise to
two polariton modes (±) at Rabi frequencies ω±. The steady-
state cavity population (proportional to the photon count rate)
evaluates to

〈a†a〉(ωR) = AL
−L(ωR − ω−) + AL

+L(ωR − ω+)

+ ADD(ωR − ω+) − ADD(ωR − ω−), (2)

whereL(ω) = Im[(πω)−1] is the unit-area Lorentzian function
and D(ω) = Re[(πω)−1] its dispersive function counterpart,
each with peak location Re ω = 0 and FWHM parameter
2| Im ω|. The peak areas AL

±, AD and Rabi frequencies ω± are
closed form functions of the dynamical parameters (g,κ,γ,ε);
see Appendix B.

VI. ANALYSIS

Figure 3 shows (black dots) two exemplary line shapes,
(a) for zero cavity-exciton detuning ωC − ωX = 0 μeV, and
(b) for significant detuning ωC − ωX = −17 μeV. The purple
solid line shows a best χ2 fit of the observed counts to the
model M1, Eq. (2), where the fit results in a single set of
dynamical parameters (g,κ,γ,ε), a set used for all employed
detunings (Table I). The green and blue solid lines show the
Lorentzian and dispersive constituents of the model, while
the black dashed line represents the spurious bare-cavity
contribution. The dynamical parameters obtained from the fit
result in a cooperativity of C = 2g2/(κγ ) = 5.5 ± 0.1.

Qualitatively, the model M1 agrees well with the observed
polariton resonances in terms of splitting, linewidths as well as
their shift with cavity-exciton detuning. Quantitatively, how-
ever, the count rates within the polariton gap are significantly
underestimated with respect to the experimental data for all
detunings. In the polariton gap, the model (neglecting of course
the bare-cavity contribution) predicts a strong destructive
interference: the positive Lorentzian contributions are reduced
considerably by the two dispersive constituents, both of which

FIG. 3. (Color online) Dark-field laser spectroscopy: spectra for
(a) zero and (b) −17 μeV cavity-emitter detuning. The experimental
values (black dots) are globally fitted to model M1 (purple solid
line), with Lorentzian and dispersive constituents (green and blue
solid line), and to model M2 (red solid line). M2, which includes
an additional broadening mechanism of the emitter, describes the
experimental data much better than M1. The improvement is partially
masked by the bare-cavity resonance background (black dashed line).

turn negative. In the experiment, this interference is observed
to a lesser degree than that predicted by model M1. This lack
of interference is particularly prominent for large detunings

TABLE I. Quantitative fit results of the dynamical parameters for
model M1 (no emitter broadening) and for model M2 (with emitter
broadening �).

Quantity Unit Model M1 Model M2

g μeV/� 11.05(2) 11.13(2)
κ μeV/� 19.48(9) 19.84(9)
γ μeV/� 2.28(4) 1.38(4)
� μeV/� 1.26(5)
ηκt |ε|2a Mcount (μeV/�)2 6.15(4) 7.08(4)
C = 2g2/(κγ ) 5.5(1) 9.0(3)
reduced χ 2 123 94

aWith integration time t = 20 s and η the overall collection efficiency
of the cavity emission.
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TABLE II. Experimental results on the bare-emitter system for
QD1−3.

Quantity Unit QD1 QD2 QD3

λ nm 941.79 937.41 939.04
ξ0 nW 7.0(5) 10.3(9) 20.3(65)
(εξ2)−1 μW 0.111(9) 0.55(8) 0.113(51)
�0 μeV 3.84(4) 3.17(8) 3.10(2)
γsw μeV 1.4(3) 0.2(3) 1.5(1)
γpd μeV ≈1.6 a ≈0.8

aNo consistent determination of γsw was found for QD2.

at the exciton-like polariton resonance [Fig. 3(b)] and points
strongly to an emitter dynamic not considered by the model.

To investigate this missing dynamic, we performed inde-
pendent linewidth measurements on the same sample region
but without the top mirror. The linewidths are measured under
the same conditions, i.e., with resonant laser spectroscopy
in the presence of an ultraweak nonresonant excitation (see
Appendix E). The results demonstrate a significant contri-
bution to the exciton linewidth beyond that determined by
spontaneous emission: typical linewidths are 3–4 μeV; the
radiative-lifetime limited linewidth (the “transform limit”)
corresponds to 0.8 μeV. There are two culprits for this
additional broadening: a spectral fluctuation (i.e., a wandering
of the exciton central frequency on time scales longer than
the radiative decay time) and pure exciton dephasing. The
analysis (Table II) suggests spectral fluctuations are dominant,
but the exact conclusion is quantum-dot dependent. Linewidth
broadening on this scale is commonly observed and arises
from electric charge noise [25].

As a refinement to the previous model, we incorporate an
emitter broadening by convoluting the emitter resonance ωX

with a Lorentzian distribution of free FWHM parameter �:
this is model M2. The convolution gives an analytical result,
Eq. (C6). A fit to the complete experimental data determines
the dynamical parameters (g,κ,γ,ε,�), as shown in Table I.
The model M2 results are shown in Fig. 3 as the red solid
line. The reduced χ2 is reduced by 25% but remains high
(Table I) but nonetheless M2 offers a strong improvement
in the interpretation of the experimental data. This is also
demonstrated in Fig. 4: the parameters AL

±, AD, and ω± from
Eq. (2) are shown from both models M1 and M2 along with
the experimental data. M2 significantly improves the FWHM
parameters 2 Im ω± and Lorentzian areas AL

± at all cavity-
exciton detuning ranges. Also, M2 resolves the discrepancy
in the polariton gap in Fig. 3: M2 accounts perfectly for
the experimental data both at zero detuning and at large
negative detuning. Only M2 is consistent with the experimental
data. The microcavity experiment is therefore sensitive to the
emitter linewidth in a way that low-power laser spectroscopy
alone is not. (We note that the microcavity experiment cannot
distinguish easily between a spectral fluctuation and pure
exciton dephasing: the M2 predictions are very similar; see
discussion in Appendix C). The increase in emitter linewidth
has a major effect on the cooperativity, Table I: M2 shows that
emitter broadening alone reduces C from 9.0, the “bare” value,
to 5.5.

FIG. 4. (Color online) Comparison of models M1 and M2
with the experimental data over the whole cavity-emitter tuning
range. (a) The polariton FWHM parameter (2 Im ω±) and (b) the
Lorentzian/dispersive areas AL

±, AD versus cavity detuning. M2
provides a much better fit than M1.

VII. DISCUSSION

The dynamical parameters of the experiment are summa-
rized in Table I. The free-space emitter lifetime of 800 ps
corresponds to a transform-limited linewidth γ = 0.8 μeV
and a dipole moment μ12 = 1.2 e × nm. The microcavity Q
factor Q = 6 × 104 results in κ = 22 μeV. From a simulation
of the microcavity, a vacuum electric field maximum of Evac �
2 × 104 V/m is expected, yielding g = μ12Evac � 24 μeV.
Experimentally, g is smaller than this best-case estimate. From
model M1 a cooperativity of C = 2g2/(κγ ) = 5.5 ± 0.1, a
result depending only weakly on the model assumptions.

An obvious route to higher cooperativity for the presented
microcavity system is to improve the mirrors, i.e., to reduce the
photon loss rate κ . Presently, the dielectric DBR is the limiting
factor and this can be readily improved with “supermirror”
coatings [26]. The coupling g should also be improved:
presently, slight errors in the microcavity manufacture reduce
g from its best-case value. Further, g would increase by a factor
of

√
2 (the cooperativity by a factor of 2) if the mode splitting

in the fundamental cavity mode (presently ≈200 μeV) could
be eliminated. However, the point we wish to stress in this
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work is the equal importance of the emitter dynamics. If the
additional broadening can be eliminated by improved emitter
quality, the cooperativity can be increased from C = 5.5 to
C = 9.0 even without an improvement in the microcavity.
This is an entirely realistic proposition: approaches exist by
which the additional broadening is routinely sub-μeV [27], in
certain cases eliminated altogether [28], without telegraph-like
noise by embedding the quantum dots in a vertical tunneling
structure. Such a scheme is realistic in the cavity geometry by
exploiting the good optical properties of epitaxial gates. The
present experiment demonstrates that the use of such emitters
will easily allow a cooperativity exceeding 10 to be achieved,
a powerful route to the application of cavity QED to quantum
control in the solid state.
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APPENDIX A: SAMPLE STRUCTURE

A self-assembled InGaAs quantum dot is positioned at the
cavity-mode electric-field antinode, as depicted in Fig. 5(a).
The heterostructure was grown by molecular beam epitaxy
by P. Petroff at UCSB California, and consists of a 100 nm
GaAs smoothing layer on a GaAs substrate, and a 32.5 pair

FIG. 5. (Color online) (a) Sample structure within cavity config-
uration and (b) estimated vacuum field distribution for the design
wavelength of λ = 940 nm. The field distribution is estimated from
one-dimensional transfer matrix methods, with a Gaussian beam waist
of w0 = 1.4 μm.

λ/4 AlGaAs/GaAs distributed Bragg reflector (DBR) as the
bottom mirror of the microcavity, which is terminated by a
λ-layer GaAs host matrix. During growth, the InGaAs wetting
layer is inserted at a λ/2 distance from the sample surface
[Fig. 5(b)]. The top mirror is produced by CO2 laser ablation
from a fused silica substrate, where a concave depression
with radius of curvature ≈13 μm is created before a Ta2O5

DBR coating is applied by ion-beam sputtering. The nominal
reflectivities are Rbot = 99.99% and Rtop = 99.95%. The
bottom mirror is mounted on an xyz piezo-driven positioner
for sub-nm positioning, allowing both spectral and spatial
tuning of the microcavity. Estimating from Gaussian optics
a beam waist of w = 1.4 μm at the quantum dot position from
the cavity geometry, with one-dimensional transfer matrix
method calculations we estimate a vacuum electric field of
Evac ≈ 2 × 104 V/m. At 4 K, single quantum dots can be
addressed in the wavelength range of 930 . . . 960 nm.

APPENDIX B: MODEL CALCULATION (M1)

The model Hamiltonian of the article reads, in the rotating
frame of the coherent excitation at frequency ωR,

H = �(ωC − ωR) a†a + �(ωX − ωR) b†b

+�g (a†b + b†a) + �ε (a† + a), (B1)

where a denotes the bosonic annihilation operator of the
cavity (C) and b the fermionic annihilation operator of the
exciton transistion (X). Here, g is the coherent cavity-exciton
coupling rate, and ε is the coherent excitation rate driving
the bare-cavity resonance from an external laser field whose
linewidth is neglected. Treating ε as a perturbation parameter,
in the absence of other pumping mechanisms the resulting field
amplitudes will be of order a,b ∝ ε.

The coherent and incoherent evolution of the density matrix
ρ is given by the Lindblad operator description

dρ

dt
= i

�
[ρ,H] + κ

2
(2aρa† − a†aρ − ρa†a)

+ γg

2
(2bρb† − b†bρ − ρb†b)

+ γpd

4
(bzρbz − ρ), (B2)

with the cavity photon loss rate κ of the single-cavity mode
under consideration; γg denotes the exciton’s spontaneous
emission rate into other guided modes of the cavity. For
completion, we also consider an exciton pure dephasing
contribution γpd (where bz = 1 − 2b†b), whose effect on the
dynamics is considered further below.

Observables O inherit a time-dependent expectation value
〈O〉(t) = Tr[ρ(t)O] from the density matrix. The expectation
values of the lowest orders of normal-ordered field operators
yield a set of optical Bloch equations

d

dt
〈a†〉 =

[
i(ωC − ωR) − κ

2

]
〈a†〉 + ig〈b†〉 + iε, (B3a)

d

dt
〈b†〉 =

[
i(ωX − ωR) − γg + γpd

2

]
〈b†〉 + ig〈a†〉

−2ig〈a†b†b〉, (B3b)
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d

dt
〈a†a〉 = −κ〈a†a〉 − [ig〈a†b〉 + iε〈a†〉 + H.c.], (B3c)

d

dt
〈b†b〉 = −γg〈b†b〉 + [ig〈a†b〉 + H.c.], (B3d)

d

dt
〈b†a〉 =

[
i(ωX − ωC) − γg + γpd + κ

2

]
〈b†a〉 + ig(〈a†a〉

− 〈b†b〉) − iε〈b†〉 − 2ig〈a†b†ab〉. (B3e)

The higher-order terms 〈a†b†b〉 and 〈a†b†ab〉 originate
from the fermionic nature of the exciton after applying
the commutator rule [b,b†] = 1 − 2b†b and thus represent
all saturation effects. At weak excitations ε ∝ b 	 1 these
contributions are suppressed and are further neglected. For
vanishing pure dephasing rate γpd 	 γg, the set of optical
Bloch equations are solved by the ansatz 〈a†a〉 = 〈a†〉〈a〉,
〈b†b〉 = 〈b†〉〈b〉, and 〈b†a〉 = 〈b†〉〈a〉 with 〈a†〉 and 〈b†〉 the
solution to Eqs. (B3a) and (B3b). The steady state (d/dt ≡ 0)
yields

〈a†〉 = ε
(
ωX − ωR + i

γg

2

)
g2 − (

ωX − ωR + i
γg

2

)(
ωC − ωR + i κ

2

) (B4a)

= εa
+

ωR − ω+
+ εa

−
ωR − ω−

, (B4b)

〈b†〉 = εg

g2 − (
ωX − ωR + i

γg

2

)(
ωC − ωR + i κ

2

) (B4c)

= εb
+

ωR − ω+
+ εb

−
ωR − ω−

. (B4d)

As a function of the resonant probe ωR, a double pole
structure arises at complex Rabi frequencies

ω± = ωC + ωX

2
+ i

κ + γg

4

±
√

g2 +
(

ωC − ωX

2
+ i

κ − γg

4

)2

(B5)

with projected excitation rates

εa
± = ε

2

⎡
⎣1 ±

ωC−ωX
2 + i

κ−γg

4√
g2 + (

ωC−ωX
2 + i

κ−γg

4

)2

⎤
⎦, (B6a)

εb
± = ∓ε

2

⎡
⎣ g√

g2 + (
ωC−ωX

2 + i
κ−γg

4

)2

⎤
⎦. (B6b)

So far, the detection channel has not been explicitly
modeled. A weak coupling of the cavity to a continuum of
lossy detection modes contributes a photon flux of ηκ〈a†a〉 to
the observed intensity, where the collection efficiency η has
no dependence on the cavity tuning. In the weak-excitation
regime, both the absolute value of 〈a†a〉 and the excitation rate
ε are difficult to determine experimentally. We note that the
detected intensity is proportional to 〈a†a〉, and limit our study
to its dependence on ωR. A partial fraction decomposition of

the absolute square of 〈a†〉 from Eq. (B4a) yields

〈a†a〉 = [V+ + Re W ]L(ωR − ω+) + Im WD(ωR − ω+)

+ [V− + Re W ]L(ωR − ω−) − Im WD(ωR − ω−),

(B7)

i.e., a sum of unit-area Lorentzian and corresponding disper-
sive function line shapes,

L(ωR − ω±) = Im ω±/π

(ωR − Re ω±)2 + (Im ω±)2
, (B8a)

D(ωR − ω±) = (ωR − Re ω±)/π

(ωR − Re ω±)2 + (Im ω±)2
, (B8b)

with magnitudes

V± = π |εa
±|2

Im ω±
and W = 2πi

εa
+εa∗

−
ω+ − ω∗−

, (B9)

where (∗) denotes complex conjugation. The line-shape
resonances are located at Re ω± with FWHM parameter
2| Im ω±|. The result for 〈b†b〉 is analogous to Eq. (B7), with
εb substituted into the magnitudes Eq. (B9).

APPENDIX C: MODEL CALCULATION (M2)

Model M1 assumes that the exciton behaves as a perfect
two-level system. In model M2 we introduce two major
broadening mechanisms of the exciton and calculate their
effects on the resonance line shapes. One mechanism is a
pure dephasing, i.e., an additional loss of exciton coherence
in addition to radiative decay; the second mechanism is a
spectral wandering, i.e., a temporal fluctuation of the bare-
exciton transition frequency ωX. The dynamics under pure
dephasing are governed by the Lindblad operator contribution
proportional to γpd, the last term in Eq. (B2). We implement the
spectral wandering by a convolution of the observable 〈a†a〉
with a distribution of ωX with FWHM parameter γsw. As long
as γsw is much smaller than the observed linewidths ≈κ , the
details of the distribution shape are insignificant. For the sake
of analytical simplicity, we choose a Lorentzian distribution.

The optical Bloch equations (B3) can be solved analytically
for a nonzero pure dephasing rate γpd within the weak-
excitation regime. The ωR dependence of the result is

〈a†a〉 = 〈a†a〉′ + Cpd

|ωR − ω′+|2|ωR − ω′−|2 , (C1)

where the primed expressions correspond to the previous
results when γg is renormalized by γg → γg + γpd. The
correction amplitude Cpd is given by

Cpd = 4|ε|2g4 γpd

γg

κ + γg + γpd

κ

[
4g2 (κ + γg)(κ + γg + γdp)

κγg

+ (κ + γg + γdp)2 + 4(ωC − ωX)2
]−1

. (C2)

In the experimental regime of the article (g ≈ 10 μeV, κ ≈
20 μeV, γg ≈ 2 μeV) we expect only a weak dependence of
Cpd on the experimental control parameters, namely the cavity
detuning ωC − ωX.
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The Lorentzian convolution (∗) of 〈a†a〉, Eq. (B7), with
respect to ωX with FWHM parameter γsw is based on the
algebraic form of Eq. (B4a). Observing the identity∣∣∣∣ωX − A

ωX − B

∣∣∣∣
2

∗ Lsw =
∣∣∣∣ωX − A′

ωX − B ′

∣∣∣∣
2

−πγsw

4

|A − B|2
Im B Im B ′ LB ′ (ωX) (C3)

valid in the regime Im A, Im B < 0, we identify A = ωR −
iγg/2 and B = A + g2/(ωC − ωR + iκ/2). The primed ex-
pressions are renormalized according to γg → γg + γsw. Here,
LB ′ is a Lorentzian located at Re B ′ with FWHM parameter
2 Im B ′. Similar to the pure-dephasing case, we find a
corresponding algebraic structure

〈a†a〉 = 〈a†a〉′ + Csw

|ωR − ω′+|2|ωR − ω′−|2 (C4)

with the correction amplitude from spectral wandering

Csw = 4|ε|2g4 γsw

γg

[
4g2 κ

γg
+ κ2 + 4(ωR − ωC)2

]−1
. (C5)

Different from the pure dephasing case, the correction ampli-
tude for spectral wandering Csw depends on ωR − ωC. How-
ever, as for Cpd, the dependence on experimental parameters
(ωR,ωC) is only weak as g ≈ κ � γg.

Treating both correction amplitudes Cpd, Csw as approxi-
mately constant, the emitter broadening induces, along with
the renormalization of γg, a correction to the Lorentzian and
dispersive line-shape constituents according to

〈a†a〉 = 〈a†a〉′ + Re U+L(ωR − ω′
+) + Im U+D(ωR − ω′

+)

+ Re U−L(ωR − ω′
−) + Im U−D(ωR − ω′

−), (C6)

with amplitudes

U± = π

Im ω′±

C
(ω′± − ω′∓)(ω′± − ω′∗∓)

. (C7)

From symmetry we find Im U+ = − Im U−. In the strong-
coupling regime, and also for large cavity-emitter detuning,
U± is largely real valued. Hence we expect as the main
signature of emitter broadening a significant increase of
the Lorentzian line-shape contribution, while the dispersive
line-shape constituent remains unaffected.

APPENDIX D: CONTRIBUTION TO SIGNAL FROM
EXCITON DECAY

We address the role of the bare-exciton population 〈b†b〉
whose contribution to the detection signal is expected to
be negligible as the experiment is performed in a confocal
detection scheme such that the coupling to the bare-cavity
mode only is efficient. From the model M1 Eq. (B4) we find

〈b†b〉
〈a†a〉 = g2

(ωX − ωR)2 + (γg/2)2
; (D1)

i.e., a parasitic contribution from 〈b†b〉 to the detection signal
must show the following signatures: (i) be proportional to
〈a†a〉 and (ii) be strongly enhanced at ωR ≈ ωX. Signature
(i) is clearly not observed in the experiment: 〈a†a〉 is small

in the polariton gap yet the deviation between M1 and
the experimental data is largest here. Signature (ii) is not
observed for strong cavity-exciton detuning where model
M1 perfectly reproduces both cavity-like and exciton-like
resonance amplitudes at ωR = ωC and ωR = ωC, respectively.
We thus conclude that the contribution of 〈b†b〉 cannot explain
the most dominant deviations between model M1 and the
experimental results.

APPENDIX E: BARE-EMITTER OPTICAL PROPERTIES

The analysis in Appendix C was limited to the weak-
excitation regime where a broadening effect on the emitter
can be quantified, while the underlying mechanism (pure
dephasing or spectral wandering) remained ambiguous. This
limitation is lifted in the strong-excitation regime: when
saturation effects become important a distinction can be made.
The full cavity-coupled emitter dynamics are difficult to solve;
however the bare-emitter dynamics are readily accessible. The
bare-exciton emission under resonant excitation—commonly
referred to as resonance fluorescence—follows the Hamilto-
nian

H = �(ωX − ωR)b†b + ��

2
(b† + b), (E1)

where � is the Rabi frequency of the resonant excitation of the
emitter. As before, we introduce the radiative decay rate γ in
free space and pure dephasing rate γpd by Lindblad operators.
The optical Bloch equations on the exciton population and
coherence then read

d

dt
〈b†b〉 = −γ 〈b†b〉 − i�

2
〈b†〉 + i�

2
〈b〉, (E2a)

d

dt
〈b†〉 =

[
i(ωX − ωR) − γ + γdp

2

]
〈b†〉 + i�

2
− i�〈b†b〉.

(E2b)

The steady-state population results in a Lorentzian line

〈b†b〉 = �2γ̄ /γ

4(ωR − ωX)2 + γ̄ 2 + 2�2γ̄ /γ
, (E3)

with the combined rate γ̄ = γ + γpd. The observed experimen-
tal linewidth �, when the emitter is subject to an additional
broadening due to spectral wandering γsw, is after Lorentzian
convolution

� =
√

γ̄ 2 + 2�2γ̄ /γ + γsw. (E4)

The resonance fluorescence peak intensity I = β〈b†b〉 at
resonance ωR = ωX is given by

I = β
�2

γ̄ γ + 2�2
× � − γsw

�
(E5a)

= Isat

(
1 −

[
�0 − γsw

� − γsw

]2
)

, (E5b)

where Isat is the peak intensity at saturation for � � γ ,
�0 = γ + γpd + γsw is the linewidth for � → 0, and β is the
overall instrumentation factor. Equation (E5b) expresses the
power-dependent resonance fluorescence intensity I in terms
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FIG. 6. (Color online) Resonance fluorescence peak intensity
(left scale) and FWHM linewidth (right scale) for three investigated
quantum dots (symbols). The peak intensity dependence with reso-
nant pump power matches a three-level description to a high degree,
where the assumed third level is nonresonantly pumped (solid lines).
From the three-level description we extrapolate to the corresponding
two-level dynamics (dashed lines) where the third level is eliminated
from the dynamics. The linewidth dependence with resonant pump
power is already well reproduced by the two-level description.

of convenient observables Isat and �, where β and the Rabi
frequency � have been eliminated. In the case γsw = 0, the
intensity I yields a linear relation to �−2 with intersects at Isat

and T2-limited rate γ̄ . A nonvanishing spectral wandering rate
γsw �= 0 violates the linear relation, allowing γsw to be used as
a robust fitting parameter.

We investigate the spectral wandering of single quantum
dots in the same sample area and wavelength as in the
microcavity experiment of the article. Although the very same
quantum dot cannot be conserved between configurations, we
assume a close statistical resemblance.

Figure 6 shows as symbols the peak resonance fluorescence
intensity I as a function of the resonant excitation power P for
three different quantum dots as well as their corresponding
resonance FWHM linewidths. In addition to the resonant
excitation, we require an ultraweak nonresonant excitation
to observe the resonance fluorescence, as was the case in
the experiment in the article. Beyond saturation at about
10 nW of monitored resonant excitation power, the resonance
fluorescence peak intensity drops with further increase in
excitation power, in contrast to the two-level model. We
attribute this breakdown to a spurious coupling to a third
level (e.g., a different charge state, either the quantum dot or
the environment). Indeed from a simple rate equation model,
where a third state is nonresonantly driven from either the
upper or lower level at smaller rate εP , the steady-state
population of the upper level is

I3 = β
(1 + εη1)P

ξ0 + (2 + εξ1)P + εξ2P 2
, (E6)

where the coefficients η1 < 1 and ξi depend on the details
of the relaxation rates. The power dependence of I3 in
Eq. (E6) is quantitatively well reproduced in the experimental
data. Under the assumption εη1,εξ1 	 1 we determine ξ0

FIG. 7. (Color online) Measurement of the resonance fluores-
cence peak intensity versus the inverse squared linewidth (symbols)
for the three investigated quantum dots. A vanishing spectral
wandering rate yields a linear relation (dotted line), while the
experimental data are consistent with a spectral wandering rate of
≈1.5 μeV for QD1 and QD3. On QD2 no consistent determination
of the spectral wandering rate is found. The open symbols at very
low resonant excitation power have been disregarded from the fit, as
the collected intensity is dominated by photoluminescence from an
ultraweak nonresonant excitation scheme.

and (εξ2)−1 (see Table II). Taking the limit εξ2 → 0, this
allows us to extrapolate from the resonance fluorescence
intensity I3 of the three-level system the expected resonance
fluorescence intensity I2 = P/(ξ0 + 2P ) of an effective two-
level system where the third-level contribution is eliminated.
The extrapolated intensity is shown in Fig. 6 as a dashed line.
In terms of resonance linewidth, the experimental data show
no significant deviation from a two-level description.

Figure 7 shows as symbols the resonance fluorescence
intensity as a function of the inverse squared linewidth �−2

for the three investigated quantum dots (filled symbols). At
very low resonant excitation powers, the collected intensity
is dominated by the photoluminescence intensity from the
additional ultraweak nonresonant excitation scheme. For this
reason, we discard the data for very low collected intensities
(open symbols). Applying the relation Eq. (E5b) to the
data, for QD1 and QD3, the relation is well reproduced for
γsw = 1.5 ± 0.1 μeV and 1.4 ± 0.2 μeV, respectively (solid
line). For comparison the best fit for γsw = 0 (dotted line)
is in clear contradiction to the experimental data. For QD2
no significant spectral wandering is observed; however we
note that the relative error on the resonance fluorescence
intensity is considerably larger than for the other QDs and
no consistent behavior at low intensity is found. Thus on
QD2 no reliable estimation of the spectral wandering rate
can be obtained. The T2-limited linewidth γ̄ = γ + γpd =
�0 − γsw evaluates to ≈2.44 μeV (1.6 μeV) for QD1 (QD3).
As the transform-limited radiative decay rate γ ≈ 0.8 μeV,
we estimate a corresponding pure dephasing rate of γpd ≈
1.6 μeV (≈0.8 μeV) for QD1 (QD3).

In summary, we observe that spectral wandering is likely
to represent a dominating broadening mechanism in the
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investigated sample. This result underlines the major statement
of the article: the cavity-coupled exciton cooperativity can

be readily enhanced if the additional emitter broadening,
identified as spectral wandering, can be reduced.
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E. L. Hu, and A. Imamoğlu, Nat. Photonics 6, 605 (2012).

[10] R. J. Warburton, Nat. Mater. 12, 483 (2013).
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